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Abstract - Vector approach in either stationary or synchronous 
plane is commonly used for the analysis of the AC drives like 
induction and PM brushless AC drives whilst it has been hardly 
ever used for the PM brushless DC (BLDC) drives. A possible 
reason is that they require injection of square-wave currents into 
the motor phases, which are non-sinusoidal in nature. Recently, 
the PM BLDC drives have been analyzed by the help of the 
vector approach in the stationary plane. This paper applies such 
an approach to an in-depth analysis of the operation of the PM 
BLDC drives during the current commutations, illustrating the 
potentialities of the approach in giving a better insight into the 
current transients and the ensuing torque characteristics. At last, 
two voltage control strategies proposed to eliminate the torque 
ripple due to the current commutations are considered, showing 
that they can be readily understood by the vector approach. 

 
Index Terms— PM BLDC drive; current commutation; 
stationary plane vector analysis. 

 

I. INTRODUCTION 

M BLDC drives are characterized by the capability of 

offering higher torque and power density compared to 

other AC drives of the same size. These features together with 

compact structure and cost effectiveness of the motor have 

made the PM BLDC drives widely accepted for motorizing 

many industrial equipment [1]-[3] and, nowadays, for 

propelling electric vehicle [4]-[6]. PM BLDC drives require 

injection of square-wave currents into the motor phases, 

synchronized with the flat portion of the trapezoidal back-emf 

to develop a constant torque and -at the same time- to 

maximize the torque-per-ampere ratio. As the flat portion of 

the back-emf covers 120° electrical angle, the voltage source 

inverter (VSI) supplying the motor uses its 120° working 

mode to inject square-wave currents into the motor phases. 

Commutation of the phase currents takes place with an 

electrical  angle periodicity of 60° and should be instantaneous 

[7]. In practice, phase inductances and limited supply voltage 

yield a finite time for the commutations and the currents 

deviate from the required waveform. Any mismatch in the 

current waveform impairs the drive performance as it 

produces: i) a drop of the speed-torque characteristic at high 

speeds that limits the full utilization of the drive in all the 
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speed range, and ii) the onset of torque ripples over almost all 

the speed range that give rise to an uneven motion of the 

attached mechanical load and an unduly solicitation on the 

rotor bearings [8]. Here, torque ripples designate the torque 

pulsations due to the current commutations. Other types of 

torque pulsations exist; they are due to the current oscillations 

originated by the PWM control of the VSI and to the cogging 

phenomena originated by the interaction between the 

permanent magnets of the rotor and the slots of the stator. 

Torque pulsations due to the current oscillations occur at high 

frequencies so that their impact on the load speed is very much 

attenuated by the filtering action of the motor-load inertia 

whilst torque pulsations due to the cogging phenomena are 

minimized with a suitable electromagnetic design of the motor 

[9].  

Current transients in the PM BLDC drives during the 

commutations have been explained in [10] for the defined low 

and high speed zones. The profiles of the torque developed by 

the motor during the commutations have been derived in [11] 

as a function of the motor speed by correlating currents, speed 

and torque of the motor. All the significant literature on the 

matter has approached the analysis of the PM BLDC drives by 

means of the phase variables. Recently, this analysis has been 

executed by means of the vector representation of the drive 

variables in the stationary plane [12].  

This paper applies the vector approach to an in-depth 

analysis of the operation of the PM BLDC drives during the 

current commutations. Organization of the paper is as follows: 

Section II reviews the vector representation of the PM BLDC 

drive variables in the stationary plane; Sections III and IV 

exploits the vector approach to illustrate the current transients 

during the commutations and the ensuing torque 

characteristics at low and high speeds, respectively; Section V 

shows the potentialities of the vector approach by using it to 

explain the rationale behind two voltage control strategies 

proposed in the literature to eliminate the torque ripple due to 

the current commutations [13], [14]; Section VI concludes the 

paper.  

II. PM BLDC DRIVE 

A. Operation 

Circuital scheme of a conventional PM BLDC drive is 

shown in Fig. 1. The DC link of the drive is powered by the 

DC voltage source Vd  and feeds the PM BLDC motor through 

the VSI.  

