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1 Introduction

Understanding the microscopic origin of the entropy associated to the black hole horizon

area is a primary test for any quantum theory of gravity. String theory succesfully ac-

complished this in various instances, though mainly limited to extremal configurations and

for asymptotically flat 4- or 5-dimensional black holes. In this context, supergravity black

holes are obtained by configurations of wrapped D-brane states and the microscopic origin

of the entropy is understood in terms of state counting in a weakly coupled D-brane setup,

which is then extrapolated to the coupling regime where the supergravity approximation

can be trusted.

A related aspect of supergravity black holes is the so-called attractor mechanism,

which states that the area of the horizon AH of extremal solutions does not depend on the

asymptotic values of the moduli fields, but only on the charges. This is a necessary ingre-

dient to ensure a microscopic description of the entropy formula S = S(AH) by removing

the dependence of S on continuous parameters and is valid for generic asymptotically flat

configurations.

In this paper we investigate black hole solutions of 4-dimensional N = 2 gauged su-

pergravity theories, where the matter content is given by vector multiplets and the U(1)

gauging is obtained by Fayet-Iliopoulos terms. The main motivation for considering these

toy models is the analysis of the attractor mechanism and of the entropy formula in the case

of extremal solutions in theories where there may be a non-trivial cosmological constant and
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the moduli cannot be freely changed in the solution. Generically, an Anti-de Sitter (AdS)

vacuum stabilizes all the scalar fields and therefore a black hole in AdS may only appear for

values of the dilaton such that one cannot extrapolate between strong and weak coupling.

Supersymmetric static black hole solutions in theories with a negative cosmological

constant have already been considered in [1–3], where it was shown that they usually lead to

naked singularities, unless higher order derivative corrections are added to the lagrangian.

For this reason, most subsequent approaches to this problem considered extremal non-

BPS configurations [4–7]. One strong limitation of the work in [1–3], however, was the

requirement that the scalar fields remained constant along the solution. If there is some

sort of attractor mechanism at work, the AdS4 vacuum may in fact require a definite value

for the scalars that differs from the one required by the construction of a supersymmetric

AdS2×S2 horizon geometry. Hence the appearance of singular geometries. However, if the

scalars are allowed to flow, supersymmetry can be restored and regular geometries can be

obtained. An important step forward in this direction was obtained by the authors of [8],

who considered a setup like the one of this paper and where supersymmetric black hole

configurations were explicitly constructed, though mostly with a hyperbolic horizon.

Although our work uses [8] as an important basis, we will extend their results in two

main directions. Since the gauging procedure breaks the electric-magnetic duality that a

generic 4-dimensional Einstein-Maxwell theory possess, the approach presented in [8] has

the limitation that for the same supergravity model only part of the black hole solutions

are accessible, whenever the prepotential defining the scalar σ-model is fixed. We will

present a completely covariant approach by considering a general U(1) gauged supergravity,

where also magnetic gaugings are allowed. We are also going to describe the black hole

solutions by means of first order flow equations driven by a superpotential W , which is a

function of the scalar fields and the warp factors. This clearly mimics the flow equations

of black holes in ungauged supergravity, where the superpotential is the absolute value of

the central charge for supersymmetric configurations [9] or a duality invariant function for

non-supersymmetric extremal configurations [10] and gives both the ADM mass at infinity

and the horizon area. However, the different metric ansatz and the presence of a non-trivial

cosmological constant usually forbid a direct relation between W and S and/or the mass

of the black hole. As we will show, the general construction of this superpotential proves

a very effective procedure in order to obtain explicit solutions.

Before presenting our results, we would like to introduce one last important motivation

to the analysis of black hole solutions to gauged supergravity theories: flux compactifica-

tions. It is well known that flux compactifications provide an efficient tool to address the

moduli problem in string compactifications. Fluxes provide a non-trivial source for a poten-

tial in the effective theory, as well as deformations leading to gauged supergravity models

(see for instance [11–13]). It is therefore of vital importance for this scenario to understand

if there is still an attractor mechanism at work in the case of black hole configurations in

gauged supergravities, because their generation may destabilize the vacuum [14, 15]. In

fact, the presence of a charged black hole may drive the value of the moduli fields to a new

value at the horizon, different from the one obtained by the potential generated by flux

compactification and eventually catalyze the production of new vacuum bubbles within the

original setup [16].
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We should point out that we expect realistic scenarios of flux compactification to

require the presence of hypermultiplets. This means that our analysis should be extended

to the case where also this type of scalars is allowed to acquire a non-trivial profile. In

fact, in contrast with the case of ungauged theories, where hyperscalars are moduli of

black hole solutions, in gauged supergravity black holes, the hypermultiplet scalars may be

charged and hence actively participate to the solution. A very interesting development in

this direction is given by the work of [17], where the authors constructed new solutions in

gauged supergravities with non-trivial hypermultiplets, embedding known solutions to the

ungauged theories. A general treatment in terms of a superpotential, like the one presented

here, would be desirable for these cases, too.

We should also mention that supersymmetric black holes in gauged supergravities were

also analyzed in [18, 19], though this paper focussed on non-abelian configurations.

