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The role of interactions in shaping the interplay between the stability of an ecosystem and its

biodiversity is still not well understood. We introduce a geometrical approach, that lends itself to

both analytic and numerical analyses, for studying the domain of interaction parameters that results

in stable coexistence. We find the remarkable result that just a few attributes of the interactions are

responsible for stable coexistence in large random ecosystems. We analyze more than 100 empirical

networks and find that their architecture generally has a limited effect on in sustaining biodiversity.

Natural populations are faced with constantly varying environmental conditions. Because environmental conditions

affect physiological parameters (e.g., metabolic rates [1]) as well as ecological ones (e.g., the presence and strength

of interactions between populations [2–5]), in order to persist ecological communities necessarily need at least to

be able to cope with small changes in environmental conditions. Mathematically, this translates into an argument

on the robustness of the qualitative behavior of an ecological dynamical system: to guarantee robust coexistence, a

model describing an ecological community needs at least to be (qualitatively) insensitive to small perturbations of the

parameters. This notion has been formalized in the measure of “structural stability” [6], expressed as the “volume”

of the parameter space resulting the coexistence of all populations in an ecological community.

While local asymptotic stability (i.e., the ability to recover after a small changes in the densities of the population

abundances) of ecological communities has been studied in small [7] and large [8–10] systems, the study of structural

stability (i.e., the ability of a community to persist if conditions are slightly altered)—despite being proposed early on

as a key characteristic in the context of the diversity-stability debate [11–13]—has historically been restricted to the

case of small communities, with the first studies of larger communities appearing only recently [14], and—because of

mathematical limitations—dealing exclusively with the case of large mutualistic communities. Studies of structural

stability have so far focused on the effect of ecological network structure (who interacts with whom) on the volume

of parameter space leading to “feasible” equilibria, in which all populations have positive densities.
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Here we develop a geometrical framework for studying the feasibility of large ecological communities. We overcome

the limitations that have hitherto prevented the study of consumer-resource networks thereby providing a unified view

of feasibility in ecological systems. Using a random matrix approach (which helped in identifying the main drivers of

local asymptotic stability), we pinpoint the key quantities that control the volume of feasible parameters, as well as

the sensitivity to changes in these parameters. We then contrast these expectations for randomly connected systems

with simulations on structured empirical networks and demonstrate that network structure has limited effects on

feasibility.

For simplicity, we consider a community composed of S populations, whose dynamics are determined by a system

of autonomous ODEs:

dni
dt

= rini + ni

S∑
j=1

Aijnj , (1)

where ni is the density of population i, ri is its intrinsic growth rate, and Aij (which in principle could depend on n,

Supplementary Information) measures the interaction strength between population i and j. A fixed point n∗i (i.e., a

vector of densities making the right side of each equation zero) is feasible if n∗i > 0 for every population. A fixed point

is locally stable if, following any (small enough) perturbation of the densities, the system returns to the fixed point.

The fixed point is globally stable if the system eventually reaches it starting from any feasible initial condition. A

system is structurally stable if, following a change of the growth rates r, the new fixed point is still stable and feasible.

To study the range of conditions leading to stable coexistence, we need to disentangle feasibility and local stability.

This problem is well discussed in Rohr et al. [14], where it was solved for the case of a possible parametrization of

mutualistic interactions. In the Supplementary Information, we obtain a criterion for the matrix A, which is valid

irrespective of the parametrization. In particular, we show that if all the eigenvalues of A + At are negative (i.e., the

matrix A is non-reactive [15]), then global stability holds for any feasible fixed point. Using this criterion, we can

extend the study of feasibility to food webs and other ecological networks.

We want to measure the space of growth rates r leading to the coexistence of all S populations. Since we can

separate stability and feasibility, we only need to find the space of r leading to feasible fixed points, and the criterion

above ensures that these will be globally stable. As pointed out before [14], the problem is not to find a particular

parameterization r leading to coexistence, but rather to measure how flexibly, we may choose these rates. As shown

in Fig. 1, this quantity—indicated by Ξ henceforth—, can be thought as a volume, or more precisely a solid angle, in

the space of growth rates.

To calculate Ξ, one might naively wish to numerically compute directly the proportion of growth rates leading to a

feasible equilibrium. While a direct calculation is viable when S is small enough, this procedure becomes extremely

inefficient for large S [14]. Previous approaches have therefore relied on indirect quantifications of this space [14, 16],

so that, rather than calculating Ξ directly, one might correlate it with properties of interest. In the Supplementary
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Information we introduce a method, based on a change of variables, that can be used to calculate Ξ with arbitrary

precision. Using this method, we can measure accurately the size of the coexistence domain, with larger values of

Ξ corresponding to larger proportions of conditions (intrinsic growth rates) compatible with stable coexistence. For

reference, we normalize Ξ so that Ξ = 1 when populations are not interacting (Supplementary Information), i.e., when

all the off-diagonal elements of the interaction matrix A are equal to zero, and thus Eq. 1 simplifies to S independent

logistic equations.

Since May’s seminal work [8], random matrices have been a reference null model for ecological interactions. A

particularly interesting feature of random matrices is that their spectrum (i.e., the distribution of their eigenvalues,

which determines local stability), is universal [17]. This means that local stability depends on just a few, coarse-

grained properties of the matrix (e.g., the first two moments of the distribution of interaction strengths) and not on the

finer details (e.g., the particular distribution of interaction strengths, see Supplementary Information). Surprisingly,

we find that the feasibility of random matrices is also universal (Supplementary Information): Ξ depends only on the

connectance (the probability of interaction), and the first few moments of the distribution of interaction strengths.

These moments can be combined into three parameters, E1, E2 and Ec
∗ which, together with S, completely determine

the size of the feasibility domain Ξ (see Supplementary Information). Two very different (random) ecosystems,

with different interaction types and different distributions of interaction strengths, but having the same number

of populations and the same E1, E2 and Ec, have the same Ξ in the large S limit. This result has important

theoretical implications, but also very practical consequences, namely that the parameter space one needs to explore

is dramatically reduced.

Using the numerical method explained in the Supplementary Information, we find that, when the mean and variance

of interaction strengths when not too large (Supplementary Information), for random interaction matrices A,

∗ E1, E2 and Ec are moments of the interaction matrix and are simply and directly related with the interaction strenghts. They are
defined as

E1 =
1

S(S − 1)

∑
i 6=j

Mij

E2
2 =

1

S(S − 1)

∑
i 6=j

M2
ij − E2

1

Ec =
1

S(S − 1)E2
2

∑
i 6=j

MijMji −
E2

1

E2
2

.

(2)

In the case of a random network with connectance C they reduces to [17]

E1 = Cµ

E2
2 = C(1 − C)µ2 + Cσ2

Ec =
ρσ2 + (1 − C)µ2

σ2 + (1 − C)µ2
,

(3)

where µ is the mean of the interaction strenghts, σ is the variance and ρ is the correlation between the interaction strenghts of pairs of
species interacting togheter [17].
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Ξ ∼
(

1− 1

π

E1(SE1 − 2d)

π(d− SE2
1)

)−S
, (4)

where S is is the number of populations, d is the mean of the diagonal entries of A, and E1 = Cµ, where C is the

connectance and µ is the average interaction strength. In the Supplementary Information a more accurate prediction

is presented.

Given that d is negative by definition (SI), depending on the sign of µ, having more species can either increase

(µ > 0) or shrink (µ < 0) the size of feasibility domain. It is important to stress that, since we have disentangled

feasibility and stability, we can compute Ξ without considering stability, but coexistence depends on both. When we

consider how Ξ depends on S and other parameters, we need to take into account what the conditions are that make

the matrix non-reactive (see Supplementary Information). In the case of positive interaction strengths, this condition

is d+ SCµ < 0, implying an upper bound for µ that depends on S.

Having explored the feasibility of random networks, we proceed to investigate the effects of incorporating empirical

network structure. Ecological networks, in fact, are not random [18–20], and many studies have hypothesized that

the structure of interactions could increase the likelihood of coexistence of distinct species [21–23]. Because we can

calculate Ξ for any A, we can directly compare the domain of coexistence of empirical networks to their random

counterparts. In this way, we can explicitly test whether empirical topologies are more conducive to feasibility. Fig. 2

shows the values of Ξ for 89 mutualistic networks and 15 food-webs (Supplementary Information). Contrary to

expectations [14], we find that empirical mutualistic networks have values of Ξ that are more or less indistinguishable

from those of their corresponding randomizations. While our results suggest that mutualistic network structure has

little impact on feasibility, we find that food web structure does affect the size of the domain of coexistence, but in a

negative way: empirical interaction structures have lower values of Ξ compared to their randomized counterparts.

Until now, we have concentrated on the volume of the parameter space resulting in feasiblity. However, two systems

having the same Ξ can yet have very different responses to perturbations in the interaction parameters, just as two

triangles having the same area need not have sides of the same length (Fig. 1). The two extreme cases correspond to

a) an isotopic system in which, if we start at the baricenter of the feasibility domain, moving in any direction yields

roughly the same effect (equivalent to an equilateral triangle), b) anisotropic systems in which certain directions

are more dangerous than others (as in a scalene triangle). For our problem, the domain of growth rates leading

to coexistence is—once the growth rates are normalized—the (S − 1)-dimensional generalization of a triangle on a

hypersphere. When S = 3 this domain is indeed a triangle lying on a sphere as shown in Fig. 1. If all the S(S − 1)/2

sides of this (hyper-)triangle are about the same length, then different perturbations will have similar effects on the

system. On the other hand, if some sides are much shorter than others, then there will be changes of conditions

which will more likely impact coexistence than others. We therefore consider a measure of the heterogeneity in

the distribution of the lengths of the sides (Fig. 1 and Supplementary Information). The broader the distribution
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(e.g., the larger its variance), the more heterogeneous the response to perturbations will be. This way of measuring

heterogeneity is particularly convenient, because it is independent of the initial conditions. Moreover, the length

of each side can be directly related to the similarity between the corresponding pair of species (see Supplementary

Information), drawing a strong connection between the space of coexistence and the phenotypic space. As in the case

of Ξ, this measure is a function of the interaction matrix and corresponds to a geometrical property of the coexistence

domain.

While Ξ is a universal quantity for random networks, the distribution of side lengths is not (Supplementary

Information)—it depends on the full distribution of interaction strengths. Despite this fact, it is possible to compute

it analytically in full generality (Supplementary Information) and obtain an expression for its mean and variance,

which depend only on S, E1, E2 and Ec (Supplementary Information). Fig. 3 shows that the analytical formula, in

the case of random A, matches the observed mean and the variance of sides lengths perfectly.

As we have done for Ξ, we can now test how non-random empirical network topologies influence the distribution

of sides lengths. We tested this effect for four types of structures: bipartite, cascade [18], modular, and perfectly

nested topologies. (Fig. 3 and Supplementary Information). All these structures have modest effects on the mean

side length. The effect on the variance of side lengths is more pronounced, with a modular structure significantly

increasing the variance. Fig. 3 demonstrates that empirical food webs have smaller side lengths and higher variances.