Voltage equations for the motor phases are  
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where j is a generic motor phase, ij, vjn, vjL and ej are the 

current flowing into the motor phases, the voltages applied to 

the motor phases, the voltage drop across the phase 

inductances, and the back-emf of the motor phases, 

respectively, R and L are the resistance and the mutual-effect 

inclusive inductance of the motor phases, e=et is the 

angular phase in electrical radians, e=np  is the motor 

speed in electrical radians per second, np is the number of pole 

pairs, and  is the motor speed. 
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Fig. 1. Circuital scheme of a PM BLDC drive. 

 

 

The phase voltages vjn are related to the VSI output voltages 

vjo, measured with respect to the negative rail of the DC link, 

by 

nojnjo vvv   (2) 

and the phase currents are constrained by the Kirchhoff’s 

current law 

0 =i
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The instantaneous electrical power p converted into 

mechanical form and the corresponding motor torque τ can be 

expressed as  
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Operation of a PM BLDC drive is expounded with the help 

of Fig. 2. Back-emfs are trapezoidal with the magnitude of the 

flat portions equal to +E or -E and their duration equal to 2π/3 

(electrical) radians. The value of E is given by  

kE   (6) 

where k is the motor constant. The phase currents have a 

square waveform with pulses of magnitude +I or –I that are 

synchronized with the flat portions of the back-emf. For motor 

operation, the phase currents in Fig.2 have the same sign as 

the polarity of the back-emfs.   

From Fig. 2, it emerges that the supply period of the motor 

can be divided into six supply intervals S1, S2, …, and S6 of the 

duration of π/3 radians. At the beginning of each supply 

interval, one phase starts to conduct (incoming phase) and 

another one finishes of conducting (outgoing phase). During 

the remaining part of the supply interval, only two-phases with 

back-emfs of opposite polarities conduct (conducting phases). 

To identify the supply interval and, from it, the conducting 

transistors of the VSI, the drive control uses the information 

delivered by three Hall sensors mounted on the stator and 

displaced of 2π/3 electrical radians. The required voltage is 

applied to the conducting phases by stepping down the DC 

link voltage Vd through the choppering of the conducting 

transistors. 
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Fig. 2. Back-emfs, currents and supply intervals of a PM BLDC drive. 

  

B. Control system 

As Fig. 3 shows, regulation of the phase currents at the 

reference value Iref can be accomplished by the closed-loop 

control of the DC link current id. In fact, this current remains 

equal to the current flowing into a motor phase when both the 

conducting transistors are ON; therefore, if properly sampled, 

the DC link current gives the feedback of the phase currents. 

The current error is processed by a PI regulator that delivers 

the required voltage vc for the motor phases. 

Application of vc across the phases of the motor is 

commonly attained by chopping only one of the two 

conducting transistors to reduce the switching losses; a 

common strategy is to chop the transistor carrying either the 

incoming or the outgoing current. Hereafter, it is assumed that 

the control applies the required voltage without any delay.  
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Fig. 3. Schematic of the control of a PM BLDC drive. 

C. Stationary plane representation 

Equations of the PM BLDC motor can be written in terms 

of the vectors i =[iα iβ]
T
, e =[eα eβ]

T
, and v =[vα vβ]

T
 of the 

currents and the back-emfs of the motor phases, and the VSI 

output voltages in the stationary plane. The vectors, calculated 

with a magnitude-invariant transformation, are given by  
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By (7), the voltage equations in (1) become 
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Calculation of the current and back-emf vectors for the 

waveforms in Fig. 2 shows that: i) the current vector i remains 

stationary within the supply intervals S1, S2, …, and S6, and 

coincides with the radii I1, I2, …, and I6, respectively, of an 

hexagon (current hexagon), ii) the back-emf vector e moves 

along the sides of an hexagon (back-emf hexagon) during the 

supply intervals, and coincides with the radii E1, E2, …, and 

E6 of the hexagon at the beginning of the supply intervals. 

Current and back-emf vectors are traced in Fig. 4 whilst their 

values as a fraction of  I and E are reported in Tab. I. 

As an example, in the supply interval S1 the current vector 

jumps from I6 (-I, I/√3) to I1 (0, -2I/√3) at θe = 0 and, after 

that, stays at I1 within the whole S1. Instead, the back-emf 

vector takes the value E1 (-2E/3, -2E/√3) at θe = 0 and moves 

towards E2 (2E/3, -2E/√3) during S1, reaching E2 at θe = π/3. 