2 BPS flow equations for dyonic configurations

2.1 The setup

We are interested in dyonic black hole solutions of N = 2 U(1) gauged supergravity. For

this reason we are going to consider supergravity models coupled to nV vector multiplets,

a linear combination of which is going to gauge a U(1) factor via suitable Fayet-Iliopoulos

(FI) terms. The bosonic Lagrangian of this class of models is

L =
R

2
− gi̄ ∂µz

i∂µz̄̄ +
1

4
ImNΛΣ F

Λ
µν F

Σµν +
1

4
ReNΛΣ F

Λ
µν

ǫµνρσ

2
√−gF

Σ
ρσ − Vg. (2.1)

The index Λ = 0, 1, . . . , nV runs over the nV vectors of the vector multiplets and the

graviphoton, zi denote the complex scalar fields sitting in the vector multiplets and Vg is

the scalar potential of the theory generated by the FI terms. The scalar fields parame-

terize a special-Kähler σ-model and all the relevant quantities in the Lagrangian and in

the supersymmetry transformations can be written in terms of special geometry (We will

mostly use notations and conventions as in [20], but for the spacetime signature). The

σ-model metric gi̄(z, z̄) can be derived from the second mixed derivatives of the Kähler

potential, which in turn is a function of the covariantly holomorphic symplectic sections

V ≡ eK/2
(
XΛ(z), FΛ(z)

)
, as follows from

1 = i 〈V,V〉, (2.2)

where the brackets denote the symplectic scalar product

〈A,B〉 = ATΩB = AΛB
Λ −AΛBΛ, (2.3)

where Ω is the Sp(2nv + 2) metric. The vector kinetic matrix NΛΣ(z) is then a complex

and symmetric function of the scalar fields and the scalar potential

Vg = gi̄DiLD̄L − 3|L|2 (where DiL ≡ ∂iL + 1/2 ∂iK L) (2.4)
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can be obtained in terms of the superpotential

L = 〈G,V〉 = eK/2
(
XΛgΛ − FΛg

Λ
)
, (2.5)

where G = (gΛ, gΛ) denote the FI terms. One should not be confused by the fact that

we have introduced both electric and magnetic gaugings because in consistent models the

electric-magnetic duality group will always allow one to reduce to the case where only

electric gaugings are turned on (i.e. gΛ = 0). However, this also implies a rotation of the

symplectic sections and the choice of a somewhat preferred basis. We therefore prefer to

maintain duality covariance and allow for generic FI terms G. Although a full N = 2

duality covariant action has not been built yet, decisive steps have been taken in this

direction,1 especially in the case of supergravity coupled to vector multiplets. As shown

in [22, 23], whenever one introduces magnetic gaugings, tensor fields have to be introduced.

In the case of supergravity coupled to vector multiplets, one has therefore to improve

couplings to vector-tensor multiplets. In [24] the authors worked out the supersymmetry

transformations and scalar potential for supergravity coupled to vector-tensor multiplets

and for a generic gauging, although in the case of vanishing FI terms. The extension to

non-trivial FI terms is, however, straightforward and, taking a pragmatic approach, we will

use the action (2.1) as our starting point, as this is going to be the relevant sector for our

solutions because we will always consider vanishing tensor fields anyway.

We seek static dyonic black hole configurations. Hence we will consider the metric

ansatz

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + e2ψ(r)dΩ2

)
, (2.6)

where dΩ2 is going to be the line element of a 2-sphere for most of the applications con-

sidered in this paper and appropriate profiles for the vector fields so that

∫

S2

FΛ = 4πpΛ,

∫

S2

GΛ = 4πqΛ,

(
with GΛ = − δL

δFΛ

)
(2.7)

where Q ≡ (pΛ, qΛ) are the black hole magnetic and electric charges, respectively. We also

assume that the scalar fields have only a radial dependence zi = zi(r). Although we look

for static configurations and preserve an SO(3) isometry group along the solutions, the

metric ansatz (2.6) differs from the one of asymptotically flat static configurations because

of the additional factor depending on ψ(r). We inserted this additional factor, because, as

we will see, it will be necessary to compensate for the additional curvature contributions

to the Einstein equations coming from the (varying) non-trivial cosmological constant.

Once we plug these ansatze in the action (2.1) we obtain an effective 1-dimensional

theory for the scalar fields and the warp factors U(r) and ψ(r)

S1d =

∫
dr

{
e2ψ

[
(U ′ − ψ′)2 + 2ψ′2 + gi̄z

i′z̄̄′ + e2U−4ψVBH + e−2UVg + 2ψ′′ − U ′′
]
− 1

}
,

(2.8)

1An outline of the procedure that should be followed to obtain the general action by using the embedding

tensor formalism can be found in [21].
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which, after an integration by parts, can be written as

S1d =

∫
dr

{
e2ψ

[
U ′2 − ψ′2 + gi̄z

i′z̄̄′ + e2U−4ψVBH + e−2UVg

]
− 1

}

+

∫
dr

d

dr

[
e2ψ(2ψ′ − U ′)

]
.

(2.9)

Primes denote derivatives with respect to the radial coordinate and the black hole potential

VBH = |DZ|2 + |Z|2 (2.10)

is a function of the central charge

Z ≡ 〈Q,V〉. (2.11)

It is also useful to rewrite the black hole potential as

VBH = −1

2
QTMQ, (2.12)

where M = (ABCD) is the symplectic matrix defined by the entries

A = ImN + ReN (ImN )−1ReN ,

D = (ImN )−1,

B = CT = −ReN (ImN )−1,

(2.13)

2.2 BPS rewriting of the action

Since we are interested in analyzing supersymmetric configurations, we have to impose

the vanishing of the supersymmetry transformation rules on our background, in addition

to solving the equations of motion. This analysis was performed in this way for generic

half-supersymmetric configurations in [25] and applied to a black hole similar to ours in [8],

though only for electric gaugings. The resulting first order differential equations provide

solutions to both the supersymmetry conditions and the equations of motion. We will now

extend this work for configurations obtained in the duality-symmetric setup given by (2.8).