This is consistent with the low values of Ξ displayed in Fig. 1. For mutualistic networks, the mean side lengths

coincide with those expected for the random counterparts whereas the variances are much larger than those expected

by chance. This indicates that empirical mutualistic networks are characterized by some directions of perturbations

that are more dangerous than others.

Several studies investigated the effect of network structure on species coexistence [21–24]. Here we have shown

that the proportion of conditions compatible with coexistence is mainly determined by the number and strength

of interactions. In terms of network properties, the relevant quantity is connectance, with other properties (e.g.,

nestedness or degree distribution) having minimal effects. In particular, once the connectance and mean interaction

strength are fixed, matrices built using empirical mutualistic networks have Ξ that is not much different from that

expected for a random case, as observed in a similar context [25]. Empirical food webs, on the other hand, tend to

have Ξ smaller than their random counterparts. These results parallel those for the distribution of side lengths: while

the mean side length for an empirical structure is similar to that of the corresponding random web, the variance is

much higher, implying that for some directions, even small perturbations of the parameters could drive the system

outside its feasibility domain.
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FIG. 1: Geometrical properties of feasibility. The panels show the size and shape of the feasibility domain for three

interaction matrices, each defining the interactions among three populations. If r corresponds to a feasible equilibrium, also

cr does, for any positive c. We can therefore study the feasibility domain on the surface of a sphere (see Supplementary

Information). The gray sphere represents the S = 3-dimensional space of growth rates, while the colored part correspond to

the combination of growth rates leading to stable coexistence. The area (or volume for higher-dimensional systems) of the

colored part is measured by Ξ. Larger values of Ξ correspond to a higher proportion of combinations of growth rates leading to

coexistence (i.e., more “structurally stable”): the red interaction matrix is more structurally stable than the green one. The size

of this region (i.e., the value of Ξ) does not capture all the properties relevant for coexistence. The red and blue systems have

the same Ξ, but the two regions—despite having the same area—have very different shapes, summarized in the bottom-right

panel, where we show the length of each side for the red and blue systems. In the red system, the three sides have about the

same length, and thus moving from the center in any direction will have about the same effect; in the blue system, one side

is much shorter than the other two, implying that for some specific direction, even small perturbations could drive the system

outside the feasibility domain.
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FIG. 2: Domain of coexistence in random and empirical webs. The top two panels show Ξ, the size of the domain of

growth rates leading to coexistence, in the case of random networks. The left panel shows the dependence of Ξ on E1 = Cµ

(where C is the connectance and µ is the mean interaction strength), and number of species S. The right panel shows the

match between our analytical prediction (Eq. 4 and Supplementary Information) and the numerical determined value of Ξ.

The bottom panels show a comparison between Ξ computed for empirical webs (89 mutualistic networks on the right, and

15 food-webs on the left) and that computed for their random counterparts (Supplementary Information). Each network

was parametrized with different distributions of interaction strengths (Supplementary Information). Mutualistic networks

have values of Ξ comparable with the corresponding randomizations, indicating that their structure does not influence the

size of the domain of coexistence. Food webs have lower values of Ξ than their random counterparts. Empirical networks

were parametrized extracting interaction strengths from a bivariate normal distribution with different means, variances and

correlations (see Supplementary Information).
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FIG. 3: Distribution of side lengths in random, structured and empirical networks. Left panels show the mean

and the standard deviation of cos(η), where η is the side length. Analytical predictions for the first two moments of cos(η)

(Supplementary Information) perfectly match the numerical simulations. The panels in the middle show the effect of non-

random structure on the first two moments of cos(η). Largest values of the mean
〈

cos(η)
〉

(corresponding to smaller side

lengths) are present only in the case of the cascade model. Strong fluctuations in cos(η) (and therefore in side lengths) are

visible in the case of modular structure. The four panels on the right show mean and standard deviation of cos(η) for mutualistic

and food webs compared to the expectations for the randomized cases. While food webs display smaller mean side lengths

(consistent with the small Ξ observed in Fig. 2), both trophic and mutualistic interactions show larger fluctuations of side

lengths, suggesting the existence of perturbation directions that are more dangerous than others.
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S1. COMMUNITY DYNAMICS, FEASIBILITY, AND STABILITY

We consider an ecological community composed of S populations, whose growth rates are described by the following

equations:

dni
dt

= ni

ri +

S∑
j=1

Aijnj

 , (S1)

where ni is the population abundance of species i and ri is its intrinsic growth rate, and Aij is the effect of a unit change

in species j’s density on species i’s per capita growth rate. For notational convenience, we collect the coefficients Aij

into the interaction matrix A, and ni and ri into the vectors n and r, respectively.

In principle, the interaction matrix A may depend on n. We discuss this more general case in section S12. In the

following, we consider the simpler case of A being independent of n; then, equation (S1) is a system of generalized

Lotka–Volterra equations.

A vector n∗ is a fixed point (equilibrium) if

0 = n∗i

(
ri +

S∑
j=1

Aijn
∗
j

)
(i = 1, 2, . . . , S) . (S2)

A fixed point is feasible if n∗i > 0 for all i. A feasible fixed point (if it exists) is then a solution to the equation

ri = −
S∑
j=1

Aijn
∗
j , (S3)

and therefore, assuming A is invertible,

n∗i = −
S∑
j=1

A−1
ij rj . (S4)

A fixed point n∗i is locally stable if the system returns to it following any sufficiently small perturbation of the

population abundances. Introducing ni = n∗i + δni in equation S1 and assuming that δni is small, we obtain, by

expanding around δni = 0,

dδni
dt

=

S∑
j=1

Mijδnj , (S5)

where M is the Jacobian evaluated at the fixed point (also called the community matrix), which, in the case of

equation S1, reduces to

Mij = n∗iAij = −

(
S∑
k=1

A−1
ik rk

)
Aij . (S6)

Substituting into equation S5, we get

dδni
dt

= −
S∑
j=1

(
S∑
k=1

A−1
ik rk

)
Aijδnj . (S7)
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There are two possible scenarios for the dynamics of equation S5. If all eigenvalues of M have negative real parts,

then the perturbation δn decays exponentially to zero and n∗i is locally stable. If at least one eigenvalue of M has a

positive real part, then there exists an infinitesimal perturbation such that the system does not return to equilibrium.

If we order the eigenvalues λi of M according to their real parts, i.e., <(λ1) > <(λ2) > · · · > <(λS), then stability

depends exclusively on <(λ1): if it is negative, n∗i is dynamically locally stable; otherwise, it is unstable.

A fixed point is globally stable if it is the final outcome of the dynamics from any initial condition involving strictly

positive population abundances.

S2. DISENTANGLING STABILITY AND FEASIBILITY

As we can see from equations S4 and S7, both feasibility and stability depend on both r and A and, at least in

principle, a fixed point can be stable or unstable, independently of the fact that it is feasible or not.

We want to study the proportion of conditions (i.e., the number of combinations of the growth rates r out of all

possible combinations) leading to coexistence, i.e., leading to stable and feasible equilibria. Therefore in principle we

should, for a fixed matrix A, look for growth rates r that satisfy both stability and feasibility. In probabilistic terms,

we want to measure the likelihood that a random combination of the intrinsic growth rates corresponds to a stable

and feasible solution.

In the case of equation S1, it is possible to disentangle feasibility and stability by applying a mild condition on the

interaction matrix A. To this end, we introduce some terminology [26, section 2.1.2]:

• Stability. A real matrix B is stable if all its eigenvalues have negative real parts.

• D-stability. A real matrix B is D-stable if D B is stable for any diagonal matrix D with strictly positive

diagonal entries.

• Diagonal stability. A real matrix B is diagonally stable if there exists a positive diagonal matrix D such that

D B + Bt D is stable (where Bt is the transpose of B).

• Reactivity. A real matrix B is reactive if B + Bt is unstable.

These properties are closely related to each other [26, 27]:

Nonreactivity =⇒ Diagonal stability =⇒ D-stability =⇒ Stability (S8)

• Nonreactivity =⇒ Diagonal stability. If a matrix is not reactive, then the positive diagonal matrix

satisfying the condition for diagonal stability is simply the identity matrix.

• Diagonal stability =⇒ D-stability. See the book by Kaszkurewicz & Bhaya for the proof [26, lemma 2.1.4].
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• D-Stability =⇒ Stability. This follows from the definition of D-stability when D is the identity matrix.

In the case of equation S1, those conditions applied to the matrix A are related to the stability of the system. One

can use the definition of the community matrix (equation S6) to show that D-Stability of A implies the local

asymptotic stability of any feasible fixed point. This is because the community matrix Mij = n∗iAij can be

written as N A, where N is a diagonal matrix with Nii = n∗i . If the fixed point is feasible and A is D-stable, then

local asymptotic stability is guaranteed. Moreover it is possible to show [14, 28] that diagonal stability of A =⇒

global stability.

Thus, we have a condition on A that makes it possible to disentangle the problems of stability and feasibility: A is

nonreactive =⇒ global stability of the feasible fixed point. Therefore, if we assume A is nonreactive, then

feasibility of the equilibrium is sufficient to guarantee its global stability as well, i.e., feasibility guarantees globally

stable coexistence. Consistently with this, it is known that the largest eigenvalue of (A + At)/2 is always larger

than or equal to the real part of A’s leading eigenvalue [15], implying that reactivity always precedes instability (or

that nonreactivity implies stability). While this was indeed observed before, it is important to underline that, in the

case of ref. [15], this property was considered on the community matrix M (which also depends on the fixed point’s

position in phase space) and not on the interaction matrix A.

Since we are interested in studying how interactions (i.e., the matrix A) determine coexistence, and which properties

of the former determine the latter, we will restrict our analysis to nonreactive matrices A and focus only on the

problem of feasibility. This criterion has the advantage of being analytically computable for large random matrices

(see section S5 A).

S3. GEOMETRICAL PROPERTIES OF THE FEASIBILITY DOMAIN

In section S2 we showed how to separate feasibility and stability, i.e., we have a criterion on the interaction matrix

that guarantees (global) stability of the feasible fixed point. The problem of determining the size of the coexistence

domain is therefore reduced to that of determining the size of the feasibility domain. The ecological interpretation of

this volume is the proportion of different conditions leading to feasible equilibria out of all possible conditions. The

larger this volume is, the higher the probability that the system is able to sustain biodiversity. In terms of equation S1,

we want to quantify the proportion of growth rate vectors r corresponding to a feasible fixed point.

At this point, it is important to observe that if a vector r corresponds to a feasible solution, then cr, c being an

arbitrary positive constant, also corresponds to a feasible solution. This is because the equilibrium solution n∗i is

given by equation S4, which is linear in ri. Therefore, the equilibrium corresponding to cri is simply cn∗i , and since c

is positive, cn∗i is also feasible.

This fact implies that, given a large number of growth rate vectors r, the expected proportion of vectors correspond-
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ing to a feasible fixed point is independent of r’s norm. In other words, r is feasible if and only if r/‖r‖ is feasible,

where ‖r‖ =
√∑

i r
2
i is the Euclidean norm of r. The proportion of feasible growth rates among all possible ones is

therefore equal to the proportion of feasible growth rates calculated using only growth rate vectors with ‖r‖ = 1; i.e.,

those lying on the unit sphere.