For given values of I and E, the magnitude of the current 

vector remains the same and equal to 2I/√3, whereas the 

magnitude of the back-emf vector undergoes a continuous 

change from the maximum value of 4E/3 at the beginning of 

the supply interval to the minimum value of 2E/√3 at the mid 

of supply interval and then again to the maximum value of 

4E/3 at the end of the supply interval.  

Power equation in (4) can be expressed in terms of the inner 

product of the vectors e and i as 
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For the ideal case of instantaneous commutation, during the 

interval -0 ≤ θe ≤ π/3 the magnitude of the projection of e over 

i  is constant and equal to 2E/√3. Thus the motor torque in (5) 

turns out to be constant and equal to  

kI2  (10) 

 

 

III. CURRENT COMMUTATION 

In practice, the incoming and outgoing currents take some 

time to get the required magnitude and the current 

commutation is not instantaneous. The analysis of the PM 

BLDC drive operation during the current commutations is 

TABLE I.  CURRENT AND BACK-EMF VECTORS 
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Fig. 4. Current and back-emf vectors in the stationary plane. 
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carried out by supposing that  

 

i) the voltage drop across the phase resistances is negligible 

compared to the other voltage terms in (8), so that it can be 

disregarded, 

ii) the commutation interval is small compared to the 

maximum allowed interval of π/3 [9] so that e remains 

equal to the back-emf vector taken at the beginning of the 

relevant supply interval. 

 

Above assumptions reduce (8) to 
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for the supply interval S1. Eq. (11) shows that the change in 

the current vector is parallel to vL. 

Let us consider the current commutation taking place at the 

beginning of the supply interval S1, which starts at θe = 0 as in  

Fig. 2. The drive control system turns T4 OFF and T6 ON, and 

keeps T5 ON. The commutating currents are ib and ia, with ib 

that is ingoing and ia that is outgoing, whilst ic is the non-

commutating current. Current ia freewheels through D1 until it 

extinguishes.  

 Generally, the commutation interval is divided into two 

subintervals, and the current transients depend on whether the 

motor runs in the low-speed zone, which occurs for 4E<Vd , or 

in the high-speed zone, which occurs for 4E>Vd [10]. The 

current transients in the two speed zones and for 4E=Vd are 

shown in Fig. 5, where the duration of the commutation 

interval is denoted with θc, and the two commutation 

subintervals are marked with #1 and #2. Hereafter, quantities 

pertinent to the low-speed zone are identified with the 

subscript l and those to the high-speed zone with the subscript 

h.  

A. Current transients in subinterval #1 

During subinterval #1, all the three motor phases conduct 

and the VSI exerts the maximum effort to the motor for the 

commutating currents to reach the required magnitudes, i.e. it 

is vao =Vd, vbo = 0 and vco =Vd. From (7), the vector of the VSI 

output voltages during subinterval #1is  
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The vector has fixed magnitude and is aligned along E2. By 

(11) and (12), the vector of the voltage drops across the phase 

inductances is   
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The vector in (13) has a slope of  
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which is a function of E and, therefore, depends upon the 

motor speed Ω.  

Integration of (11) with the initial condition i(0) = I6 leads 

to the current vector i during subinterval #1  
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From (14) and (15) it can be concluded that the current 

vector during subinterval #1 moves towards I1 along a straight 

line with the slope in (14). So, as shown in Fig. 6, there are 

three possible trajectories of the tip of the current vector:  i) in 

the low speed zone, i.e. for 4E<Vd , m1 is less than -1/√3 and 

the tip of i1 moves along a line like x, which has an angular 
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Fig. 5. Current transients during commutation: a) in the low-speed zone 
(4E<Vd), b) for 4E=Vd , and c) in the high-speed zone (4E>Vd) 
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slope in the range from –/6 to –/3, ii) for 4E=Vd, m1 

becomes equal to -1/√3 and the tip of i1 moves along the line 

joining I6 and I1, which has an angular slope of –/6, and iii) 

in the high speed zone, i.e. for 4E>Vd , m1 becomes greater 

than -1/√3 and the tip of i1 moves along a line like w, which 

has an angular slope in the range from 0 to –/6. 

Subinterval #1 ends in three possible modes: i) for 4E<Vd, 

the incoming current ib reaches the required magnitude -I at 

the angle θi before that ia the outgoing current vanishes [Fig. 