As a first step in this process, we will show that one can rewrite the action (2.8) as a

sum of squares of first-order differential equations as long as a specific constraint between

the black hole charges and the FI parameters is satisfied. This rewriting then guarantees

the solution of the equations of motion of the effective action. An important outcome of

this rewriting is the existence of an additional constraint on the field configurations that

may lead to consistent BPS solutions, which will be identified with the defining equation

for a phase factor α(r). In the next section we will then show how the first-order equations

derived here follow from a real superpotential, which is the norm of a complex quantity

whose phase is α. A direct analysis of the supersymmetry transformations gives the same

results, so we leave the details of such a derivation for the appendix.

Following a strategy similar to the one used in the ungauged BPS case in [26], we

can rewrite the action (2.8) as a sum of BPS squares by using a series of special geometry

identities. In particular, we can use the negative-definite matrix M as a “metric” for a set
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of symplectic covariant first-order equations. In order to do so, we will use several special

geometry identities. A basic identity, which will be repeatedly used, is

1

2
(M− iΩ) = ΩV VΩ + ΩUi g

i̄ U ̄Ω , (2.14)

where we denoted by Ui the covariant derivatives of the symplectic sections

Ui ≡ DiV = ∂iV +
1

2
∂iK V. (2.15)

The equivalence between the two sides of (2.14) can be obtained by comparing the explicit

expression of M and Ω given in (2.13) and (2.3) with the expansion of the right hand side,

using another identity [20]

DiL
Λ gi̄D̄L̄

Σ = −1

2
(ImN )−1ΛΣ − L̄ΛLΣ. (2.16)

This identity leads to

MV = iΩV, MUi = −iΩUi, (2.17)

from which follows that

VTMV = i〈V,V〉 = −1 (2.18)

and

UTi MU ̄ = i〈Ui, U ̄〉 = −gi̄. (2.19)

The first step is to rewrite the kinetic term for the scalar fields and the scalar potentials

Vg and VBH in terms of symplectic sections using

− V ′TMV ′
= gi̄z

i ′z̄̄ ′ + A2
r , (2.20)

where

Ar ≡
i

2

(
z̄̄′ ∂ ̄K − zi′ ∂iK

)
(2.21)

is a composite connection. Given the properties of the symplectic sections, we can also

introduce a phase factor, which we will see related to the spinor projector one imposes in

order to solve the supersymmetry equations (see the appendix), so that

− Im(eiαV ′T )MIm(eiαV ′) =
1

2
gi̄z

i ′z̄̄ ′ +
1

2
A2
r , (2.22)

and once more obtain new identities:

Re(eiαV)TMRe(eiαV) = Im(eiαVT )MIm(eiαV) = −1

2
, (2.23)

Im(eiαVT )MRe(eiαV) = 0 , (2.24)

Im(eiαV ′) = Im(eiαzi ′Ui) −Ar Re(eiαV) , (2.25)

Im(eiαVT )MQ = Re(eiαZ) , Re(eiαVT )MQ = −Im(eiαZ) , (2.26)

Im(eiαV ′)MQ = −Re(eiαZ ′) + 2Ar Im(eiαZ) . (2.27)
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After some long, but straightforward manipulations, the action (2.8) can then be rewrit-

ten as

S1d =

∫
dr

{
−1

2
e2(U−ψ)ETME − e2ψ

[
(α′ + Ar) + 2e−U Re(e−iαL)

]2

−e2ψ
[
ψ′ − 2e−U Im(e−iαL)

]2 − (1 + 〈G, Q〉)
−2

d

dr

[
e2ψ−U Im(e−iαL) + eU Re(e−iαZ)

]}
,

(2.28)

where we introduced

ET ≡ 2e2ψ
(
e−U Im(e−iαV)

)′ T−e2(ψ−U)GTΩM−1+4e−U (α′+Ar)Re(e−iαV)T+QT . (2.29)

A simple inspection of (2.28) shows that we succeeded in rewriting the action (2.8) as

a sum of squares of first order differential conditions and a boundary term provided the

charges fulfill the constraint

〈G, Q〉 = −1. (2.30)

Once this is satisfied we obtain that BPS configurations have to satisfy three sets of equa-

tions

E = 0, (2.31)

ψ′ = 2 e−U Im(e−iαL), (2.32)

α′ + Ar = −2e−U Re(e−iαL). (2.33)

The first set of conditions contains both the flow equations for the scalar field as well as

the equation for the warp factor U . Equation (2.32) describes the evolution of the other

warp factor ψ. Finally, (2.33) gives the condition on the phase α.

Some comments are in order here. First of all, we can see that the first set of equations

reduces to the known BPS equations of the ungauged case as presented in [26] whenever

G = 0 (and then L = 0). In such a case, however, we would get an inconsistency from the

constraint (2.30). This implies that the BPS configurations we find by solving such a system

are solitonic [8]. Actually, the BPS rewriting in the G = 0 case can be achieved by rewriting

the second line of (2.28) as a new squared first order equation and a boundary term

−
(
eψψ − 1

)2
−

(
2eψ

)′

, (2.34)

which leads to the identification of eψ(r) = r and hence to reducing the metric ansatz to

the known one of the asymptotically flat configurations. Then we see that the equations

we derived are all symplectic covariant or invariant. This means that once we obtain some

solution in a given frame, for a specific choice of charges Q and FI terms G, we can map it

to a different solution for a different set of charges and FI terms related to the original ones

by a duality transformation. We can also compare our BPS equations with those found

in [8] by identifying b = e−iα−U and setting the magnetic FI terms to zero gΛ = 0. The

two sets of conditions match and therefore we can also conclude that our BPS conditions

imply also the full 4-dimensional equations of motion. Finally, we would like to point out
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that the BPS rewriting of the effective action and the derivation of the first order equa-

tions (2.31)–(2.33) can be trivially extended to the case of flat or hyperbolic horizons and

yields the same results, but for the charge constraint (2.30), which becomes 〈G, Q〉 = 0 or

〈G, Q〉 = 1 in the flat and hyperbolic case, respectively.