Before proceeding with the mathematical definition of the size of the feasibility domain, we discuss the geometrical

interpretation of equation S4. From this equation, the feasibility condition reads

S∑
j=1

A−1
ij rj < 0 . (S9)

This equation defines a convex polyhedral cone in the S-dimensional space of growth rates. A convex polyhedral

cone [29] is a subset of RS whose elements x can be written as positive linear combinations of NG different S-

dimensional vectors gk called the generators of the cone:

x =

NG∑
k=1

gkλk , (S10)

where the λk are arbitrary positive constants. Due to this arbitrariness, if gk is a generator of a given convex

polyhedral cone, then also cgk (where we rescale just the kth generator with the positive constant c, leaving the

others unchanged) will be a generator of the same cone. In the case of equation S4, each and every growth rate vector

belonging to the feasibility domain can be written as

ri = −
S∑
k=1

Aikn
∗
k , (S11)

where, by definition, n∗k is feasible and therefore a positive constant. One can easily see that this equation corresponds

to equation S10 where the number of generators NG is equal to S and the ith component of the vector gk is proportional

to −Aik. As the lengths of the generators can be set to any positive value, we will normalize them to one, i.e.,

gki (A) =
−Aik√∑S
j=1(Ajk)2

. (S12)

The generators completely define the feasibility domain in the space of growth rates. A growth rate vector corresponds

to a feasible equilibrium if and only if it can be written as a linear combination of the generators with positive

coefficients. Biologically the generators correspond to the growth rate vectors that bound the coexistence domain.

They correspond to nonfeasible equilibria with just one species with positive abundance (and all the others with zero

abundance), such that there exist arbitrarily small perturbations of the growth rate vector that make the equilibrium

feasible.

The set of all the growth rate vectors leading to a feasible equilibrium is therefore a convex polyhedral cone, defined

by

K(A) = {r ∈ RS |
S∑
j=1

A−1
ij rj < 0} . (S13)
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Equivalently, it can be defined in terms of the generators:

K(A) = {r ∈ RS |∃λ1, λ2, . . . , λk > 0, r =

S∑
k=1

gk(A)λk} , (S14)

where the generators gk(A) are defined in equation S12. In section S11 we show explicitly how these concepts pan

out in the case of S = 3.

This geometrical definition and characterization of the feasibility domain allows us to identify classes of matrices

having the exact same feasibility domain: they are simply matrices having the same set of generators. In particular,

there are two basic transformations of the matrix A (and their combinations) that leave the set of generators un-

changed: permutations and positive rescaling. A square matrix P is a permutation matrix if each row and column

has one and only one nonzero entry and the value of that entry is equal to one. A positive rescaling is performed by

a positive diagonal matrix D. The set of generators of A is the same as those of A P and A D. This can be seen by

observing that a permutation of the rows just changes the order of the generators but not the generators themselves.

In the same way, a generator with the same direction but different length generates the same cone, and so any positive

constant that rescales a row of the matrix leaves the feasibility domain unchanged. It is important to note however

that these two transformations do not leave the properties of the matrix A unchanged: both exchanging rows of a

matrix and rescaling rows by different constants will in general change the structure of the matrix.

Using this geometrical framework, one can easily identify the center of the feasibility domain (also known as

structural vector [14]). There are several possible ways to define the center of a hypervolume and, without additional

assumptions, all the definitions are different. One natural choice is the barycenter (“center of mass”) of the domain of

feasible intrinsic growth rates. Any plane passing through the barycenter divides the volume into two subvolumes of

equal size. The barycenter is equivalent to the center of mass of the volume (in the case of constant density). Then,

the vector xb pointing from the origin to the barycenter is given by

xb =

∫
K(A)∩SS

dSy y , (S15)

where ∩ is the intersection of two sets, and SS = {r ∈ RS |‖r‖ = 1} represents the surface of the S-dimensional unit

sphere. The variable y is therefore integrated over the feasibility domain restricted to the unit sphere’s surface. All

points in the feasibility domain are positive linear combinations of the generators, i.e.,

y =
∑
k

λkgk , (S16)

where the λk are positive constants. The fact that we consider only the points lying on the unit sphere, i.e., ‖y‖ = 1,

can be expressed as a constraint on λ (the vector of λs). Thus, we can write equation S15 as

xb =

∫
dSλ q(λ)

∑
k

λkgk , (S17)
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where q is an appropriate distribution, introduced to take into account three different constraints: all the components

of λ must be positive; the vector
∑
k λ

kgk must lie on the unit sphere; and those vectors must be sampled uniformly

on the feasibility domain. Regardless of the form of q(λ), it is an exchangeable distribution, and therefore∫
dSλ q(λ) λk = 〈λ〉 , (S18)

which is independent of k (because the distribution q is exchangeable). Therefore we obtain

xb =
∑
k

gk
∫

dSλ q(λ) λk =
∑
k

gk〈λ〉 = 〈λ〉
∑
k

gk . (S19)

Since we want xb to be normalize to one, we can fix 〈λ〉 using this constraint, obtaining

xb =
1√∑

i(
∑
k g

k
i )2

∑
k

gk . (S20)

Using equation S12, we can finally express the barycenter in terms of the matrix A:

xbi (A) =

∑
i

∑
k

Aik√∑
j(Ajk)2

2

−1/2

S∑
k=1

−Aik√∑S
j=1(Ajk)2

. (S21)

S4. DEFINITION AND CALCULATION OF Ξ

As explained in section S3, the proportion of feasible growth rates can be calculated considering only growth rate

vectors of length one, i.e., ‖r‖ = 1. This proportion can be interpreted as the volume of the intersection of a convex

cone and the surface of a sphere. Equivalently, it is the solid angle of the convex polyhedral cone [30].

We define the quantity Ξ as

Ξ = 2S
# growth rate vectors corresponding to a feasible fixed point

total # growth rate vectors
. (S22)

The factor 2S that appears in this equation is an arbitrary choice, and it has been introduced to have Ξ = 1 when

species are not interacting (Aij = 0 if i 6= j). In this case equation S1 reduces to S independent logistic equations with

equilibrium densities n∗i = −ri/Aii. Taking each Aii to be negative (otherwise each species would have an unstoppable

positive feedback on itself), this equilibrium is feasible if and only if each ri is positive. For a single species then,

the probability of randomly drawing a feasible (i.e., positive) growth rate out of all possible growth rates is one half.

For two species, both growth rates must have the correct sign to have the two species with positive abundance, and

therefore the proportion of growth rate vectors satisfying this condition is 1/4. For S species the combinations of the

growth rates leading to a feasible fixed point is 2−S . Ξ, defined as in equation S22, is therefore equal to one when

species do not interact.

In terms of geometrical properties and the convex polyhedral cone, Ξ can be defined as

Ξ = 2S
volS−1(K(A) ∩ SS)

volS−1(SS)
, (S23)
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where K(A) is defined in equation S13, SS is the unit sphere in RS , while volS(·) means volume in S dimensions.

This definition is equivalent to the one in equation S22 [30].

These two equivalent definitions can be expressed in terms of an integral in the space of the growth rate vectors:

Ξ =
2S

volS−1(SS)

∫
RS

dSr 2‖r‖ δ(‖r‖2 − 1)

S∏
i=1

Θ(n∗i (r)) , (S24)

where volS−1(SS) is the volume of the unit sphere’s surface in S dimensions, Θ(·) is the Heaviside function (equal

to 1 is the argument is positive and to zero otherwise), and δ(·) is the Dirac delta function. In this expression, we

integrate over the surface of the S-dimensional unit sphere. The integral of a function f(x) on the unit sphere is given

by ∫
SS

dSx f(x) =

∫
RS

dSx 2‖x‖δ(‖x‖2 − 1) f(x) , (S25)

where the term δ(‖x‖2 − 1) that appears in the integration constrains x on the surface of the unit sphere, and the

factor 2‖x‖ is the derivative of the delta function’s argument, which is needed because the Dirac delta is nonlinear in

‖r‖. The factor volS−1(SS), the surface of sphere in S dimensions, can be obtained by setting f(x) = 1:

volS−1(SS) =

∫
dSx 2‖x‖δ(‖x‖2 − 1) =

2πS/2

Γ(S/2)
, (S26)

where Γ(·) is the Gamma function. Finally, the term
∏S
i=1 Θ(n∗i (r)) in equation S24 expresses the constraint of all

n∗i having to be positive: this product is equal to 1 if the equilibrium n∗(r) is feasible and zero otherwise. The

equilibrium n∗(r) is a function of r via equation S4.

Equation S24 defines Ξ as the volume of the domain of growth rates leading to feasible solutions. Using the results

of section S2, we know that if the interaction matrix A is nonreactive then a feasible fixed point is globally stable. In

this case Ξ is the volume of the domain of intrinsic growth rates leading to feasible and (globally) stable solutions.

Unfortunately, direct numerical computation of Ξ is inefficient when the number of species S is large. To evaluate

the integral in equation S24, e.g., via Monte Carlo integration, we should draw intrinsic growth rates at random and

count how many of them, out of the total, lead to a feasible equilibrium. In order to have a reliable estimate of this

proportion, we should sample the space in such a way that the number of feasible growth rates found is large. This

goal requires an exponentially increasing sampling effort as S increases. In this section we provide an alternative,

much faster and reliable, way of estimating Ξ.

The equilibrium solution and the growth rates are linearly related via ri = −
∑S
i=1Aijn

∗
j (equation S3). Our

strategy is to use this to perform a change of variables in equation S24, and integrate over n∗ instead of r. Since A

is nonreactive (and thus stable and not singular), it is invertible, and so it is always possible to perform this change

of variables. We then obtain

Ξ =
2S Γ(S/2) |det(A)|

2πS/2

∫
RS

dSn∗ 2δ

∑
i,j,k

n∗iAkiAkjn
∗
j − 1

 S∏
i=1

Θ(n∗i ) , (S27)
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where |det(A)| is the determinant of A, which is also the Jacobian of the change of variables. After the change of

variables, the integration is now performed over the feasible equilibrium points and so the condition of feasibility is

automatically implemented.