5(a)]; ii) for 4E=Vd, ib reaches -I at the same angle that ia 

vanishes and the commutation completes at the end of the 

subinterval #1, [Fig. 5(b)], iii) for 4E>Vd, ia vanishes at the 

angle θo before that ib reaches –I [Fig. 5(c)]. In both the modes 

i) and iii), the commutation continues with a second 

subinterval where ia vanishes and ib gets the required 

magnitude; at the completion of this subinterval, denoted with 

#2, commutation is completed and the current vector becomes 

equal to I1. Subinterval #2 lasts θci = θcl – θi in mode i) and θco 

=θch – θo in mode iii).  

 

 

B. Current transients in low-speed zone 

During subinterval #1 the tip of the current vector moves 

along a line like x, as explained in the previous Subsection. At 

the end of the subinterval #1, the current of phase b reaches 

the required magnitude –I, i.e. it is ibl (θi) = -I, while the 

current of phase a is still flowing.  

During subinterval #2, the drive control system regulates ib 

at -I by applying the voltage vbo =Vd-E at the output b of the 

VSI, while the other two outputs of the VSI are kept at the 

same voltages as before, i.e. it is vao=Vd, and vco = Vd, for ia to 

vanish. The vectors of the VSI output voltages and the voltage 

drops across the phase inductances are expressed as  
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Both the vectors have a magnitude that depends on the speed 

and a slope that is independent of the speed. In particular, the 

slope of the vector in (17) is 

3

1
m2   (18) 

that, as shown in Fig. 7, is the same as the line s. Substitution 

of (17) into (11) and integration of (11) give the current vector 

in subinterval #2  
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where )( i1 i  is the current vector at the end of subinterval 

#1. The angle θi can be obtained by calculating the current 

vector at θe=θi by means of the first equation in (7), which 

becomes 
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Then, by equating the real and imaginary parts of (20) to (15), 

also calculated at θe=θi, the values of θi and  iai   can be 

obtained. In particular, θi results in 
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Finally, substitution of (21) into (15) yields )( i1 i .  

The trajectory of the tip of the current vector in subinterval 

#2, i.e. of  ie2  i , is a straight line having the slope in 

(18). Since the current vector coincides with I1 at the end of 

subinterval #2, and the slope of the vector I21=I2 - I1 is the 

same as (18), the trajectory is represented by the line s of Fig. 

7 that passes through the tips of the vectors I1 and I2. Thus, it 

can be stated that subinterval #1 ends when the line x 

intersects the line s. 

Subinterval #2 finishes when the current vector reaches I1. 

This occurs when the current of the phase a vanishes. Being ia 

equal to the real part of the current vector, the duration of 

subinterval #2 can be obtained by equating to zero the real part 

of (19) calculated at θe=θcl. It is 
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and, from (21) and (22), the duration of the commutation 

interval is  
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Fig. 6. Current vector trajectories during subinterval #1. 
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Fig. 7. Phase vectors during subinterval #2 in low-speed zone. 

 

It is worth to note that the commutation interval does not 

depend on the motor speed and, furthermore, it coincides with 

the commutation interval as obtained for 4E=Vd.   

The transients of the phase currents in the low-speed zone 

drawn in Fig. 5 (a) can be readily found by projecting the 

current vector on the axes a, b, and c of Fig. 7. 

C. Current transients in high-speed zone 

During subinterval #1 the tip of the current vector moves 

along a line like w, as explained in Subsection A). At the end 

of the subinterval #1, the current of phase a vanishes, i.e. it is 

iah (θo)=0, while the current of phase b is still on the way to get 

the required magnitude. This means that at θe=θo the real part 

of the current vector becomes zero and hence subinterval #1 

finishes when the line w intersects the current vector I1. 

The angle θo is found by equating to zero the real part of 

(15) calculated at θe=θo and is equal to 

E2V

LI3

d

e
o





  (24) 

Substitution of θe=θo in (15) results in only imaginary part and 

gives the current vector at the end of subinterval #1; it is 

 
3

I

E2V

EV
4  j

d

d
oh1






























i  (25) 

As anticipated, the vector is aligned along I1 and has a 

magnitude lower than 3I2 / .  