2.3 Superpotentials and flow equations

Although the BPS square rewriting of the effective 1-dimensional action already led to a set

of first-order differential equations for the scalar field dependent symplectic sections V and

the warp factors, we now provide an explicit expression for the resulting flow equations

for the actual scalar fields zi. This rewriting will lead to the identification of a proper

superpotential function driving the BPS flow.

The equation (2.31) is actually a complex symplectic vector of equations whose infor-

mation can be extracted by appropriate projections with all possible independent sections.

We first discuss the projections of the BPS equations E = 0 on the symplectic sections V
and their derivatives Ui and then pass to the possible contractions with the charges Q and

FI terms G. From the contraction

〈E ,Re(e−iαV)〉 = 0 (2.35)

we obtain the flow equation for the warp factor U(r):

U ′ = −eU−2ψ Re(e−iαZ) + e−U Im(e−iαL). (2.36)

The contraction

〈E , Im(e−iαV)〉 = 0 (2.37)

produces once more an equation for the phase

α′ + Ar = −eU−2ψ Im(e−iαZ) − e−U Re(e−iαL). (2.38)

Finally, the contraction along the covariant derivatives of the sections

〈E , Ui〉 = 0 (2.39)

leads to the scalar fields flow equations

zi′ = −eiαgi̄
(
eU−2ψD̄Z + i e−UD̄L

)
. (2.40)

Contractions with Q and/or G give identities once (2.36), (2.38), (2.40) and (2.33) are used.

The first thing we notice is that the flow equation for the phase (2.38) differs from the one

derived directly from the action, namely (2.33). Consistency of the two equations then

implies the following constraint:

eU−2ψ Im(e−iαZ) = e−U Re(e−iαL). (2.41)

The constraint arises as a consequence of the fact that in the BPS rewriting we introduced

an additional degree of freedom α(r) that was not present in the reduced action. We can

actually rewrite this constraint as an expression that identifies the phase as

e2iα =
Z − i e2(ψ−U)L
Z + i e2(ψ−U)L . (2.42)

– 8 –
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We can see that this phase gets identified with the phase of Z in the limit where the

gauging goes to zero (or, better, e2iα = e2iφZ ; we will come back on this issue later on).

Another interesting remark is that, by using (2.42), it is straightforward to check that the

phase equation (2.38) is identically satisfied if the BPS equations associated to the scalar

fields and to the warp factor are used.

The other important outcome of this analysis is that we can now realize the BPS

condition as flow equations for the effective scalar degrees of freedom U,ψ, zi. Once we

define a superpotential

W ≡ eU Re(e−iαZ) + e−U+2ψ Im(e−iαL), (2.43)

or, by using the phase constraint (2.42),

W = eU |Z − i e2(ψ−U)L|, (2.44)

we can rewrite the flow equations as

U ′ = −gUU ∂UW, (2.45)

ψ′ = −gψψ ∂ψW, (2.46)

zi′ = −2 g̃i̄ ∂̄W, (2.47)

where gUU = −gψψ = e2ψ , g̃i̄ = e2ψgi̄ and we used the constraint (2.41) in the derivation

of the last equation. It is remarkable that W looks precisely like the norm of a complex

quantity whose phase is given by α and that it reduces to the supersymmetric superpotential

for G = 0.

Although the structure of the flow equations looks rather neat in these variables, for

the subsequent discussion it is useful to rewrite them by introducing a different parame-

terization for the warp factors. In detail, we can introduce

A = ψ − U, (2.48)

so that the metric ansatz becomes

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2A(r)dΩ2. (2.49)

By using these variables

W = eU |Z − i e2AL| (2.50)

and the flow equations become

U ′ = −e−2(A+U) (W − ∂AW ) ,

A′ = e−2(A+U)W,

zi′ = −2e−2(A+U) gi̄ ∂̄W.

(2.51)
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3 Attractors

One of the key properties of extremal black hole solutions is the so-called attractor mech-

anism discovered in [9, 27] for static supersymmetric asymptotically flat black holes and

later extended to many other different configurations. We will now show that such an

attractor mechanism is at work also for supersymmetric black holes in U(1) gauged super-

gravity: we will show that one can write the equations defining the value of the scalar fields

at the black hole horizon in terms of a set of algebraic conditions on the charges and the

symplectic sections. We stress, that despite formal similarities, the situation is fundamen-

tally different from the one of asymptotically flat solutions. In fact, AdS4 solutions already

fix the asymptotic value of the moduli, which are then driven to the horizon value by the

attractor mechanism. This means that, although the existence of a black hole horizon

specifies the values of the moduli fields in terms of the charges, this attractor cannot be

reached from a generic point in moduli space because of the asymptotic constraint in terms

of the gauging parameters.