It is still difficult to evaluate the previous expression numerically, because of the constraint that appears in the

delta function. We can further simplify it by introducing polar coordinates. In particular, we write the vector n as

n = nu, where n = ‖n‖ and u is a vector of unit length. We can perform a new change of variables, passing from n

to n and u. Specifically, for any function f(n), we can write∫
RS

dSn f(n) =

∫ ∞
0

dn nS−1

∫
RS

dSu 2δ(‖u‖2 − 1)f(nu) =

∫ ∞
0

dn nS−1

∫
SS

dSu f(nu) . (S28)

Using this expression in equation S27, we obtain

Ξ =
2S Γ(S/2) det(A)

2πS/2

∫ ∞
0

dn nS−1

∫
SS

dSu 2δ

n2
∑
i,j

uiGijuj − 1

 S∏
i=1

Θ(ui) , (S29)

where we used the fact that Θ(ni) = Θ(ui) (since ni = nui, and n is positive by definition), and we have introduced

the matrix Gij =
∑
k AkiAkj . We can now perform the integration over n, obtaining

∫ ∞
0

dn nS−1 2 δ

n2
∑
i,j

uiGijuj − 1

 =

=

∫ ∞
0

dn nS−1 2 δ

n− 1√∑
i,j uiGijuj

 1

2n
∑
i,j uiGijuj

=

∑
i,j

uiGijuj

−S/2 ,

(S30)

and therefore the integral of equation S24 finally reads

Ξ =
2S Γ(S/2)

√
det(G)

2πS/2

∫
SS

dSu

S∏
i=1

Θ(ui)

∑
i,j

uiGijuj

−S/2 , (S31)

where we have used the fact that det(G) = det(AtA) = det(A)2. In terms of the interaction matrix, the equation

reads

Ξ =
2S Γ(S/2) |det(A)|

2πS/2

∫
SS

dSu

S∏
i=1

Θ(ui)

∑
i,j,k

uiAkiAkjuj

−S/2 . (S32)

Equation S31 shows explicitly the role of the generators. The matrix G can indeed be rewritten as

Gik =
∑
j

gijg
k
j cick = cickg

i · gk , (S33)

where gkj are the generators of the convex cone defined in equation S12 and ci are arbitrary positive constants. Their

presence, which can be seen as a change of the normalization of the vectors gk, does not affect the form of equation S31

and its dependence on G (see section S3). This property can be checked explicitly from equation S31, by introducing

an explicit dependence on ci and showing that Ξ is independent of their values.
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Unfortunately, the integral in equation S31 cannot be computed analytically. As mentioned before, when the

integral is written in the form of equation S24 it is impractical to evaluate it numerically, since it would require an

exponentially increasing sampling to get a reasonable precision. Fortunately, this is not the case when the integral is

written as in equations S31 and S32. The main difference is that, after changing variables, we are directly sampling

the space of feasible solutions, without losing computational time in randomly exploring the space of intrinsic growth

rates looking for feasible solutions.

To evaluate the integral, we use the usual approach of Monte Carlo algorithms. In particular, it is possible to write

the integral as an average over random points:

1

T

T∑
a=1

(∑
i,j

uaiGiju
a
j

)−S/2
→ Γ(S/2)

2πS/2

∫
dSu

S∏
i=1

Θ(ui) 2δ(‖u‖2 − 1)
(∑
i,j

uiGijuj

)−S/2
(S34)

when T →∞. In this expression ua are independently drawn random vectors uniformly distributed on the unit sphere

and with only positive components. These two conditions are introduced to satisfy the constraints
∏S
i=1 Θ(ui) and

2δ(‖u‖2 − 1) that appear in the integral. T is the sample size, and the average on the left hand side of equation S34

converges to the right hand side in the large T limit.

One always has a finite sample size T , used to approximate the integral. It is therefore important to have an

estimate of the error made due to T < ∞. Since the left hand side of equation S34 is an average of a function over

random vectors, this error can be estimated by simply using the variance of the function’s values. In particular, the

error σMC is defined as

σMC =
1√
T

√√√√√√ 1

T

T∑
a=1

∑
i,j

uaiGiju
a
j

−S −
 1

T

T∑
a=1

∑
i,j

uaiGiju
a
j

−S/2


2

. (S35)

The numerical simulation presented in the work where obtained were obtained with different sampling effort T .

Instead of fixing T a priori, we determined a precision goal, that we measured in terms of the relative error σMC/Ξ.

We ran the simulations until σMC/Ξ < 0.05. In order to avoid artificially small samples and to have enough statistical

power not to undershoot to much σMC, we ran 10 × S Monte Carlo steps before checking the condition for the first

time.

S5. STABILITY, REACTIVITY, AND FEASIBILITY IN RANDOM MATRICES

Random matrices are a useful tool in ecology, and have been studied since May’s seminal paper [8]. Mostly, they

have been used to model the community matrix [8, 9]. In the context of this work, we use random matrices to model

interaction matrices A. We consider random matrices constructed in the following way:

• Aii = −d where d is a positive constant.
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• Each pair (Aij , Aji) is set equal to a pair of random variables drawn from a joint distribution with probability

density function q(x, y).

• The random variables are exchangeable—i.e., the probability distribution function is symmetric in its arguments:

q(x, y) = q(y, x)—and all the moments are finite.

We show that the three most important quantities for our problem are the moments

E1 =

∫
dx dy xq(x, y) =

∫
dx dy yq(x, y) , (S36)

E2 =

√∫
dx dy (x− E1)2q(x, y) =

√∫
dx dy (y − E1)2q(x, y) , (S37)

Ec =
1

E2
2

∫
dx dy (x− E1)(y − E1)q(x, y) . (S38)

In the limit of large S, they can be computed as proper sample means of A’s entries:

E1 =
1

S(S − 1)

S∑
i=1

∑
j 6=i

Aij , (S39)

E2 =

√√√√ 1

S(S − 1)

S∑
i=1

∑
j 6=i

(Aij)2 − E2
1 , (S40)

Ec =
1

E2
2

 1

S(S − 1)

S∑
i=1

∑
j 6=i

AijAji − E2
1

 . (S41)

The parameterization used by May [8] would correspond to

qMay(x, y) =
(

(1− C)δ(x) + Cp(x)
)(

(1− C)δ(y) + Cp(y)
)
, (S42)

where δ(·) is the Dirac delta function and p(x) is an arbitrary distribution with mean zero and variance σ2. The

connectance C sets the probability that each entry is equal to zero (with probability 1−C) or randomly drawn from

the probability distribution p(x) with probability C. In this case E1 = Ec = 0, while E2
2 = Cσ2.

In the following, we summarize known results on the spectra, reactivity conditions, and properties of Ξ for these

matrices.

A. Known results on the spectra of random matrices

Under the assumptions of the previous section, the eigenvalues of A in the limit of large S are uniformly distributed

in an ellipse in the complex plane. If E1 6= 0 there is always an eigenvalue λm whose value is approximately

λm ≈ −d+ SE1 , (S43)
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independently of the rest of the eigenvalue distribution. The ellipse is centered at −d− E1, its axes are aligned with

the real and imaginary axes, and their lengths are

a =
√
SE2(1 + Ec) (S44)

and

b =
√
SE2(1− Ec) . (S45)

If λm = 0, the eigenvalue with the largest real part(s) is approximated by the rightmost point of the ellipse. The

system is stable if its real part is negative. In the most general case, this condition is equivalent to

− d+ max
{
SE1,−E1 +

√
SE2(1 + Ec)

}
< 0 . (S46)

In section S2 we introduced the concept of reactivity. In particular, we showed that when the matrix is not reactive

then it is possible to disentangle stability and feasibility. The matrix is nonreactive if the eigenvalues of A + At are

all negative. This condition reads [15]

− d+ max
{
SE1,−E1 +

√
2S(1 + Ec)E2

}
< 0 . (S47)

Figure S1 shows the values of parameters leading to the possible combinations of stability and reactivity in random

matrices for the case E1 = 0. Since we imposed the condition of nonreactivity of the matrix A, the region of parameters

we explore is the one above the reactivity line. One can see that in this way we are missing some parameterizations,

corresponding to those that lead to a stable reactive system. From equations S46 and S47 one can see that the case

E1 < 0 is very similar to the case E1 = 0. More interestingly, for E1 > 0, the conditions for stability and reactivity

converge in the large S limit, implying that we are considering all the possible cases.

What is remarkable in these conditions and in the distribution of eigenvalues is that they are universal [17, 31–33].

Universality means that they depend only on S, E1, E2, and Ec (and d, but via a trivial dependence). The spectrum

of eigenvalues does not depend on the detailed form of the distribution q(x, y).

For instance, consider the case q(x, y) = p(x)p(y), where the upper and lower triangular entries Aij and Aji are

independent random variables. In this case Ec = 0 and E1 and E2 are the mean and standard deviation of the

distribution p(x). The distribution of eigenvalues and the conditions for stability and reactivity are the same for

any probability distribution p(x) as long as their mean E1 and standard deviation E2 are the same (provided some

mild conditions on higher moments hold). For instance, a Lognormal distribution, a Gaussian distribution and an

exponential distribution, having same mean and standard deviation, produce the same eigenvalue distribution, and

therefore the same conditions for stability [34].

From an ecological perspective, one can consider different interaction matrices corresponding to different interaction

types. The interaction type is given by the signs of the pairs (Aij , Aji): competitive interactions will have both entries
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Supplementary Figure S1: Reactivity and stability for random matrices in the case E1 = 0. The red curve describes the

condition for stability (equation S46), while the blue curve corresponds to the reactivity condition (equation S47). The region

above the blue curve corresponds to parameterizations that are both stable and nonreactive, while the region below the red

curve corresponds to unstable and reactive matrices. The parameterizations that may still lead to stabille and feasible points

but we are not considering are in the region between the two curves. The shape of this region does not change substantially if

S and E2 are changed or if E1 < 0. For E1 > 0 the reactive stable region is always smaller and eventually disappears (i.e., the

blue and the red curve become the same) when S is large enough.

with a negative sign, while in trophic interactions the entries will have opposite sign. The interaction pairs (Aij , Aji)

for competitive interactions can for instance be obtained from the following distribution:

qcomp(x, y) = (1− C)δ(x)δ(y) + Ch−(x)h−(y) , (S48)

where h− is a probability distribution function with support on the negative axis (i.e., the random variables are

always negative), and C is the connectance (a pair is different from zero with probability C). In the case of trophic

interactions we could consider

qtroph(x, y) = (1− C)δ(x)δ(y) +
C

2
p−(x)p+(y) +

C

2
p+(x)p−(y) , (S49)

where p+ and p− are two probability distribution functions with positive and negative support, respectively. Suppose

that the moments of h−, p+, and p− are chosen in such a way that qcomp(x, y) and qtroph(x, y) have the same values

of E1, E2, and Ec. The interaction matrices will still look very different in the two cases: one describes a foodweb

and the other a competitive system. Despite this difference, the two will have the same stability properties. In other
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words, different interaction types influence the stability properties of the system only via E1, E2 and Ec.

B. Universality of Ξ

In this section we show that, apart from their spectral distribution, Ξ is also a universal quantity in large random

matrices. That is, in the large S limit, its value does not depend on the entire distribution of the coefficients, but

only on the three moments E1, E2, and Ec. It is important to remark that this result applies to the large S limit:

the sub-leading corrections depend in principle on all the moments.

In order to show that Ξ is universal, we parameterized random networks with different distributions and checked

whether Ξ depends only on E1, E2, Ec, and S, but not on other properties. To do this, we constructed several S × S

matrices. Each individual matrix had its entries drawn from some fixed distribution, but the shape of the distribution

was different across matrices. However, regardless of the distribution’s shape, their moments were fixed at E1, E2,

and Ec. We then checked whether these matrices led to the same value of Ξ.

