
INVARIABLE GENERATION OF PERMUTATION GROUPS
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Abstract. Let G be a finite permutation group of degree n and let d = 2

if G = Sym(3), d = [n/2] otherwise. We prove that there exist d elements

g1, . . . , gd in G with the property that G = 〈gx1
1 , . . . , g

xd
d 〉 for every choice of

(x1, . . . , xd) ∈ Gd.

1. Introduction

Following [4] we say that a subset S of a group G invariably generates G if
G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. Any finite group G
contains an invariable generating set (consider the set of representatives of each of
the conjugacy classes).

Several papers deal with the question of bounding the minimal cardinality dI(G)
of an invariable generating set for a finite group G together with an analysis of the
probability that d independently and uniformly randomly chosen elements of G
invariably generate G with good probability (see for example [2], [4], [5], [6], [7],
[8], [10], [14]).

Clearly dI(G) is not less than the minimal cardinality d(G) of a generating set
of the finite group G. On the other hand, it follows from [7, Proposition 2.5] and [3,
Theorem 1] that the difference dI(G)−d(G) can be arbitrarily large. Many results in
the literature provide bounds for d(G) in relation with different structural properties
of G, so it is an open and interesting problem to which extent results on d(G), the
smallest cardinality of a generating set, can be generalized to comparable results
on the smallest cardinality dI(G) of an invariable generating set. In this paper we
consider the question of bounding the cardinality of an invariable generating set of
a permutation group in terms of its degree.

The best bound for the cardinality of a generating set of a permutation group is
due to A. McIver and P. Neumann: the so call “McIver-Neumann Half-n Bound”
says that if G is a subgroup of Sym(n) and G 6= Sym(3), then d(G) ≤ [n/2]. This
result is stated without a proof in [11, Lemma 5.2] and a sketch of the proof is
given in [1, Section 4]. It cannot be improved without imposing more restrictive
conditions (for example transitivity) as is shown by

G = 〈(1, 2), (3, 4), . . . , (2m− 1, 2m)〉 ≤ Sym(2m).

Despite the fact that the difference dI(G) − d(G) can be quite large, the McIver-
Neumann Half-n Bound remains true with respect to the invariable generation of
finite permutation groups. Indeed we have:
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Theorem 1. Let G be a subgroup of Sym(n): either G = Sym(3) and dI(G) = 2
or dI(G) ≤ [n/2].

2. Preliminaries

If N is a normal subgroup of G, then clearly dI(G/N) ≤ dI(G) and we denote by
dI(G,N) the difference dI(G) − dI(G/N). When N is a normal abelian subgroup
of G, dG(N) denotes the minimal number of generators of N as a G-module.

We collect in the following lemma some basic results on invariable generation.

Lemma 2. Let N be a normal subgroup of a group G.

(1) dI(G,N) ≤ dI(N).
(2) If N is abelian, then dI(G,N) ≤ dG(N).
(3) If N is a minimal normal subgroup, then dI(G,N) ≤ 1 if N is abelian and

dI(G,N) ≤ 2 if N is non-abelian.

Proof. Parts (1) and (2) follow from the proofs of [8, Lemma 2.8] and [8, Lemma
2.10], respectively. Part (3) is Theorem 3.1 in [7]. �

By a wreath product H o Sym(s) we mean the usual semidirect product W of
the symmetric group Sym(s) and the s-fold direct power Hs of the group H. The
projection of W onto Sym(s) corresponding to the semidirect decomposition will
be denoted by π, the kernel Hs of π will be called base subgroup of W . If we
consider π as a permutation representation of W , a point stabiliser Wi has a direct
decomposition

Wi = H × (H o StabSym(s)(i)) ∼= H × (H o Sym(s− 1));

we denote by πi the projection of Wi onto the first direct factor H. Following [9]
we will use the following definition.

Definition 3. A subgroup G of W = H o Sym(s) is called large if

• π(G) is transitive on {1, . . . , s},
• π1(G ∩W1) = H.