During subinterval #2, the control system does not chop the 

VSI transistors T6 and T5 but keeps them ON to facilitate the 

incoming current to reach the required magnitude. Then only 

the legs b and c of the VSI conduct and the voltage of the 

neutral point of the motor with respect to o is Vd/2. Let us 

suppose that the leg a is fictitiously chopped at the voltage of 

vao = ea + Vd/2 so as to maintain the zero current condition for 

the phase a.  The other output voltages of the VSI are vbo = 0 

and vco = Vd. Thus the vector of the output VSI voltages can be 

determined and results in   

dh2 V
3

1
jE

3

2
V  (26) 

whilst the vector of the voltage drops across the phase 

inductances becomes 

)(, E2V
3

1
j dh2L V  (27) 

The two voltage vectors in (26) and (27) have both the 

magnitude and the slope that depend on the motor speed.  

From (11) and (27), the current vector is given by  

)()()( oh1oe
e

d
oeh2

L

E2V

3

1
j 


 ii 












 
  (28) 

Eqs. (25) and (28) points out that the tip of the current vector 

moves along the imaginary axis as shown in Fig. 8. Magnitude 

of the vector increases and then the tip continues to advance 

along I1 until it reaches the tip of I1 at θe = θch. Duration of 

subinterval #2 is obtained by equating (28) at I1. It is  

 
  E2VE2V

VE4LI2

dd

de
ochco







  (29) 

and, from (24) and (29), the duration of the commutation 

interval is 

E2V

LI

d

e
ch





  (30) 

α

β

I1

I6

θe = 0
E1

i1h(θo)

VL,2h

V2h

w

a

b

c

 
Fig. 8. Phase vectors during subinterval #2 in high-speed zone. 
 

The transients of the phase currents in the high-speed zone 

drawn in Fig. 5 (c) can be readily found by projecting the 

current vector on the axes a, b, and c of Fig. 8. As discussed in 

[9], in high-speed zone i2h must equate I1 within θe=π/3 to get 
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the required current reference at least at the end of the allowed 

commutation interval, i.e. of the supply interval. 

IV. EFFECTS OF CURRENT COMMUTATIONS ON MOTOR 

TORQUE 

The instantaneous motor torque during current 

commutations can be still calculated by (5) and (9). For the 

current commutation occurring at the beginning of supply 

interval S1, the instantaneous motor torque can be expressed as 

   e1e
2

3



 iE   (31) 

By (31), the torque changes during the commutation interval. 

The change is proportional to the projection of [i(e)  - I1] on 

E1 and, by accounting of the expressions of i(e), the change is 

a linear function of e.  

In the low-speed zone, the projection of i(e) on E1 is 

greater than the projection of I1 and the instantaneous motor 

torque has a positive dip. The torque ripple, which is the 

absolute of the maximum excursion, is equal to  

 







 




 1i1

2

3
TR

IiE1 )(
  (32) 

After some manipulations the following expression is obtained 

for (32) 

 














EV

EE4VIn
TR

d

d

e

p


  (33) 

In the high-speed zone, the projection of i(e) on E1 is lower 

than the projection of I1 and the instantaneous motor torque 

has a negative dip. The torque ripple is now equal to  

 







 




 1oh1
h

2

3
TR

IiE1 )(
 (34) 

After some manipulations the following expression is obtained 

for (34) 

 














E2V

EVE4In2
TR

d

d

e

p
h


 (35) 

From Figs. 7 and 8, it can be easily realized that the torque 

ripple in both the low-speed and high-speed zones is 

proportional respectively to the maximum swing of the current 

of phase c. 

Due to the torque dip, the motor torque, defined as  the 

average value of the instantaneous motor torque over a supply 

period, changes with respect the expected value in (10), by 

increasing in the low-speed zone and decreasing in the high-

speed zone. The terms in excess and in defect can be found by 

calculating the average value of the torque dip over the supply 

interval /3. It comes out 

 c2
13 TRT 


  (36) 

chh2
13

h TRT 


  (37) 

By substituting (23) and (33) into (36), and (30) and (35) into 

(37), the following expressions can be obtained for the two 

terms 















EV

E4V

4

LIn3
T

d

d
2

p


   (38) 

 
  



















E2VE2V

EVE4LIn3
T

dd

d
2

p
h


  (39) 

V. EXEMPLIFICATION 

To demonstrate the potentialities of the vector approach in 

analyzing the operation of a PM BLDC drive, two control 

techniques of the VSI during the current commutations are 

considered, that have been proposed to eliminate the torque 

ripple produced by the commutations in the low-speed zone 

[13] and in the high-speed zone [14], respectively.  