In our simulations we considered a distribution of the pairs (Aij , Aji) of the form

q(x, y) = (1− C)δ(x)δ(y) + Cp(x, y) , (S50)

where the connectance C is the probability that two species i and j interact. The probability distribution p(x, y) in

equation S50 depends on three parameters µ, σ, and ρ, which define the mean, variance, and correlation of the pairs

drawn from p(x, y). Given the values of E1, E2, and Ec, we can arbitrary choose C and tune µ, σ, and ρ to obtain

any desired E1, E2, and Ec. If Ξ is universal, then different matrices built with different values of C, µ, σ, and ρ but

the same values of E1, E2, and Ec will lead to the same Ξ.

We considered five parameterizations of the distribution p(x, y):

• Random signs, normal distribution:

p(x, y) = BN(x, y|µ, σ, ρ) . (S51)

The distribution BN(x, y|µ, σ, ρ) is a bivariate normal distribution with marginal means equal to µ, marginal

variances equal to σ2, and correlation equal to ρσ2. The pairs can in principle assume all possible combinations

of signs.

• Random signs, four corners:

p(x, y) =
q

2
δ(x− µ− σ)δ(y − µ− σ) +

q

2
δ(x− µ+ σ)δ(y − µ+ σ)

+
1− q

2
δ(x− µ− σ)δ(y − µ+ σ) +

1− q
2

δ(x− µ+ σ)δ(y − µ− σ) .

(S52)

The pairs (x, y) can take on only four different, discrete values, potentially corresponding to all combinations

on signs. The probability distribution depends on three parameters µ and σ2 are means an variances of the

distribution, while the correlation ρσ2 can be obtained from ρ = 2q − 1.
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• (+,+), Lognormal:

p(x, y) = LBN(x, y|µ, σ, ρ) . (S53)

The distribution LBN(x, y|µ, σ, ρ) is a bivariate lognormal distribution with marginal means equal to µ > 0,

marginal variances equal to σ2, and correlation equal to ρσ2. The pairs can in principle assume only positive

signs. Note that not all values of ρ between −1 and 1 can be obtained when a Lognormal distribution is

considered.

• (−,−), Lognormal:

p(x, y) = LBN(−x,−y| − µ, σ, ρ) . (S54)

This distribution takes the values drawn from a bivariate lognormal distribution, times −1. It has marginal

means equal to µ < 0, marginal variances equal to σ2, and correlation equal to ρσ2. The pairs assume only

negative signs. Note that not all values of ρ between −1 and 1 can be obtained when a Lognormal distribution

is considered.

• (+,−), Lognormal:

p(x, y) =
1

2
LN(x|µ1, (1 + ρ)σ)LN(−y| − µ2, (1 + ρ)σ)

+
1

2
LN(y|µ1, (1 + ρ)σ)LN(−x| − µ2, (1 + ρ)σ) .

(S55)

The distribution LN(x|µ, σ) is Lognormal distribution with mean µ1 + µ2 (where µ1 > 0 and µ2 < 0), variance

σ2, and correlation ρσ2. The pairs assume only values with opposite signs (+,−) or (−,+).

In ecological terms, the first two distributions correspond to a random community (where the signs of the interaction

strength are random), the (+,+) case corresponds to a mutualistic community, (−,−) to a competitive community,

while (+,−) corresponds to a food web. The mutualistic/competitive matrices can lead only to positive/negative

means E1, respectively, while the other settings can produce arbitrarily values of E1.

Figure S2 shows the value of Ξ and of the largest eigenvalue λ for interaction matrices constructed with different

connectances C and distributions, but with the same values of E1, E2, and Ec. As seen from the figure, the values

of Ξ and λ in any particular case match up precisely with the average values over several different realizations,

demonstrating that these two quantities are indeed universal.
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Supplementary Figure S2: Universality of λ and Ξ in random matrices. The two left panels refer to the eigenvalue with the

largest real part λ of the interaction matrix A, while the right ones to the size of the feasibility domain Ξ. We consider

different values of the connectance (colors) and different distributions (shape), such that there were multiple combination of

connectances and distributions having the same values of E1, E2, and Ec. We computed the averages
〈
λ
〉

and
〈

log(Ξ)
〉

over all

realizations of the matrices having the same values of E1, E2, and Ec. If the value of λ and Ξ are universal, then they depend

only on E1, E2, and Ec, and therefore their values are equal to the mean: universality holds if λ =
〈
λ
〉

and log(Ξ) =
〈

log(Ξ)
〉
.

The top panels show that these two quantities are equal and the bottom panels quantify their deviations. We know that λ is

universal, and since Ξ has a similar behavior, we conclude that Ξ is also universal.

S6. MEAN-FIELD APPROXIMATION OF Ξ

The goal of this section is to compute an approximation for Ξ in the limit of large S. The volume Ξ is defined (see

section S4) as

Ξ =
2S Γ(S/2)

√
det(G)

2πS/2

∫
SS

dSu

S∏
i=1

Θ(ui)

∑
i,j

uiGijuj

−S/2 , (S56)
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where the matrix G can be obtained from the generators of the polytope (see equations S12 and S33), and therefore

from the interaction matrix A.

We can introduce a Gaussian function in equation S56 using the fact that, for any positive constant c,

c−S/2 =
2

Γ(S/2)

∫ ∞
0

dr rS−1 exp(−cr2) . (S57)

Introducing this Gaussian integral in equation S56 by letting c =
∑
i,j uiGijuj , we obtain

Ξ =
√

det(G)

(
2√
π

)S ∫ ∞
0

dr rS−1

∫
SS

dSu

(
S∏
i=1

Θ(ui)

)
exp

−r2
∑
i,j

uiGijuj

 , (S58)

which can be rewritten as

Ξ =
√

det(G)
( 2√

π

)S ∫
RS

dSz
( S∏
i=1

Θ(zi)
)

exp
(
−
∑
i,j

ziGijzj

)
, (S59)

where zi = rui. We can rewrite this equation as

Ξ =
√

det(G)

(
2√
π

)S ∫
RS

dSz

S∏
i=1

Θ(zi) e
−z2i exp

−∑
j 6=i

ziGijzj

 , (S60)

where we used the fact that the diagonal entries of G, when expressed in terms of the normalized generators, are

equal to one.

The reader familiar with statistical mechanics will notice that equation S60, which can be written as

Ξ ∝
∫
RS

dSz q(z)

S∏
i=1

exp

−∑
j 6=i

ziGijzj

 , (S61)

has the form of a partition function. For instance one can recover the Ising model [35] with the choice q(z) =∏
i δ(z

2
i = 1) or the spherical model [36] when q(z) = δ(S −

∑
i z

2
i ). The term ziGijzj in particular plays the role of

the interactions of the system.

Integrals of the form S61 are the most studied objects of statistical mechanics, and yet in most cases are not

analytically solvable. There are, on the other hand, many techniques that can be used to obtain good approximations

to S61. The most celebrated one is probably the mean-field approximation [35] and it is the one we are using in this

section. In particular, the idea of the mean-field approximation is to replace the interactions of an entity (spins in

the case of the Ising model or species in our case) with an average “effective” interaction. This reduces a many-body

problem, where all interactions of spins or populations are coupled, into an effective one-body problem.

If the system is large enough (in our case if S →∞), the mean-field approximation is know to be exact in the case of

“fully connected” interactions. In terms of equation S61, this corresponds to a matrix G with the same constant in all

its offdiagonal entries. The matrix G is constant when A has constant offdiagonal entries. We will consider therefore

the case of A’s diagonal entries being equal to −1 and its offdiagonal entries to a constant E1. Using equation S12,

the ith component of the kth generator is then

gki = − E1

1 + (S − 1)E2
1

(S62)
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for i 6= k, and

gkk =
1

1 + (S − 1)E2
1

. (S63)

Using equation S33, we therefore obtain that the diagonal entries of G are equal to 1, while the offdiagonal ones are

constant and equal to

Gij =
−2E1 + (S − 2)E2

1

1 + (S − 1)E2
1

. (S64)

We define the constant β as

β = S
−2E1 + (S − 2)E2

1

1 + (S − 1)E2
1

, (S65)

and therefore we have Gii = 1 and Gij = β/S for i 6= j. The determinant of G in this case turns out to be

det(G) =

(
1 +

S − 1

S
β

)(
1− β

S

)S−1

≈ (1 + β)e−β , (S66)

where the last form holds for large S. In this case of constant interactions, we obtain, from equation S60,

Ξ =
√

det(G)

(
2√
π

)S ∫
RS

dSz

S∏
i=1

Θ(zi) e
−z2i exp

−zi β
S

∑
j 6=i

zj

 =

=
√

det(G)

(
2√
π

)S ∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2
i −

β

S
(
∑
i

zi)
2

)
,

(S67)

up to subleading terms in S.

Equation S67 can be written as

Ξ =
√

det(G)

(
2√
π

)S
Zh

〈
exp

(
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

)〉
h
, (S68)

where

Zh :=

∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2
i − h

∑
i

zi

)
=

=

(∫ ∞
0

dz e−z
2−hz

)S
=

(√
π

2
eh

2/4 erfc(h/2)

)S
,

(S69)

where erfc(·) is the complementary error function, defined as

erfc(x) =
2√
π

∫ ∞
x

dt e−t
2

. (S70)

The average 〈·〉h is defined as

〈
f(z)

〉
h

:=
1

Zh

∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2
i − h

∑
i

zi

)
f(z) . (S71)
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Using Jensen’s inequality in equation S71 we have that

Ξ =
√

det(G)

(
2√
π

)S
Zh

〈
exp

(
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

)〉
h
≥

≥
√

det(G)

(
2√
π

)S
Zh exp

(〈
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

〉
h

)
.

(S72)

In the following we will approximate the first expression with the second one. It is possible to prove that, in the large

S limit, the second expression converges to the first one.

Applying the mean-field approximation we neglect fluctuations of the variables, i.e. we have

〈
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

〉
h

= −β
S

〈
(
∑
i

zi)
2
〉
h

+ h
∑
i

〈zi〉h ≈ S
(
−βm2 + hm

)
, (S73)

where

m := 〈zi〉h = − 1

S

∂

∂h
log(Zh) . (S74)

By introducing equation S73 in equation S72 we have

Ξ ≈
√

det(G)Zh

(
2√
π

exp
(
−βm2 + hm

))S
= ΞMF . (S75)

This equation is a function of h, which is a free parameter. Since it is a lower bound for the actual value of Ξ, the

best approximation would correspond to the value of h which maximizes the approximation. We have therefore that

h is a solution of the following equation

0 =
∂

∂h
log(ΞMF ) =

∂

∂h
log(Zh) + S

∂

∂h
(−βm2 + hm) = S(h− 2βm)

∂m

∂h
, (S76)

where m is given by equation S74. We obtain therefore m = h/(2β) and then, by neglecting sub-leading terms in S

and introducing m = h/(2β) in equation S75

1

S
log ΞMF ≈ log

(
erfc(h/2) exp

(
h2

4

1 + β

β

))
. (S77)

By maximizing this equation respect to h we obtain

0 =
∂

∂h
log(ΞMF ) =

h

2

(
1

β
+ 1

)
+

∂

∂h
log (erfc(h/2)) =

h

2

(
1

β
+ 1

)
− e−h

2/4

√
π erfc(h/2)

. (S78)

Equation S78 cannot be solved exactly. By expanding around h = 0 we obtain

0 =
h

2

(
1

β
+ 1

)
− 1√

π
− h

π
, (S79)

which is solved by

h =
2β
√
π

π + β(π − 2)
. (S80)
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One can observe that the solution h = 0 corresponds to β = 0, i.e. to a non-interacting ecosystem. Expanding around

h = 0 is therefore meaningful when the interactions are not too strong. It is possible to verify that the approximate

solution S80 is very close to the actual solution obtained by solving numerically equation S78 also for not too small

values of β

Using equation S80 into equation S77 we obtain

1

S
log ΞMF ≈

β(1 + β)π

(π + β(π − 2))
2 + log erfc

( √
πβ

π + β(π − 2)

)
, (S81)

which is our final result. In figure S3 we compare this equation with the volume computed numerically in the case of

constant interactions, finding a very good match.