Note that, since π(G) is transitive, the condition π1(G ∩W1) = H is equivalent
to have that πi(G ∩Wi) = H for all i ∈ {1, . . . , n}.

Lemma 4. Let A be a non-abelian minimal normal subgroup of H and let G be
a large subgroup of H o Sym(s). If As ∩ G 6= 1, then As ∩ G is a minimal normal
subgroup of G.

Proof. Suppose M = As ∩ G 6= 1 and let L be a minimal normal subgroup of G
contained in M. Since G is large and A is a minimal normal subgroup of H, both
M and L are subdirect products of As. In particular M is a centerless completely
reducible group and L is a direct factor of M . On the other hand, CAs(L) = 1,
since L is a subdirect product of As, hence CM (L) = 1. Therefore M = L. �

Lemma 5. Let G be a large subgroup of H o Sym(s).

(1) dI(G,G ∩ Hs) ≤ sa + 2b where a is the number of abelian factors in a
composition series of H and b is the number of non-abelian factors in a
chief series of H.

(2) If u = max{dI(X) | X subnormal subgroup of H}, then dI(G,G ∩ Hs) ≤
su.
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(3) If A is a minimal normal subgroup of H of order pt for some prime p, then
dI(G,G ∩As) ≤ st− 1.

Proof. (1) We consider a chief series of G passing through G∩Hs and we look
at the factors X/Y in this series with X ≤ G∩Hs. By Lemma 4 the number
of the non-abelian factors is at most b. The number of the abelian factors
is at most sa, since it is trivially bounded by the number of the abelian
composition factors of G ∩Hs. Then we apply part 3 of Lemma 2.

(2) Let K = π1(G ∩Hs), and denote by π̃i the restriction of the projection πi
to G∩Hs, for i = 1, . . . , s. As G is large, K �H. Then dI(K) ≤ u and, by
part 1 of Lemma 2, we get

dI(G ∩Hs) ≤ dI(K) + dI(ker(π̃1)) ≤ u+ dI(ker(π̃1)).

Now ker(π̃1) �G ∩Hs, hence π̃2(ker(π̃1)) is a normal subgroup of K =
π̃2(G∩Hs), and therefore it is subnormal in H. Then dI(π̃2(ker(π̃1))) ≤ u
and thus

dI(ker(π̃1)) ≤ u+ dI(ker(π̃1) ∩ ker(π̃2)).

By a repeated use of these arguments and the fact that ∩si=1 ker(π̃i) = 1,
we deduce that dI(G ∩Hs) ≤ su.

(3) Since G is large and A is minimal normal in H, if G∩As = As, then G∩As
is a cyclic G-module. Otherwise, G ∩ As < As, hence G ∩ As has at most
st−1 abelian composition factors, and thus dG(G∩As) ≤ st−1. Therefore,
by Lemma 2, dI(G,G ∩As) ≤ dG(G ∩As) ≤ st− 1.

�

Let G be a subgroup of H o Sym(s). If U is an FpH-module, then V = Us can
be viewed as an FpG-module by setting

(v1, . . . , vs)
(h1,...,hs)σ = (vh1σ

1σ , . . . , vhsσsσ ),

where (v1, . . . , vs) ∈ V and (h1, . . . , hs)σ ∈ G.

Lemma 6. Let G be a large subgroup of H o Sym(s) and let U be an FpH-module.

For any FpG-submodule W of V = Us we have dG(W ) ≤ ds
2 , where d is the

dimension of U over Fp.

Proof. Reverting to additive notation, we write V =
∑

1≤i≤s Ui. Since π(G) is

transitive, there exists an element g ∈ G such that π(g) is fixed-point-free on
I = {1, . . . , s}; π(g) has t orbits I1, . . . , It on I with t ≤ [ s2 ]. We can view V as
Fp[x]-module, x acting as g does: V is then the direct sum of the Fp[x]-submodules

Ũr =
∑
i∈Ir Ui, 1 ≤ r ≤ t which have at most d generators each, so that the Fp[x]-

module V is m-generated for some m ≤ ds
2 ; as Fp[x] is a principal ideal domain,

the same is true for every submodule. Finally, if W is an FpG-submodule of V , any
set of Fp[x]-generators of W is also a set of FpG-generators.