A. Low-speed zone 

The control technique in [13] proposes to slow down 

reaching of the required magnitude from the incoming current 

ib by forcing it to have a magnitude complementary to that one 

of the outgoing current ia, i.e. by taking constant the sum of 

the magnitudes of ib and ia and equal to the required current 

magnitude -I. To fulfill this condition, [13] chops the transistor 

T6 of the incoming phase during the commutation interval 

with the following duty-cycle: 

dV

E4
  (40) 

The VSI output voltages are then:  vao=Vd , vbo=(1-l)Vd , 

vco=Vd. By (7) and (11), the vectors of the VSI output voltages 
and the voltage drops across the phase inductance become  

E4
3

1
j

3

1
1 








V  (41) 

E2
3

1
j11L 








,V  (42) 

Note that the voltage vector in (41) has the same direction as 

V1 in (12) and a magnitude scaled of l. As it can be 

recognized from Fig. 9, this control technique forces the 
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voltage vector (42) to stay in parallel to the line joining I6 and 

I1 irrespectively from the motor speed, so that the current 

vector during the commutation moves along this line and its 

magnitude does not exhibit any positive swing. The 

commutation interval spans only subinterval #1 as the 

incoming current reaches the required magnitude at the same 

time as the outgoing current vanishes, and the commutation 

angle is still given by (23). Clearly, the duty-cycle in (40) can 

be applied only for 4E<Vd , i.e. for l <1, and hence this 

technique is effective only in the low-speed zone.  

α

β

I1

I6 I2E1

V1

VL,1l

4E>Vd

4E=Vd

4E<Vd

V1l

VL,1

VL,1h V1h

 
Fig. 9. PM BLDC control techniques to eliminate torque ripple. 

. 

B. High-speed zone 

The control technique in [14] proposes to slow down 

vanishing of the outgoing current ia by forcing it to have a 

magnitude complementary to that one of the incoming current 

ib, i.e. by taking constant the sum of the magnitudes of ib and ia 

and equal to the required current magnitude -I. To fulfill this 

condition, [15] chops the transistor T4 of the outgoing phase 

during the commutation interval with the following duty-

cycle: 

1
V

E4

d
h   (43) 

The VSI output voltages are then: vao=(1-h)Vd , vbo=0, 

vco=Vd. By (7) and (11), the vectors of the VSI output voltages 

and the voltage drops across the phase inductance become  

ddh1 V
3

1
jE

3

8
V 








V  (44) 

 E2V
3

1
j1 dh1L 













,V  (45) 

Note that direction of the vector in (44) depends on the motor 

speed; in spite of this, the vector in (45) is parallel to the line 

joining I6 and I1 irrespectively from the motor speed, as shown 

in Fig. 9, so that the current vector during the commutation 

moves along this line and does not exhibit any swing. 

Therefore this control technique operates in a similar way that 

the technique in the low-speed zone but with the difference of 

chopping the output VSI voltage of the outgoing phase instead 

of the incoming one. As above, the commutation interval 

spans only subinterval #1 as the incoming current reaches the 

required magnitude at the same time as the outgoing current 

vanishes. Here, instead, the commutation angle changes with 

the speed and is given by 

E2V

LI

d

e
c





  (46) 

As an example, Fig.10 gives the trajectory on the  plane of 

the current vector obtained without and with the control 

technique. The curves, obtained by simulation, clearly show 

the beneficial effect of the control. 

The duty-cycle in (43) can be applied only for 4E>Vd  and 

up to 2E=Vd , i.e. for h<1, and hence this technique is 

effective only in the high-speed zone. Note that extension of 

(44)-(46) to the case of 2E=Vd  leads to the situation where the 

DC link voltage is not more able to inject any current into the 

motor phases as the voltage drop on the phase inductances is 

zero. 

 

 
Fig. 10. Example of  plane trajectory of the current vector without (red 

line) and with (blue line) VSI control during the current commutations at high 

speed. 

VI. CONCLUSIONS 

The current transients during the commutations of the PM 

BLDC drives have been analyzed in the stationary plane with 

the help of the vector representation of the drive variables. 

Vectors of the VSI output voltages and the voltage drops on 

the phase inductances have been calculated and utilized to get 

the current vector trajectories for different motor speeds as 

well as to find out the commutation intervals. The results of 

the analysis have been used to obtain the motor torque and the 

torque ripples due to the current commutations. Lastly, the 

vector approach has been applied to two control techniques of 

the PM BLDC drives with the end of explaining how they 

operate to eliminate the torque ripples due to the current 

commutations.  
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