3.1 Near horizon limit

When approaching the horizon of a supersymmetric extremal black hole we expect the

metric (2.6) to approach that of an AdS2 × S2 spacetime:

ds2 = − r2

R2
A

dt2 +
R2
A

r2
dr2 +R2

S(dθ2 + sin2 θ dφ2), (3.1)

where RS and RA are the radii of the 2-dimensional sphere and of the 2-dimensional Anti-

de Sitter spacetime, respectively. In the framework of the metric ansatz proposed in (2.6),

this is obtained by imposing

U = log
r

RA
, and ψ = log

rRS
RA

, (3.2)

or, in terms of the alternative variables for the warp factors,

A = logRS . (3.3)

This means that

A′ = 0 ⇔ W = 0 (3.4)

at the horizon. We also expect the scalar fields to be constant zi′ = 0 at the horizon and

therefore we expect

∂i|Z − i e2AL| = 0 ⇔ DiZ − i e−2ADiL = 0. (3.5)

The attractor equations can then be obtained by using special geometry identities

to expand the moduli independent quantity Q + i e2A G and then use the horizon condi-

tions (3.5). When we multiply from the left the charge combination just mentioned by

ΩM + i we get

ΩMQ+ iQ+ i e2A ΩMG − e2AG = 2
(
Z + i e2A L

)
V + 2

(
Dı̄Z + i e2ADı̄L

)
U ı̄. (3.6)
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This is a general expansion valid at any point of the moduli space. However, at the attractor

point the last term vanishes and we therefore obtain that

Q+ e2A ΩMG = −2Im(ZV) + 2 e2A Re(LV), (3.7)

which is the attractor equation. Once again, for G = 0, we can see that it reduces to the

known attractor equation Q = −2Im(ZV). Since this equation only gives the value of the

scalar fields at the attractor point, but we also need to fix the value of A in order to obtain

the right geometry, one has to supplement the conditions just derived with the W = 0

condition, namely

|Z − i e2AL| = 0. (3.8)

Although this is a real condition, it is easy to see that the request that eA be a real number

gives as an outcome that

e2A = −i ZL = R2
S . (3.9)

This equation was also derived in [8], as a horizon condition. Summarizing, the BPS

attractors in a U(1) gauged supergravity are

Q+ e2A ΩMG = −2Im(ZV) + 2 e2A Re(LV), (3.10)

e2A = −i ZL = R2
S . (3.11)

From the last condition we also learn that the phases of the central charge and of the

superpotential of the gauging are related at the horizon, so that

φZ = φL +
π

2
. (3.12)

If we plug this information in the definition of the phase factor α we obtain that e2iα = e2iφZ

α = φZ + k π, k ∈ Z, (3.13)

at the horizon. This is an important consistency requirement, in order to obtain spherical

horizons, because we can see from inserting the near horizon limits for the warp factors in

the flow equations that at the fixed point

e−iαZ = − R2
S

2RA
< 0 (3.14)

and this is possible only if the phase α at the horizon is identified with φZ + π. A dif-

ferent attractor equation was proposed in [8], which depends only on the moduli fields.

This equation can be obtained from ours by plugging (3.11) into (3.10), but it looses the

information on the horizon area, which instead is governed by (3.11).

Although the attractor equations (3.10)–(3.11) are 2nV + 4 conditions for 2nV + 1

variables (the 2nV scalar fields and the warp factor A), we can see that not all of them

are independent. In fact, if we contract (3.10) with V we obtain an identity and we can

therefore argue that it is equivalent to (3.5), which one recovers by contracting (3.10) with
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Ui. In order to have a spherical horizon these conditions have to be supplemented by the

constraint (2.30), which can at times overconstrain the system, as we will show in a while.

More information on the attractor point can also be obtained by further contracting

the attractor equation (3.10) by the charges of the gauging or of the black hole and by

using (3.11). In the first case we obtain that

e−2A = 2
(
|DiL|2 − |L|2

)
, (3.15)

while in the second case we get that

e2A = 2
(
|DiZ|2 − |Z|2

)
. (3.16)

These equations are very interesting because they can be related to the second symplectic

invariant

I2(Q) = |Z|2 − |DiZ|2 = −1

2
QM(F )Q, (3.17)

where M(F ) is a matrix constructed using Re FΛΣ and Im FΛΣ rather than Re NΛΣ and

Im NΛΣ. We can also see that if we start from an AdS4 vacuum DiL = 0 and we try

to obtain a black hole solution by keeping the scalars constant, we get to an immediate

contradictory result, because (3.15) implies that e−2A = −2|L|2 < 0. This excludes the

possibility of spherical horizons in an asymptotically AdS geometry while keeping scalars

fixed and therefore explains the results of [1–3]. More in general, the second attractor

equation (3.11) can also be written as

e2A = − Im(ZL)

|L|2 , (3.18)

which, for DiL = 0, is equivalent to

e2A =
1

2

〈G, Q〉
|L|2 . (3.19)

We then see that this is positive only for hyperbolic horizons, while for spherical horizons

〈G, Q〉 = −1 < 0.