�

3. Proof of Theorem 1

The case where G is primitive follows from a bound on the length of a chief
series.

Proposition 7. Let G be a primitive subgroup of degree n. Then dI(G) ≤ 4 log(n).
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Proof. By [12, Theorem 10.0.6], the chief length of a primitive subgroup of degree
n is at most 2 log(n). By Lemma 2 it follows that dI(G) ≤ 4 log(n). �

Corollary 8. Let G be a primitive subgroup of degree n 6= 3. Then dI(G) ≤ n/2.

Proof. For n ≥ 44, by Proposition 7, dI(G) ≤ 4 log(n) ≤ n/2. In the remain-
ing cases, using the list of the primitive permutation groups of small degree, it is
straightforward to check that a+2b ≤ n/2 where a in the number of abelian factors
and b is the number of non-abelian factors in a chief series of G (and so we may
conclude by Lemma 2), except when G = Sym(5) or G = AGL(1, 5) and n = 5
or G = Sym(4) and n = 4. Then it is sufficient to check that Sym(5) is invariably
generated by the set {(1, 2), (1, 2, 3, 4, 5)}, Sym(4) is invariably generated by the set
{(1, 2, 3), (1, 2, 3, 4)} and AGL(1, 5) is invariably generated by any set consisting of
an element of order 5 and an element of order 4. �

Proof of Theorem 1. Let G be a finite permutation group of degree n. We have to
show that

dI(G) ≤ n+ ε

2
where ε = 1 if n = 3, ε = 0 otherwise.

The proof is by induction on n, the cases n ≤ 3 being trivial.
The case where G is primitive, is actually Corollary 8.

Case G intransitive. Suppose that G ≤ Sym(n) is intransitive. Let s be the size
of an orbit and identify G with a subgroup of Sym(s) × Sym(n − s). Let ρ = ρ/G
the restriction to G of the projection of Sym(s)× Sym(n− s) on the second factor
of the direct product; then ρ(G) ≤ Sym(n− s) and ker(ρ) ≤ Sym(s). By Lemma 2,

dI(G) ≤ dI(ρ(G)) + dI(ker(ρ)).

If both s and n − s are not 3, then the inductive hypothesis gives dI(G) ≤ (n −
s)/2 + s/2 = n/2 and we are done.

Now assume s = 3. If ker(ρ) is cyclic, then dI(ker(ρ)) = 1 and we have dI(G) ≤
(n−3+ε)/2+1 ≤ n/2 as desired. Otherwise ker(ρ) = Sym(3). This implies that G is
actually isomorphic to a direct product of Sym(3) and a subgroup H ≤ Sym(n−3);
clearly we can assume H 6= 1. Let h1, . . . , ht be invariable generators for H. Then
the set

{((1, 2), 1), ((1, 2, 3), h1), (1, h2), . . . , (1, ht)}
invariably generates G. Indeed, let g1, g2, . . . , gt ∈ G, with g1 = (x1, y1) and
g2 = (x2, y2), and define

X = {((1, 2), 1)g1 , ((1, 2, 3), h1)g2 , (1, h2)g3 , . . . , (1, ht)
gt}

= {((1, 2)x1 , 1), ((1, 2, 3)x2 , hy21 ), (1, h2)g3 , . . . , (1, ht)
gt}.

Since X contains ((1, 2)x1 , 1)
((1,2,3)x2 ,h

y2
1 )

= (((1, 2)x1)(1,2,3)x2 , 1) and this element
is not equal to ((1, 2)x1 , 1), X contains the whole subgroup Sym(3) × {1}. Then,
as h1, . . . , ht invariably generate H ∼= X/(Sym(3)×{1}), we conclude that X = G.
Therefore, dI(G) ≤ dI(H) + 1 ≤ (n − 3 + ε)/2 + 1 ≤ n/2 and the case when G is
intransitive is complete.
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Case G imprimitive. Suppose G ≤ Sym(n) is transitive and imprimitive. Let ∆
be a minimal block containing 1; then n = rs where r = |∆| and s is the number
of blocks in the system of imprimitivity containing ∆. We denote by

π : G 7→ Sym(s)

the representation of G on the blocks of the system, by T the image of π, by N the
setwise stabiliser of ∆ in G and by H the image of the representation of N on ∆.
Thus G is isomorphic to a large subgroup of H o T , where H ≤ Sym(r) is primitive
and T ≤ Sym(s) is transitive.