In the most general case of an interaction matrix with nonconstant offdiagonal entries, we can consider equation S73

as an approximation valid in the case of E2 → 0. As β was defined in terms of the generators, we can extend the

approximation to the case E2 > 0 by considering β as the expected value of G’s entries, which corresponds to the

average overlap of two rows of the interaction matrix 〈cos(η)〉, defined in equation S111. In this more general case

the mean-field value of Ξ is expected to be a good approximation when var(cos(η)) is small enough. By substituting

β = 〈cos(η)〉, using equation S111, into equation S73 we obtain

1

S
log(Ξ) ≈

πE1(2d− E1S)
(
2dE1 + d− S

(
2E2

1 + E2
2

))
(d(2(π − 2)E1 + π)− S (2(π − 1)E2

1 + πE2
2))

2

log

(
erfc

( √
πE1(E1S − 2d)

S (2(π − 1)E2
1 + πE2

2)− d(2(π − 2)E1 + π)

))
.

(S82)

When var(cos(η)) is not small, we observed that the empirical formula

1

S
log(Ξ) ≈

πE1(2d− E1S)
(
2dE1 + d− S

(
2E2

1 + E2
2

))
(d(2(π − 2)E1 + π)− S (2(π − 1)E2

1 + πE2
2))

2

log

(
erfc

( √
πE1(E1S − 2d)

S (2(π − 1)E2
1 + πE2

2)− d(2(π − 2)E1 + π)

))
+

+ log

(
1 +

3SE2
2(1 + Ec)

2π

)
.

(S83)

explains well the values obtained in simulations. This is the formula we used to make figure 2 in the main text.

In order to simplify the expression and make it more readable, we can expand equation S84 around β = 0, i.e.,

when the interactions between species are small. By expanding (ΞMF )1/S around β = 0 and taking the logarithm of

the expression, we obtain

1

S
log ΞMF ≈ log

(
1− β

π

)
. (S84)

Equation 2 of the main text was obtained by substituting β = 〈cos(η)〉, using equation S111, in the case of E2 = 0.

S7. EMPIRICAL NETWORKS AND RANDOMIZATIONS

We considered 89 mutualistic networks and 15 food webs. Empirical networks are encoded in terms of adjacency

matrices L, with Lij = 1 if species j affects species i and zero otherwise.
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Supplementary Figure S3: Approximation of Ξ using mean field theory. The black dots are numerical simulations obtained

by integrating Ξ numerically (see section S4) for a constant interaction matrix. The red curve is the analytical approximation

obtained using the mean-field approximation (see equation S82). β is a function of E1 and S, and is defined in equation S65.

The range of β considered here is the same of the one appearing in figure 1 of the main text.

A. Mutualistic networks

The 89 mutualistic networks (59 pollination networks and 30 seed-dispersal networks) were obtained from the

Web of Life dataset (www.web-of-life.es), where references to the original works can be found. When the original

network was not fully connected, we considered the largest connected component.

In the case of mutualistic networks, the adjacency matrix L is bipartite, i.e., it has the structure

L =

 0 Lb

Ltb 0

 , (S85)

where Lb is a SA×SP matrix (SA and SP being the number of animals and plants respectively). The adjacency matrix

contains information only about the interactions between animals and plants, but not about competition within plants

or animals.

We parameterized the interaction matrix in the following way:

A =

 WA Lb ◦WAP

Ltb ◦WPA WP

 , (S86)

where the symbol ◦ indicates the Hadamard or entrywise product (i.e., (A◦B)ij = AijBij), while WA, WAP , WPA,

and WP are all random matrices. WA and WP are both square matrices (of dimension SA × SA and SP × SP ),

while WAP and WPA are rectangular matrices of size SA×SP and SP ×SA respectively. The diagonal elements WA
ii
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and WP
ii were set to −1, while the pairs (WA

ij ,W
A
ji ) and (WP

ij ,W
P
ji ) were drawn from a bivariate normal distribution

with mean µ−, variance σ2
+ = cµ2

−, and correlation ρσ2
+. Since these two matrices represent competitive interactions,

µ− < 0. The the pairs (WAP
ij ,WPA

ji ) were extracted from a bivariate normal distribution with mean µ+, variance

σ2
− = cµ2

+, and correlation ρσ2
−, where µ+ > 0.

We analyze more than 600 parameterizations, obtained by considering different values of µ−, µ+, c, and ρ. We

compared the results obtained for empirical networks with the corresponding randomizations. For each network we

randomized the block Lb 1000 times, by generating connected networks with same size and number of links. We

parameterized each randomized network independently as described above, and we compared their properties with

those of the empirical network, parameterized independently 1000 times.

B. Food webs

A summary of the properties and reference of the food webs can be found in table S1. In the case of food webs the

adjacency matrix L is not symmetric, and an entry Lij = 1 indicates that species j consumes species i. We removed

all cannibalistic loops. Since both Lij and Lji are never simultaneously equal to one (there are no loops of length

two), we parameterized the offdiagonal entries of A as

Aij = W+
ijLij +W−jiLji , (S87)

while the diagonal was fixed at −1. Both W+ and W− are random matrices, where the pairs (W+
ij ,W

−
ij ) are drawn

from a bivariate normal distribution with marginal means (µ+, µ−) and correlation matrix cµ2
+ ρcµ2

+

ρcµ2
− cµ2

−

 (S88)

We analyzed more than 200 parameterizations, obtained by considering different values of µ−, µ+, c, and ρ. We

then compared the results obtained for empirical networks with the corresponding randomizations. For each network,

we randomized the adjacency matrix L 1000 times, by generating connected networks with the same size and number

of links (and L Lt = 0). We parameterized each randomized network independently in way described above, and we

compared their properties with those of the empirical network, parameterized independently 1000 times.

S8. POSSIBLE BIASES IN PREVIOUS ANALYSIS OF STRUCTURAL STABILITY

In section S4 we showed how to estimate the feasibility domain numerically in a fast and reliable way. In previous

approaches [14], the feasibility domain (structural stability) was not directly calculated, but approximately inferred

using a regression method. Using our new approach, we obtain different results from the ones obtained earlier [14].

In this section we show that the method used by Rohr et al. [14] could be biased and is not always applicable.
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Supplementary Table S1: References and facts about the 15 food webs analyzed in the work

Name S Number of links Connectance

Ythan Estuary [37] 92 414 0.1

St. Marks [38] 143 1763 0.17

Grande Cariçaie [39] 163 2048 0.16

Serengeti [40] 170 585 0.04

Flensburg Fjord [41] 180 1567 0.1

Otago Harbour [42] 180 1856 0.12

Little Rock Lake [43] 181 2316 0.14

Sylt tidal basin [44] 230 3298 0.12

Caribbean Reef [45] 249 3293 0.11

Kongs Fjorden [46] 270 1632 0.04

Carpinteria Salt Marsh [47] 273 3878 0.1

San Quintin [47] 290 3934 0.09

Lough Hyne [48] 349 5088 0.08

Punta Banda [47] 356 5291 0.09

Weddell Sea [49] 488 15435 0.13

The Authors considered a bipartite mutualistic system described by the dynamical model

dnAi
dt

= nAi

rAi − SA∑
j=1

βAijn
A
j +

∑SP

j=1 γ
A
ijn

P
j

1 + hAi
∑SP

j=1 γ
A
ijn

P
j


dnAi
dt

= nPi

rPi − SP∑
j=1

βPijn
P
j +

∑SA

j=1 γ
P
ijn

A
j

1 + hPi
∑SA

j=1 γ
P
ijn

A
j

 , (S89)

where SA (SP ) is the number of animals (plants), and nAi (nPi ) is the abundance of animal (plant) species i. For the

purposes of this section we consider the case of linear functional responses hAi = hPi = 0, as all the methodology used

in [14] was developed in this case. If the functional response is linear, this equation reduces to equation S1, where the

interaction matrix A is given by

A =

 −βA γA

γP −βP

 . (S90)

Here βA and βP are SA × SA and SP × SP matrices, respectively, while γA and γP are SA × SP and SP × SA

matrices. The Authors used a constant parameterization for the competition parameters, setting βAii = βPii = 1 and
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βAij = βPij = ρ if j 6= i. The mutualistic benefits were parameterized as

γAij = γ0
Lij

(kAi )δ

γPij = γ0
Lji

(kPi )δ

, (S91)

where Lij is the nonzero block of the adjacency matrix of the interaction network, i.e., Lij = 1 if there is an interaction

between animal i and plant j, and zero otherwise. The numbers kAi =
∑SP

j=1 Lij and kPi =
∑SA

j=1 Lji are the degree

of animal/plant i. The two remaining parameters, γ0 and δ, quantify the levels of mutualistic strength and the

mutualistic tradeoff [50].

The method proposed by Rohr et al. [14] was based on what the Authors called the “structural vector”. It was

defined as the center of feasibility domain and was calculated by transforming the mutualistic dynamics into an effective

competitive one. Using this effective dynamics it was possible to calculate an effective structural vector, which was then

transformed back to the one of the mutualistic system. Starting from the structural vector, the Authors considered

different perturbations of the growth rates by changing their direction from that of the original structural vector by

some given angle. The dynamics was then integrated and the probability that all species survived was calculated, given

a particular perturbation. Running this across several different perturbations and parameterizations, it was possible

to perform a regression between the interaction parameters, the angle by which the growth rates were perturbed,

nestedness, and other parameters appearing in the interaction matrix. Using the coefficients obtained through the

regression, it was quantified the effect of nestedness and other properties on the size of the feasibility domain.

Here we present some possible issues emerging from this approach. We have not investigated which one of them

accounts for the differences we observe. Some of these issues could be relevant, while others could be practically

irrelevant for the purpose they were introduced for.

It is not always possible to find the structural vector. In order to calculate the structural vector, one needs

to transform the mutualistic system into an effective competitive one. One can define the matrix T = 1 + γβ−1,

where 1 is the identity matrix and

β =

 βA 0

0 βP

 , (S92)

and

γ =

 0 γA

γP 0

 . (S93)

By multiplying both sides of equation S90 by T one obtains the effective interaction matrix

Aeff =

 −βA + γP (βP)−1γA 0

0 −βP + γA(βA)−1γP

 =:

 BA
eff 0

0 BP
eff

 , (S94)
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In order to calculate the structural vectors, one has to assume that the eigenvectors associated with the largest singular

eigenvalues of (BA
eff )tBA

eff and BA
eff (BA

eff )t have only positive components (and an equivalent condition on BP
eff

). This is not generally true, as also stated by the Authors [14]. They therefore imposed the extra assumption that

(BA
eff )tBA

eff and BA
eff (BA

eff )t indeed have only positive entries (and the equivalent conditions on BP
eff ). In this case,

the Perron–Frobenius theorem allows all entries of the leading eigenvector to be chosen positive; i.e., it necessarily

points in some feasible direction. The Authors then identified the structural vectors with these eigenvectors.