4 Examples of dyonic solutions

We now turn to the analysis of the full flow equations and to the construction of explicit

solutions, as an example of how the flow equations work and especially of the fact that now

we can obtain in a single duality frame all possible black hole solutions for a given gauged

supergravity model. As explained above, in order to have a regular black hole solution in

an asymptotically AdS spacetime, the scalar fields have to flow according to the attractor

mechanism discussed in the previous section. We will now analyze a couple of instances

where this is required. Actually, we will first show that there may be models that do

not admit at all such flows, because the AdS4 vacua and the AdS2 × S2 can never appear

simultaneously for any given set of charges. We will then investigate the STU model, which

is known to admit spherical horizons for special values of the charges [8]. We will show

that we can find such solutions in the standard frame for the prepotential because of our

duality-covariant formulation.
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4.1 One modulus case

One of the simplest special Kähler moduli spaces is given by the geometry defined by the

prepotential

F = −iX0X1 . (4.1)

This space has only one modulus and the σ-model metric can be obtained from the Kähler

potential

K = − log 2(z + z̄), (4.2)

which requires that Rez > 0. The gauging potential is determined by

L = eK/2
(
g0 + i g1 + (g1 + ig0)z

)
, (4.3)

which gives a supersymmetric AdS4 extremum at

z =
g0g1 + g0g1 + i (g0g

0 − g1g
1)

(g1)2 + (g0)2
. (4.4)

This is in the allowed region of the moduli space if and only if

g0g1 + g0g1 > 0. (4.5)

For such a simple model the second derivatives of the prepotential (4.1) are constant

and therefore the second symplectic invariant I2 is a constant function of the charges at

every point of the moduli space:

I2(G) = |G|2 − |DiG|2 = −1

2
GM(F )G = g0g1 + g0g1. (4.6)

Since at the horizon e−2A = −I2(G), we immediately see that the requirement to have a

regular solution would require

g0g1 + g0g1 < 0, (4.7)

in direct contradiction with the requirement to have a supersymmetric AdS vacuum. Hence

we conclude that for such a model there are no regular spherical black holes with an AdS

asymptotic geometry. This also implies that the AdS4 vacua of this model will not be

destabilized by the presence of supersymmetric black holes.

4.2 The STU model

The STU model is defined by various prepotentials, according to the choice of symplectic

frame. Since our formalism is duality covariant, we can fix a symplectic basis where the

prepotential has the classic form

F =
X1X2X3

X0
. (4.8)

In this basis the Kähler potential is

K = − log[−i(s − s̄)(t− t̄)(u− ū)], (4.9)
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where we introduced normal coordinates s = X1/X0, t = X2/X0 and u = X3/X0. The

symplectic vector V for such a prepotential is given by

V = eK/2 (1, s, t, u,−stu, tu, su, st)T . (4.10)

From [8] we know that the STU model admits spherical horizon solutions for electric

gaugings G = (0, gΛ) and magnetic charges Q = (pΛ, 0), but in the symplectic frame

defined by the prepotential

FCK =
√
X0X1X2X3. (4.11)

The Kähler potentials of the two models are obviously the same, but the symplectic sections

V for the square root prepotential FCK are now

VCK = eK/2 (1,−tu,−su,−st,−stu, s, t, u)T . (4.12)

The two frames are therefore related by a symplectic transformation

S =




1

−1

−1

−1

1

1

1

1




, (4.13)

so that VCK = SV. We should stress that such a transformation is an allowed change of

frame, but it is not a duality transformation. In fact, the duality transformations for the

STU model are only a subset of the full symplectic group: SU(1,1)3 ⊂ Sp(8,R). Their form

can be computed explicitly (see for instance [28]) and the matrix S does not belong to any

of their combinations. However, the effective 1-dimensional model we started from (2.8)

is fully constructed out of symplectic invariant quantities. This means that a solution to

the model where, for instance, the gauging potential is obtained from LCK = 〈GCK ,VCK〉,
can be mapped to a solution of a different system where L = 〈G,V〉, with VCK = SV and

G = S−1GCK . Hence we should be able to reproduce solutions with a spherical horizon for

our model, with non-trivial gauging charges G = (0, g1, g2, g3, g0, 0, 0, 0)
T and black hole

charges Q = (p0, 0, 0, 0, 0, q1 , q2, q3). In our framework, the superpotential for such a model

is given by

W = eK/2|q1s+ q2t+ q3u+ p0stu− ie2A(g0 − g1tu− g2su− g3st)|. (4.14)

By using the flow equations we can immediately check that we can consistently fix the

axions Re s = Re t= Reu = 0 along the whole solution. For the remaining flow equations we

can then use an Ansatz similar to the one proposed in [8], namely (where now zi = (s, t, u))

Im zi =

√
1
2 |ǫijk|HjHk

H0H i
, ψ = log(ar2 + c) , U = −1

4
log

H0H1H2H3

4
, (4.15)
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and

HI =
αIr + βI

ar2 + c
. (4.16)

After some straightforward manipulation, the resulting equations are

2p0 = e2ψ(∂rH
0 − g0(H

0)2), (4.17)

−2qi = e2ψ(∂rH
i − gi(H i)2), (4.18)

2ψ′ = −g0H0 −
∑

i

giH i, (4.19)

which can be solved in the same way as in [8], although we now see that the charges

of their configurations have to be mapped to ours with the appropriate signs, related to

the transformation matrix (4.13). Once the Ansatz for ψ and HI are used in the above

equations one gets

2p0 = cα0 − g0(β
0)2, a+ g0α

0 = 0, (4.20)

−2qi = cαi − gi(βi)2, a+ giαi = 0, (4.21)

g0β
0 + giβi = 0, 4a = −g0α0 − giαi. (4.22)

If we look at the simplified setup where all scalar fields can be identified zi = −i y,
i.e. gi = g and qi = q, we can solve the previous equations (together with the constraint

to have a spherical horizon) for a = 1, α0 > 0, αi = α > 0, g0 > 0, gi = g > 0,

β0 = −3(g/g0β) > 0, βi = β < 0, p0 < 0, qi = q < 0 and

c =
1

2
− 3g2β2 < 0. (4.23)

Consistency also gives that

β = − 1

2g

√
1 − 4gq. (4.24)

The final outcome is also consistent at the horizon with the result coming from the attractor

equations (3.10)–(3.11). In fact, for the simplified scenario considered here, the imaginary

part of (3.11) is identically satisfied and the other equations fix uniquely the scalar fields to

y =

√
g0
2g

√
−1 + 6gq +

√
1 − 16gq + 48g2q2

1 − 3gq
> 0 (4.25)

and the warp factor to

e2A =
1

4

√
1 + 2(1 − 4gq)

√
1 − 16gq + 48g2q2 − 3(1 − 4gq)2

g0g3
, (4.26)

which is precisely the value we obtain by taking the limit for r →
√
−c/a, i.e. when we

approach the horizon.