Let a be the number of abelian factors in a composition series of H and let b be
the number of non-abelian factors in a chief series of H. By point 1 of Lemma 5,

dI(G,G ∩Hs) ≤ sa+ 2b.

The inductive hypothesis gives dI(G/G ∩ Hs) ≤ (s + ε)/2 where ε = 1 if s = 3,
ε = 0 otherwise, hence

(3.1) dI(G) ≤ s+ ε

2
+ sa+ 2b.

We want to prove that dI(G) ≤ rs/2 = n/2.
As H is a primitive subgroup of Sym(r), by [13, Theorem 2.10] a composition

series of H has at most log(r) non-abelian factors and at most 3.25 log(r) abelian
factors.

Then, by (3.1),

dI(G) ≤ s+ ε

2
+ 2 log(r) + 3.25 log(r)s.

Note that ε/2 + 2 log(r) ≤ s log(r), hence

dI(G) ≤ s

2
+ s log(r) + 3.25 log(r)s = s(1/2 + 4.25 log(r)).

When r > 48 we have 1/2 + 4.25 log(r) ≤ r/2 and therefore

dI(G) ≤ rs

2
=
n

2
,

as desired.

We are left with the case where r ≤ 48. We note that

(3.2) if l(H) ≤ r

2
− 1, then dI(G) ≤ n

2
,

where l(H) is the composition length of H. Indeed, as (s+ ε)/2 ≤ s,

dI(G) ≤ s+ ε

2
+ sa+ 2b ≤ s+ sl(H) ≤ s+ s

(r
2
− 1
)

=
sr

2
=
n

2
.

It is straightforward to check that for all primitive subgroups of degree r ≤ 48 and
r 6= 2, 3, 4, 5, 7, 8, 9, 16, we have l(H) ≤ r/2− 1 and hence, by (3.2), dI(G) ≤ n/2.

We are left to prove that dI(G) ≤ n/2 in the cases where r = 2, 3, 4, 5, 7, 8, 9, 16,
and H is a primitive subgroup of Sym(r) with composition length l(H) > r/2− 1.

Cases r = 5, 7, 9.

If s 6= 3, then by induction dI(G/(G∩Hs)) ≤ s/2. As r is odd and r 6= 3, every
subnormal subgroup of H is invariably generated by at most [r/2] = (r − 1)/2
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elements. By point (2) of Lemma 5, this implies that dI(G,G ∩Hs) ≤ s(r − 1)/2
and we conclude that

dI(G) ≤ dI(G/(G ∩Hs)) + dI(G,G ∩Hs) ≤ s

2
+
s(r − 1)

2
=
sr

2
=
n

2
.

Let now s = 3. If r = 5 and l(H) > 5/2 − 1, then H ∈ {D10, C20,Sym(5)}.
If H = Sym(5), then by formula (3.1), with ε = 1, a = 1 and b = 1, it follows
dI(G) ≤ 2 + 3a + 2b ≤ 7 ≤ 15/2. Otherwise H has a minimal normal subgroup
A ∼= C5 and G/(G ∩ A3) is isomorphic to a subgroup of C4 o Sym(3) ≤ Sym(12),
hence, by induction, dI(G/(G ∩ A3)) ≤ 12/2 = 6. Moreover, A3 is a completely
reducible G-module, since the action is coprime, and hence G ∩ A3 is a cyclic G-
module. Therefore, by point 2 in Lemma 2, dI(G) ≤ 6 + 1 = 7 ≤ 15/2.