However, the extra requirement that (BA
eff )tBA

eff and BA
eff (BA

eff )t be strictly positive imposes constraints on the

interaction matrix that reduces the number of parameterizations that can be analyzed with this method. Since this

assumption does not hold in general, there are cases in which the structural vector does not exist. Using our approach,

this vector is not needed (see sections S4 and S9).

When the structural vector exists, it is not unique. Under what conditions would the matrices (Aeff)tAeff

and Aeff(Aeff)t respect the condition of Perron–Frobenius theorem? It is easy to show that this can never be the case.

From equation S94 we see that Aeff is block-diagonal, therefore (Aeff)tAeff and Aeff(Aeff)t are block-diagonal as well.

This means that the Perron–Frobenius theorem does not hold (the matrix is reducible); instead, the two diagonal

blocks each have an all-positive leading eigenvector (assuming that all the coefficients are positive in the two blocks).

Any linear combination of the two will have positive components (without being an eigenvector). There is no reason

to prefer one linear combination over another, and while it is true that some linear combinations may point closer

to the center of the feasibility domain, there is no way to determine using the Authors’ methods which combination

does, if any.

The structural vector is not the center of the feasibility domain. Let us assume now that the structural

vector exists and it points toward the center of the feasibility domain of the effective competitive system. To obtain

the structural vector, one has to transform it back to a vector of the original, mutualistic system. The transformation

from the effective to the original system is done by multiplying with the matrix T−1. This matrix is not a rotation,

and therefore it does not preserve the angles between vectors. Even if a vector is the center of the feasibility domain in

the effective system, it will not in general be the center of the original domain. In particular, its distance to the actual

center of the original domain will be dependent on parameterization and network structure, as the transformation

matrix depends on these.

In contrast, the center of the feasibility domain can be easily expressed with our approach in terms of the matrix

A (section S3, equation S21). It is also easy to check that the barycenter is different from the one obtained using the

method of Rohr et al. [14].

The regression procedure can in principle produce biases. The relationship between network structure

and the size of the feasibility domain was obtained by calculating the probability of coexistence p(θA, θP ), where

θA/P is the angle by which the direction of the growth rate vector of animals/plants was changed with respect to the
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structural vector. The Authors then performed a linear regression

logit(p(θA, θP )) ∼ β1 log θA + β2 log θB + β3γ0C + β4γ
2
0C

2 + β5γ0CN + β6γ0CN
2 + β7γ0Cδ + β8γ0Cδ

2 (S95)

where C is the connectance of the mutualistic adjacency matrix and N is its nestedness (note that γ̄, used in [14]

is equal to Cγ0). The fitted parameters where then used to determine the effect of nestedness and other quantities

on the feasibility domain. The functional dependence assumed above cannot be justified a priori, and an incorrect

functional dependence can in principle lead to erroneous fitting results. For instance, the effect of those properties

could be different depending not just on the raw angle of perturbation, but also which direction that angle is taken in.

We can imagine two feasibility regions with the exact same size but different shapes: one of the two is equally wide in

all directions, while the other stretches very wide in some directions but is extremely narrow in others (see section S9).

For sufficiently small values of θA/P , one will never leave the feasible domain in the first of these examples, but may

do so in the second if the perturbation is performed in one of the “narrow” directions. The first of these cases will

therefore appear more feasible than the second, even though the total size of the two feasibility regions is in fact the

same. On the other hand, if the values of θA/P are large enough, than the perturbed vector in the first case will never

be feasible, while it will be feasible in the second case because of the “wide” directions. Moreover, this method does

not allow one to calculate the feasibility domain for a given network and parameterization, as one can calculate only

the probability of coexistence given an angle of perturbation.

S9. DISTRIBUTION OF SIDE LENGTHS

In section S3 we showed that the feasibility domain is a convex polyhedral cone in the space of intrinsic growth

rates r. Since the stationary solution of equation S1 is linear in r, we can study the feasibility domain considering

only vectors on the unit sphere’s surface. In section S4 we defined Ξ, which quantifies the volume of the feasibility

domain.

The size of the feasibility domain, i.e., how many combinations of the intrinsic growth rates correspond to a feasible

fixed point, is not the only interesting property. Two systems having the same number of feasible combinations

of growth rates (i.e., the same value of Ξ), can respond very differently to perturbations of the growth rates. We

imagine here that a perturbation (e.g., a change of the abiotic conditions) correspond to a change in the growth rate

vector. Since we can consider normalized growth rate vectors (because of the linearity of the equations), the effect of

a perturbation on feasibility depends only on the angular change of the growth rate vector and not on its length.

The volume Ξ quantifies how many growth rate vectors are compatible with coexistence. Let us consider a feasible

growth rate vector, and perturb it in a random direction. What is the probability that the new vector is still feasible?

This is not just a function of the size of the feasibility domain Ξ. Indeed, one can imagine that the feasibility domain

is about equally spread in every direction—or that, for the exact same value of Ξ, the feasibility domain is streched
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in some directions but is very narrow in some other ones. A perturbation in one of the “narrow” directions is much

more likely to lead out of the feasibility domain in the latter case than in the former.

To quantify this property, one strategy could be to measure the different responses on the perturbation (i.e., the

probability of being feasible) depending on the direction of the perturbation (in which direction we change the growth

rate vector). This choice has the big disadvantage of depending not only on the properties of interactions (the

interaction matrix A), but also on the strength of the perturbation (the angular displacement between the initial and

the final growth rate vector) and the growth rate vector before the perturbation (e.g., if the initial vector is close or

far from the edge of the feasibility domain). We propose instead a purely geometrical method to quantify the response

to different perturbations (see figure 1 of the main text).

The feasibility domain, when restricted to the surface of a hypersphere, can be imagined as the generalization of a

triangle on a sphere (see section S11). The natural, geometric quantities bounding the maximal perturbation that will

leave the system feasible, are the lengths of the triangle’s sides. When S species are considered, there are S(S − 1)/2

sides. Their lengths measure the maximum permissible perturbation of the growth rates in the corresponding direction

if one is to retain feasibility. This property has the advantage of being purely geometrical, depending only on the

interactions (via the interaction matrix) and not, for instance, on any choice of the initial conditions.

We can measure the distribution of the side lengths. Imagine we have two interaction matrices with the same

Ξ, but with very different distributions of side lengths. One of them has all sides of equal length, while the other

one has a more heterogeneous distribution. In the first case any direction of the perturbation is expected to have a

similar effect, and there are no particularly dangerous directions. In the second case there are some directions of the

perturbation that are much more dangerous than others, and even a small change of conditions along one of those

dangerous direction can lead to the extinction of one or more species.

A. Defining side lengths

We know that the feasibility domain is a convex polyhedral cone (see section S3). Its “corners” are identified by

its generators and its sides are determined by all pairs of generators (see section S11 for the S = 3 case).

Since we are considering growth rates on the unit (hyper)sphere, and the generators are normalized to one, any pair

of generators will lie on the sphere’s surface. The scalar product of two generators is the cosine of the angle between

the two. Since the two generators are on the unit ball’s surface, the arc between the two (which is the side length) is

equal to the angle. We have therefore that the length of the side of the feasibility domain corresponding to a pair of

generators gi and gj is

ηij = arccos
(
gi · gj

)
. (S96)

Using equation S12, we can express the S(S − 1)/2 side lengths of the convex polytope explicitly in terms of the
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interaction matrix:

ηij = arccos

( ∑
k AkiAkj√∑

k AkiAki
∑
lAljAlj

)
. (S97)

We are interested in the distribution of the side lengths, and in particular in its heterogeneity. In the following section

we will calculate these quantities for random matrices.

B. The distribution of side lengths in random matrices

In this section we obtain the distribution of sides length for large random matrices, whose entries are distributed

accordingly to an arbitrarily bivariate distribution.

We assume that the diagonal elements of A are all equal to −d (this hypothesis can be easily generalized), while

the offdiagonal pairs (Aij , Aji) are random variables with distribution q(x, y). Our goal is to find the distribution of

the side lengths η in the large S limit, defined as

P (η) = lim
S→∞

1

S(S − 1)

∑
i 6=j

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)

× δ

(
η − arccos

( ∑
k AkiAkj√∑

k AkiAki
∑
lAljAlj

))
,

(S98)

Since we are summing over all i and j, and all the rows are identically distributed, we can remove the sum and

consider just two rows:

P (η) = lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
η − arccos

( ∑
k Ak1Ak2√∑

k Ak1Ak1

∑
lAl2Al2

))
,

(S99)

Since we are interested in the large S limit, we have that∑
k

Ak1Ak1 =A11 +
∑
k>1

(Ak1)2 ≈ −d+ (S − 1)

∫
dxdy q(x, y) x2

=− d+ (S − 1)(E2
1 + E2

2),

(S100)

where E1 and E2 are the first and second marginal moments of q (equations S36 and S37). Let us call this quantity
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Z. In this limit we therefore obtain

P (η) = lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
δ

(
η − arccos

(∑
k Ak1Ak2

Z

))

= lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
Z | sin(η)| δ

(
Z cos(η)−

∑
k

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
δ

(
Z cos(η)−

∑
k

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
Z cos(η)−A11A21 −A22A12 −

∑
k>2

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
Z cos(η) + d(A12 +A21)−

∑
k>2

Ak1Ak2

)

= Z| sin(η)|
∫

dt

∫
ds

∫
dA12dA21q(A12, A21)δ(t−A12 −A21)

×
∫ ∏

k>2

dAk1dAk2q(Ak1)q(Ak2)δ

(
s−

∑
k>2

Ak1Ak2

)

× δ

(
Z cos(η) + dt−

∑
k>2

Ak1Ak2

)

= Z| sin(η)|
∫

dt

∫
ds

∫
dxdy q(x, y)δ(t− (x+ y))

×
∫ (S−2∏

k=1

dzkdwkq(zk)q(wk)

)
δ

(
s−

S−2∑
k=1

zkwk

)
δ(Z cos(η) + dt− s) ,

(S101)

where q(z) is the marginal distribution of q(x, y):

q(z) =

∫
dx q(x, z) =

∫
dx q(z, x). (S102)

We can introduce the distribution of the sum:

qs(t) =

∫
dxd yq(x, y)δ(t− (x+ y)). (S103)

The term ∫ (S−2∏
k=1

dzkdwk q(zk)q(wk)

)
δ

(
s−

S−2∑
k=1

zkwk

)
(S104)

is the distribution of a sum of S − 2 uncorrelated random variables. These random variables are the product zw of

two random variables whose distribution is q. Since the second moment of q(x) is finite, the central limit theorem

holds and this distribution converges, in the large S limit, to a Gaussian distribution with mean

S

∫
dxdy q(y)q(x) xy = SE2

1 (S105)
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and variance

S

(∫
dxdy q(y)q(x) (xy)2 − E2

1

)
= SE4

2 . (S106)

We have therefore

P (η) = Z| sin(η)|
∫

dtds qs(t)
exp

(
−(s−SE2

1)2

2SE4
2

)
√

2SπE2
2

δ(Z cos(η) + dt− s) = (S(E2
1 + E2

2)− d)

× | sin(η)|√
2SπE2

2

∫
dt qs(t) exp

(
−
(
S(E2

1 + E2
2) cos(η)− d cos(η)− SE2

1 + dt
)2

2SE4
2

)
.