Given our framework, however, we can do more than this. Since our formalism allows

for the introduction of arbitrary electric and magnetic charges both for the gauging as well
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as for the black hole, once we have fixed a solution, like the one above, we can generate

new ones by means of duality transformations. We actually know that the gauging breaks

the duality group SU(1,1)3 to a U(1) related to the isometry of the scalar manifold that

is gauged by the graviphoton and the 3 vector fields, which couple to the 4 independent

charges of the gauging among the 8 parameters G. This means, however, that we can still

act with this symmetry on the scalar fields and the gauging and black hole charges. In par-

ticular, we could now generate solutions with non-trivial axions, by using the representation

of the three U(1) ⊂ SU(1,1) duality transformations, which act as follows:

zi → cos θi z
i + sin θi

− sin θi zi + cos θi
. (4.27)

The action on the charges can be then deduced by the corresponding symplectic transfor-

mations derived, for instance, in [28].
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A Supersymmetry equations

In order to explicitly prove that the configurations discussed so far are supersymmetric, we

now analyze in detail the supersymmetry variations of N = 2 U(1) gauged supergravity.

For simplicity we will discuss the case without magnetic gauging parameters, but the ex-

tension to the full case is straightforward. Since we used the mostly plus signature, we will

have a sign difference every time there is an upper spacetime index. The relevant variations

are then

δψµA = DµǫA − εAB T
−
µν γ

ν ǫB − i

2
L δAB γν ηµν ǫB , (A.1)

δλiA = −i ∂µzi γµ ǫA −G−i
µν γ

µν εAB ǫB +D
iL δAB ǫB , (A.2)

where the covariant derivative is defined as

DµǫA ≡ ∂µǫA − 1

4
ωabµ γabǫA +

i

2
AµǫA + gΛA

Λ
µ δACε

CBǫB , (A.3)

and Aµ is the composite connection for the Kähler transformations:

Aµ ≡ i

2

(
∂µz̄

̄ ∂ ̄K − ∂µz
i ∂iK

)
. (A.4)
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We also have that the vector field strengths FΛ
µν = 2∂[µA

Λ
ν] appear via their (anti)self-dual

combinations

F−
µν ≡ 1

2

(
Fµν −

i

2
ǫµνρσF

ρσ

)
, (A.5)

dressed by the scalar fields

T−
µν = 2iIΛΣ L

Σ FΛ−
µν G−i

µν = D
i
L̄Γ IΓΛ F

Λ−
µν . (A.6)

The ansatz for the field strengths is

FΛ
tr =

e2U−2ψ

2
(I−1)ΛΣ

(
RΣΓ p

Γ − qΣ
)
, (A.7)

FΛ
θφ = −1

2
pΛ sin θ , (A.8)

which, in the combinations (A.6), reconstruct the central charge Z and its derivatives.

Once the metric ansatz (2.6), the vector field strengths ansatz (A.7) and the require-

ment that the scalar fields depend only on the radial coordinate is used in the supersymme-

try transformations above, we should be able to reproduce the flow equations (2.31)–(2.33)

by requiring the existence of some Killing spinors.

The first variation we analyze is the time component of the gravitino δψtA = 0. This

gives the condition

1

2
e2UU ′γ01ǫA +

1

2
AΛ
t gΛδACε

CBǫB +
i

2
e3U−2ψ Z γ1εABǫ

B − i

2
eU L δABγ0ǫB = 0, (A.9)

where we assumed that ∂tǫA = 0. Since this equation contains both chiralities of the

4-dimensional supersymmetry parameters, we need to impose a projector condition that

relates them. We can actually identify the required projectors by rewriting the above

equation as

U ′ǫA = e−2U AΛ
t gΛ δAC γ

1γ0εCBǫB + i eU−2ψ Z γ0εABǫ
B − i e−UL δABγ1ǫB . (A.10)

If we introduce two distinct projectors relating the spinor components as

γ0ǫA = i eiα εABǫ
B (A.11)

and

γ1ǫA = eiα δABǫ
B, (A.12)

we can rewrite the δψt A = 0 condition as a single differential equation multiplying the

same spinor ǫA. This is proved also using

γ0ǫA = −ie−iαεABǫB and γ1ǫA = e−iαδABǫB, (A.13)

which follow from (A.11)–(A.12) by consistency. The resulting time component of the

gravitino variation gives
(
−U ′ + ie−2U AΛ

t gΛ − eU−2ψ e−iαZ − i e−U e−iαL
)
ǫA = 0, (A.14)
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which is satisfied only if the quantity within brackets vanishes. Identifying the real and

imaginary parts of the resulting differential equation, one gets that

U ′ = − eU−2ψ Re(e−iαZ) + e−U Im(e−iαL) (A.15)

and

eU AΛ
t gΛ = e−URe(e−iαL) + eU−2ψIm(e−iαZ). (A.16)