If r = 7 and l(H) > 2, then H has a minimal normal subgroup A ∼= C7 with
G/(G ∩ A3) isomorphic to a subgroup of C6 o Sym(3) ≤ Sym(18). By induction,
dI(G/(G ∩A3)) ≤ 18/2 = 9. As A3 is a completely reducible G-module, G ∩A3 is
a cyclic G-module and thus dI(G) ≤ 9 + 1 = 10 ≤ 21/2.

If r = 9 and l(H) > 3, then H = C2
3 o P where P is a 2-group and every

subgroup of P is 2-generated. Then A = C2
3 is a minimal normal subgroup of H

and by point (3) of Lemma 5 we have dI(G,G ∩ A3) ≤ 3 · 2 − 1 = 5. By point
2 in Lemma 5, G/(G ∩ A3) ≤ P o Sym(3) is invariably generated by 3 · 2 + 2 = 8
elements, and therefore it follows that dI(G) ≤ 8 + 5 = 13 ≤ 27/2.

Cases r = 2.

The intersection N = Sym(2)s∩G is a G-submodule of V = Sym(2)s. By Lemma
6, dG(N) ≤ [s/2]. But then dI(G) ≤ [s/2] + [(s+ 1)/2] = s. �

Case r = 3.

Let N = 〈(1, 2, 3)〉s ∩ G. Notice that G/N ≤ C2 o Sym(s) so, by induction,
dI(G/N) ≤ s. Moreover, by Lemma 6, dI(G,N) ≤ dG(N) ≤ [s/2]. Thus dI(G) ≤
3s/2.

Case r = 4.

Consider the intersection N = Hs ∩G. By induction, dI(G/N) ≤ (s+ ε)/2. Let
A be the Klein subgroup of Sym(4).

If N ≤ As, then by Lemma 6, dI(G,N) ≤ dG(N) ≤ s, and we are done.
From now on we will assume that N > G ∩ As. For 1 ≤ i ≤ s, consider the

projection πi : Hs → H and, for i ≥ 2, call

Ni = N ∩ kerπ1 ∩ · · · ∩ kerπi−1,

and set N1 = N. Note that each Ni is a normal subgroup of N, hence, since G is
large, πi(Ni) is trivial, or a Klein subgroup, or Alt(4) or Sym(4); in particular, as
N > G ∩As, π1(N1) contains Alt(4).

Now set x1,1 = (1, 2, 3), x1,2 = (1, 2, 3, 4) if π1(N) = Sym(4), and x1,2 =
(1, 2)(3, 4) if π1(N) = Alt(4). Let Ω = {z1, . . . , zt} be a set of invariant generators
of G modulo N with t ≤ (s + ε)/2. To this set we add two elements y1,1, y1,2 ∈ N
with π1(y1,1) = x1,1 and π1(y1,2) = x1,2 and then, for each i > 1 with πi(Ni) non
trivial, we add one element yi ∈ Ni whose image xi = πi(yi) is
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• (1, 2)(3, 4), if πi(Ni) is a Klein group;
• (1, 2, 3), if πi(Ni) = Alt(4);
• (1, 2), if πi(Ni) = Sym(4).

In this way we get a set Ω̃ containing at most s+ε
2 + 2 + s − 1 ≤ 2s elements. We

claim that they are invariable generators for G. Indeed let {gω}ω∈Ω̃ be any family of

elements of G and consider the subgroup X = 〈ωgω | ω ∈ Ω̃〉 of G. Since Ω̃ contains
Ω, we have that XN = G. To conclude that X = G, if suffices to prove that
πi(X ∩ Ni) = πi(Ni) for each i ∈ {1, . . . , s} with πi(Ni) 6= 1. First notice that X
contains y1,1 = y1,1

g1 and y1,2 = y1,2
g2 for suitable g1, g2 ∈ G and since G = XN we

may assume g1, g2 ∈ N. But then there exist h1, h2 ∈ H such that π1(y1,1) = x1,1
h1