(S107)

The distribution of η is not universal as it depends on qs(t), which depends on the distribution of the coefficients. On

the other hand, the dependence is explicit, and it is possible to calculate P (η) for any distribution q(x, y).

We show explicitly the case of q(x, y) being a bivariate normal distribution, i.e.,

q(x, y) =
1

2πE2
2

√
1− E2

c

exp

(
− (x− E1)2 + (y − E1)2 − 2Ec(x− E1)(y − E1)

2E2
2

)
. (S108)

In this case qs(t) is a normal distribution, and can be obtained from eq S103

qs(t) =
1

2πE2
2

√
1− E2

c

∫
dy exp

(
− (t− y − E1)2 + (y − E1)2 − 2Ec(t− y − E1)(y − E1)

2E2
2

)
= exp

(
− (1− Ec)(t− 2E1)2

4E2
2

)
1

2
√
πE2(1 + Ec)

√
1− Ec

.

(S109)

Substituting into equation S107, we see that P (η) has the form of a convolution of two Gaussians, and turns out to

be equal to

P (η) =
| sin(η)|√

2π var(cos(η))
exp

(
−
(

cos(η)− 〈cos(η)〉
)2

2 var(cos(η))

)
. (S110)

The mean 〈cos(η)〉 and variance var(cos(η)) will be computed in the next section in the most general case of an

arbitrary interaction distribution.

C. Moments for random matrices

As explained in the previous section, the distribution of the side lengths is not a universal quantity, as it depends

on the distribution of interaction strengths. In this section we compute the mean and the variance in the general case,

showing that they depends only on E1, E2 and Ec.

Here and in the main text we do not report the moments of the side length η, but the moments of its cosine. The

cosine of the side length measures the overlap between two rows of the interaction matrix (or the scalar product of

two generators of the convex polytope). As its value gets close to one, the side length approaches zero.

Starting from equation S97, we have that

〈
cos(η)

〉
=

1

S(S − 1)

∑
i 6=j

cos(ηij) =
1

S(S − 1)

∑
i 6=j

( ∑
k AikAjk√∑

k AikAik
∑
lAjlAjl

)
, (S111)
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Since we are interested in the large S limit, we can write the denominator as in equation S100 and obtain

〈
cos(η)

〉
=

1

S(S − 1)

∑
i6=j

( ∑
k AikAjk

−d+ S(E2
1 + E2

2)

)
, (S112)

and then

〈
cos(η)

〉
=

1

S(S − 1)

∑
i 6=j

(
AiiAji +AijAjj +

∑
k 6=i,j AikAjk

−d+ S(E2
1 + E2

2)

)
. (S113)

In the large S limit, this becomes

〈
cos(η)

〉
=

−2dE1 + SE2
1

−d+ (S − 2)(E2
1 + E2

2)
(S114)

to leading order in S.

In a similar way, we can write the second moment as

〈
cos(η)2

〉
=

1

S(S − 1)

∑
i 6=j

cos(ηij)
2 =

1

S(S − 1)

∑
i 6=j

( ∑
k AikAjk√∑

k AikAik
∑
lAjlAjl

)2

. (S115)

In the large S limit we obtain

〈
cos(η)2

〉
=

1

S(S − 1)

∑
i 6=j

(∑
k AikAjk

)2

(
−d+ S(E2

1 + E2
2)
)2 =

1

S(S − 1)

∑
i 6=j

∑
k

∑
lAikAjkAilAjl(

−d+ S(E2
1 + E2

2)
)2

=
1

S(S − 1)

∑
i 6=j

(
AiiAji +AijAjj +

∑
k 6=i,j AikAjk

)(
AiiAji +AijAjj +

∑
l 6=i,j AilAjl

)(
−d+ S(E2

1 + E2
2)
)2

=
1

S(S − 1)

∑
i 6=j

d2(Aij +Aji)
2 − 2d(Aij +Aji)

∑
k 6=i,j AikAjk + (

∑
k 6=i,j AikAjk)2(

−d+ S(E2
1 + E2

2)
)2 .

(S116)

We can compute the averages of the different terms, obtaining

1

S(S − 1)

∑
i 6=j

(Aij +Aji)
2 =

1

S(S − 1)

∑
i 6=j

(A2
ij +A2

ji + 2AjiAji)

= 2(E2
1 + E2

2) + 2(EcE
2
2 + E2

1) = 4E2
1 + 2(1 + Ec)E

2
2 ,

(S117)

1

S(S − 1)

∑
i6=j

(Aij +Aji)
∑
k 6=i 6=j

AikAjk =
1

S(S − 1)

∑
i 6=j

(Aij +Aji)(S − 2)E2
1

= 2(S − 2)E3
1 ,

(S118)

and

1

S(S − 1)

∑
i6=j

 ∑
k 6=i 6=j

AikAjk

2

=
1

S(S − 1)

∑
i 6=j

∑
k 6=i,j

∑
l 6=i,j

AikAilAjkAjl

=
1

S(S − 1)

∑
i 6=j

∑
k 6=i,j

 ∑
l 6=i,j,k

(AikAilAjkAjl) +A2
ikA

2
jk


= (S − 2)(S − 3)E4

1 + (S − 2)(E2
1 + E2

2)2 .

(S119)
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We finally get that, in the large S limit,

var(cos(η)) =
〈

cos(η)2
〉
−
〈

cos(η)
〉2

=
2d2(1 + Ec)E

2
2 + S(E2

2 + E2
1)2 − SE4

1

(−d+ S(E2
1 + E2

2))
2 . (S120)

S10. SIDE HETEROGENEITY FOR DIFFERENT STRUCTURES AND EMPIRICAL NETWORKS

In the main text we considered the effect of four nonrandom structures on the mean and variance of the side lengths.

Here we explain how those interaction matrices were constructed. To generate figure 3 of the main text, we always

considered a connectance of C = 0.2. The interaction strengths were drawn from a normal distribution with given

mean, variance, and correlation. For some structures we considered multiple interaction types and therefore multiple

means (one positive and one negative), in which case the coefficient of variation of the interactions and the correlation

was constant and independent of the mean.

• Modular. In this case we considered interaction matrices with a perfect block structure (to generate figure 3

we considered four blocks of equal size).

• Bipartite. In this case we considered an interaction matrix with two bipartite blocks of equal size. The mean

interaction of the offdiagonal blocks was set to be negative, while the one of the in-diagonal blocks was positive.

• Nested. The interaction matrix had a bipartite structure. The diagonal blocks had a random structure with

negative mean interaction strength. In the offdiagonal blocks, we consider a connectance equal to one half and

we built a perfectly nested matrix. The mean interaction strength was positive in the offdiagonal blocks.

• Cascade. We build a matrix using the cascade model, and parameterize it with a positive and a negative mean

depending on the role of the species in the interaction.

We considered the same networks and the same parameterization explained in section S7. We compared
〈

cos(η)
〉

and var(cos(η)) with the values expected in the random case.

S11. FEASIBILITY DOMAIN FOR S = 3

When S = 3, it is possible to visualize in three dimensions a convex polyhedral cone and the feasibility domain. In

figure S4 we show a convex polyhedral cone in three dimensions and its generators.

An important feature of convex polyhedral cones is that if r belongs to the cone, then so does cr for any positive

constant c. As explained in section S3, this is a consequence of the linearity of equation S1. It is relevant therefore to

limit our analysis to the growth rate vectors on the unit sphere, i.e., to vectors r such that

‖r‖ =
√
r2
1 + r2

2 + r2
3 = 1 . (S121)
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Supplementary Figure S4: Convex polyhedral cone and its section on a sphere. Left: the feasibility domain is a convex

polyhedral cone, which is completely determined by its S generators (when S = 3 we have 3 generators g1, g2, and g3). Center:

since we consider a linear equation we can focus the analysis only on the intersection between the convex polyhedral cone and

the unit sphere’s surface, which in three dimensions results in a spherical triangle. Right: each side of the convex polyhedral

cone can be determined from a pair of generators as an arc η of the sphere’s surface. Since we are considering the unit sphere,

the arc length η is equal to the angle between the two generators.

When we consider the vector in the feasibility domain on the surface of a unit sphere we obtain the areas of figure 1

in the main text. In this case, the quantity Ξ is the area of the triangle, while the side lengths are the three sides of

the triangle. Note that the polygon is not a triangle (as it lies on a sphere), but rather a spherical triangle. Its sides

are arcs of a circumference, while its corners are identified by the three generators of the convex polyhedral cone.

In the S = 3 case it is possible to obtain a closed expression for the area Ξ [30]:

Ξ =
8

π
arctan

( |det(G)|
1 + g1 · g2 + g2 · g3 + g1 · g3

)
+ Θ

(
−1− g1 · g2 − g2 · g3 − g1 · g3

)
, (S122)

where the second term adds one to the first term when the argument of the arctangent is negative, while the matrix

G is defined as

Gij = gi · gj . (S123)

Equation S122 can be expressed directly in terms of the matrix A using equation S12.

S12. NON-LINEAR FUNCTIONAL RESPONSES

In general, the effect of a species on per-capita growth rates of one other species is not linear. Equation S1 assumes

this response to be linear and the results presented in this paper were obtained under this assumption. Non-linearity

in the functional response can be tough as a dependence of the interaction matrix A on n

dni
dt

= ni

ri +

S∑
j=1

Aij(n)nj

 . (S124)
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For instance, in the case of a Holling type II functional response, it would have the form

Aij(n) =
A0
ij

1 +
∑
j hijA

0
ijnj

, (S125)

where hij are known as handling times.

The presence of a non linearity has a strong effect on both feasibility and stability. First of all it is not possible to

disentangle feasibility from stability with a simple condition on A0
ij . Then feasibility depends in this case not only on

the direction of r, but also on its norm.

The results presented here are the necessary step to include non linearity in functional responses. When the degree

of non-linearity is small enough (e.g., hij ≈ 0), one can use our result (valid in the case hij = 0) to find the center of

the feasibility domain and the generating vectors. One can use their position to estimate the volume of the feasibility

domain in the case hij > 0. Since on expect it to be not too different from the hij = 0, it is possible to numerically

explore only the region around the generators and estimate in this way the feasibility domain.

It is possible to show, that in the limit of very large h, the non linear functional response in approximately linear

and it is possible to use again our method. Since it applies both in the case of small and large values of h, we expect

that the presence of an intermediate value of h does not affect drastically the result.
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