We can now analyze the radial component of the gravitino variation δψrA = 0, which

gives

∂rǫA +
i

2
ArǫA − i

2R2
eU−2ψZγ0εABǫ

B − i

2
L δABγ1e−U ǫB = 0. (A.17)

By using the projectors (A.11)–(A.12) and the supersymmetry conditions (A.15)–(A.16),

this reduces to

∂rǫA − 1

2

(
U ′ − iÃ

)
ǫA = 0, (A.18)

where we introduced

Ã = Ar +
(
eU−2ψ Im(e−iαZ) + e−U Re(e−iαL)

)
. (A.19)

This equation is readily solved by

ǫA = e
U

2
− i

2

R

eA drχA, (A.20)

for a spinor χA that is r independent. Consistency with the projector conditions defined

above also imply that

α+

∫
Ã dr = 0 (A.21)

and hence

α′ + Ar = −eU−2ψ Im(e−iαZ) − e−U Re(e−iαL), (A.22)

reproducing the phase equation (2.38).

We are then left with the angular components of the gravitino variations and the

dilatino. From the θ direction we get that

∂θǫA − 1

2
eψ(U ′ − ψ′)γ12ǫA − 1

2
eU−ψ Z γ3εABǫ

B − i

2
e−U+ψ L δABγ2ǫB = 0. (A.23)

Once more, using the projectors above as well as the supersymmetry conditions derived so

far, we can simplify this equation to

∂θǫA =
1

2
eψ

[
ψ′ − 2eU Im(e−iαL) + i

(
eU−2ψ Im(e−iαZ) − e−U Re(e−iαL)

)]
γ21ǫA.

(A.24)

Since the radial dependence is fixed on both sides of the equation by (A.20), we need to

require that both the real and imaginary parts of the quantities between square brackets

vanish. This leads to the flow equation for ψ

ψ′ = 2eU Im(e−iαL) (A.25)
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and to the constraint

eU−2ψ Im(e−iαZ) = e−U Re(e−iαL) (A.26)

This condition now fixes the ansatz for the time component of the vector fields

AΛ
t gΛ = 2 eU Re(e−iαL). (A.27)

We also get that the Killing spinors ǫA should not depend on θ:

∂θǫA = 0. (A.28)

A similar analysis can be performed for the other angular direction, which gives the

same set of flow equations and leaves the following condition on the Killing spinors:

∂φǫA =
1

2
cos θ γ32ǫA − i

2
〈G, Q〉 cos θ γ01ǫA. (A.29)

This is solved by requiring that

∂φǫA = 0 (A.30)

and that

〈G, Q〉 + 1 = 0. (A.31)

The only supersymmetry equation remaining is the dilatino variation δλiA = 0. By

using once more the projector conditions (A.11)–(A.12) and the other supersymmetry

constraints obtained above we eventually find the flow equations for the scalar fields:

zi′ = −eiαgi̄
[
eU−2ψD̄Z + i e−U D̄L

]
. (A.32)

Summarizing, the analysis of the supersymmetry transformations reproduces the flow

equations (2.31)–(2.33) for a Killing spinor of the form

ǫA = e
U

2
+ i

2

R

eA drχA, (A.33)

where χA is a constant spinor fulfilling

γ0χA = i εABχ
B , γ1χA = δABχ

B. (A.34)

Since we imposed two independent projector conditions, the resulting configurations will

be 1/4 BPS (each projector halving the number of preserved supersymmetries).

B Constant scalar flows

As we have explained in the main text, we cannot have regular flows with constant scalars,

unless the horizon is not spherical, but for instance hyperbolic [1–3]. In this case one can

have regular solutions by using our flow equations together with the constraint 〈G, Q〉 = 1.

If we assume that the scalar fields are fixed at the horizon value, we can impose that

e−iαZ = − R2
H

2RA
, and e−iαL =

i

2RA
. (B.1)
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Once inserted in the superpotential we get that

W =
eU

2RA

(
e2A −R2

H

)
. (B.2)

This implies that the equations for the warp factor reduce to

U ′ =
e−U

2RA

(
1 +R2

He
−2A

)
, (B.3)

A′ =
e−U

2RA

(
1 −R2

He
−2A

)
. (B.4)

A trivial solution is for constant A

eA = RH , eU =
r

RA
, (B.5)

which reproduces the AdS2 × H2 horizon solution. More generally, we can solve these

equations first in terms of the variables A and ψ, with the equation for ψ being

ψ′ = A′ + U ′ =
eA−ψ

RA
. (B.6)

In fact, introducing now

C = e2A −R2
H , (B.7)

the differential equations for A and ψ can be used to write

C ′ = Cψ′, (B.8)

which is readily solved by

C = k eψ ⇔ e2A = R2
H + k eψ, (B.9)

where k = 0 should give back the AdS2×H2 metric. Plugging the solution into the equation

for ψ (B.6), we get that

(eψ)′ =

√
R2
H + k eψ

RA
, (B.10)

which is solved by

eψ = k
r2

4R2
A

+

√
R2
S + k α

RA
r + α, (B.11)

where we chose the integration constant so that the limit k → 0 is well-defined.

If we set α = 0, we get that the asymptotic behaviour of the warp factor is

r → 0 : e2A → R2
H , e2U → r2

R2
A

, (B.12)

which leads to the AdS2 ×H2 metric

ds2 = − r2

R2
A

dt2 +
R2
A

r2
dr2 +R2

Hds
2
H2, (B.13)

and

r → ∞ : e2A → k2

4R2
A

r2, e2U → r2

k
, (B.14)

which leads to a metric that differs from AdS4 by 1/r terms in the limit.
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