and π1(y1,2) = x1,2
h2 . On the other hand 〈x1,1

h1 , x1,2
h2〉 = 〈x1,1, x1,2〉 = π1(N),

hence π1(X ∩N) = π1(N). As G = XN, we have that π(X) acts transitively on Hs

and consequently πi(X ∩N) = π1(X ∩N) = π1(N1) ≥ Alt(4) for every i. Now let
i ≥ 2 with πi(Ni) 6= 1. There exists n ∈ N such that yni ∈ X ∩Ni and consequently
πi(y

n
i ) = xmi ∈ πi(Ni ∩X) for some m ∈ π1(N). Since X ∩ N normalizes X ∩ Ni

and πi(X ∩N) = π1(N) we have that

πi(X ∩Ni) ≥ 〈xli | l ∈ π1(N)〉 ≥ 〈xli | l ∈ Alt(4)〉 = πi(Ni).

Therefore, πi(X ∩Ni) = πi(Ni) for every i ∈ {1, . . . , s}.

Case r = 8.

We have three possibilities for H, where H is a primitive group of degree 8 whose
composition length is at least 4: AGL(1, 8),AΓL(1, 8),ASL(3, 2). In the first two
cases every subnormal subgroup of X can be invariably generated by 3 elements,
so by Lemma 5, dI(G) ≤ 3s + (s + 1)/2 ≤ 4s. In the third case H has a minimal
normal subgroup N of order 23 and H/N ∼= SL(3, 2) is a non abelian simple group,
so, by Lemma 5, dI(G) ≤ (3s− 1) + 2 + (s+ ε)/2 ≤ 4s.

Case r = 16.

There are four possibilities for H being primitive of degree 16 and with l(H) ≥ 8.
In any case H = V oX where V ∼= C4

2 and X is a soluble irreducible subgroup of
GL(4, 2). More precisely

X ∈ {Sym(3)2,Sym(3)2 o C2, (C3 × C3) o C4, C15 o C4.}.

Let N = V s ∩G. Since N ≤ C4s
2 we have dI(G,N) ≤ dI(N) ≤ 4s, so it suffices to

prove that dI(G/N) ≤ 4s. We have that G/N is a large subgroup of X o Sym(s). If
X ∈ {Sym(3)2,Sym(3)2 oC2}, then X has a faithful permutational representation
of degree 6, so G/N can be identified with a subgroup of Sym(6s) and dI(G/N) ≤ 3s
by induction. Otherwise it can be easily seen that every subnormal subgroup of
X can be invariably generated by 2 elements, so by Lemma, 5, dI(G/N, (H

s ∩
G)/N) ≤ 2s, while, by induction, d(G/(Hs ∩ G)) ≤ (s + 1)/2: we conclude that
dI(G/N) ≤ 2s+ (s+ 1)/2 ≤ 4s.

References

1. P. Cameron, R. Solomon, A. Turull, Chains of subgroups in symmetric groups. J. Algebra 127

(1989), no. 2, 340–352.



8 ELOISA DETOMI AND ANDREA LUCCHINI

2. E. Detomi, A. Lucchini, Invariable generation with elements of coprime prime-power order,

Journal of Algebra (2015), pp. 683-701; doi:10.1016/j.jalgebra.2014.10.037.

3. E. Detomi, A. Lucchini, Invariable generation of prosoluble groups, to appear on Israel J.
Math., arXiv:1410.5271

4. J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105

(1992) 25–39.
5. J. Fulman, R. Guralnick, Derangements in simple and primitive groups, in: A.A. Ivanov,

M.W. Liebeck, J. Saxl (Eds.), Groups, Combinatorics and Geometry, Durham 2001, World

Sci. Publ., River Edge, NJ, 2003, pp. 99–121.
6. R. Guralnick, G. Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85

(2012), no. 3, 694–721.

7. W. M. Kantor, A. Lubotzky, A. Shalev, Invariable generation and the Chebotarev invariant
of a finite group, J. Algebra 348 (2011), 302–314.

8. W. M. Kantor, A. Lubotzky, A. Shalev, Invariable generation of infinite groups, J. Algebra
421 (2015), 296310.
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