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Abstract
A common approach in the design of MapReduce algorithms
is to minimize the number of rounds. Indeed, there are
many examples in the literature of monolithic MapReduce
algorithms, which are algorithms requiring just one or two
rounds. However, we claim that the design of monolithic
algorithms may not be the best approach in cloud systems.
Indeed, multi-round algorithms may exploit some features
of cloud platforms by suitably setting the round number
according to the execution context.

In this paper we carry out an experimental study of
multi-round MapReduce algorithms aiming at investigating
the performance of the multi-round approach. We use matrix
multiplication as a case study. We first propose a scalable
Hadoop library, named M3, for matrix multiplication in
the dense and sparse cases which allows to tradeoff round
number with the amount of data shuffled in each round and
the amount of memory required by reduce functions. Then,
we present an extensive study of this library on an in-house
cluster and on Amazon Web Services aiming at showing its
performance and at comparing monolithic and multi-round
approaches. The experiments show that, even without a
low level optimization, it is possible to design multi-round
algorithms with a small running time overhead.

1 Introduction
MapReduce is a computational paradigm1 for process-
ing large-scale data sets in a sequence of rounds exe-
cuted on conglomerates of commodity servers [6]. This
paradigm, and in particular its open source implementation
Hadoop [22], has emerged as a de facto standard and has
been widely adopted by a number of large Web companies
(e.g., Google, Yahoo!, Amazon, Microsoft) and universi-
ties (e.g., CMU, Cornell) [10]. MapReduce was initially
introduced for log processing and web indexing but it has
also been successfully used for other applications, including
machine learning [13], data mining [2], scientific comput-

1In the paper, the term MapReduce denotes the abstract programming
model and not the particular implementation developed by Google.

ing [20], and bioinformatics [21]. Informally, a MapReduce
algorithm transforms an input multiset of key-value pairs
into an output multiset of key-value pairs in a sequence of
rounds. Each round consists of three steps: each input pair
is individually transformed into a multiset of new pairs by a
map function (map step); then the new pairs are grouped by
key (shuffle step); finally, each group of pairs with the same
key is processed, separately for each key, by a reduce func-
tion that produces the next new set of key-value pairs (reduce
step). The MapReduce paradigm has a functional flavor, in
that it merely requires that the algorithm designer specifies
the computation in terms of map and reduce functions. This
enables parallelism without forcing an algorithm to cater for
the explicit allocation of processing resources. Nevertheless,
the paradigm implicitly posits the existence of an underly-
ing unstructured and possibly heterogeneous parallel infras-
tructure, where the computation is eventually run. For these
reasons, the MapReduce paradigm has gained popularity in
recent years in cloud services for the development of large
scale computations. Indeed, MapReduce is currently offered
as a service by prominent cloud providers, such as Amazon
Web Services and Microsoft Azure.

As MapReduce is increasingly used for solving compu-
tational hungry problems on large datasets, it is crucial to
design efficient and scalable algorithms. Many research ef-
forts have been dedicated to capture efficiency in MapRe-
duce algorithms (e.g., [2, 8, 10, 12, 16]). The major source of
inefficiency is the communication required for moving data
from mappers to reducers in the shuffle step: since commu-
nication is a major factor determining the performance of al-
gorithms on current computing systems, the amount of shuf-
fled data should be minimized. Another issue that is usually
taken into account for improving performance is the num-
ber of rounds of a MapReduce algorithm, since the initial
setups of a round and the shuffle step are very costly oper-
ations. Thus, several MapReduce algorithms have been de-
signed that require a very small number, usually one or two,
of rounds (e.g., [2, 10]). We denote with monolithic algo-
rithm a MapReduce algorithm requiring one or two rounds.
A common approach for obtaining a monolithic algorithm is



to decompose the problem into small subproblems which are
executed concurrently in a single round, with each subprob-
lem solved by a single application of the reduce function.

In this paper, we claim that the design of monolithic
algorithms may not be the best approach for long running
MapReduce computations in cloud systems. Although it is
true that the best performance is usually reached by reducing
the round number, monolithic MapReduce algorithms may
not exploit some features of cloud computing. Some exam-
ples follow.
• Service market. Some cloud providers offer a market

where it is possible to bid on the cost of a service and to
use it only when the actual price is below the bid. For
reducing computing costs of long but low-priority com-
putations, it would be desirable to develop MapReduce
algorithms that can be stopped and restarted according
to the price of the service. Unfortunately, current imple-
mentations of the MapReduce paradigm do not allow to
stop a computation at an arbitrary point and then restart
it. However, it is possible, like in Hadoop, to restart a
computation from the beginning of the round that has
been interrupted, losing the work that was already ex-
ecuted in that round. This clearly penalizes monolithic
algorithms that consist of just a few long rounds: stop-
ping a round and waiting for a better price might not
be convenient since a significant part of previous work
has to be executed again. It would be then interesting to
develop MapReduce algorithms featuring a larger num-
ber of short rounds in order to reduce the amount of
discarded work.

• Resource requirements. Some MapReduce algorithms
need strong resource requirements in order to be
monolithic. For instance, the multiplication in a
semiring of two dense matrices of size

√
n×
√

n in
two rounds must [16] exchange approximately n

√
n/m

pairs during each shuffle, where m denotes an upper
bound to the memory that can be used by a map/reduce
function. This amount of data is linear in the input size
only if m ∼ n, that is, when the multiplication can be
almost solved sequentially. Similar requirements are
also needed for joining relations [2] and enumerating
triangles in a graph [15]. In a big-data era, the required
local memory may exceed system resources and the
huge amount of data in the shuffle step could arise
issues related to network performance and system
failure. Indeed, the network may be subject to conges-
tion due to the large amount of data created within a
small time interval, penalizing the scalability and fault
tolerance of the network. It is then desirable to design
algorithms that can tradeoff round number and resource
requirements. We also observe that distributing a
large computation among different rounds may help to
checkpoint the computation and thus to restore it if the

system completely fails or is heavily penalized by a
fault.

It is then interesting to investigate multi-round algo-
rithms where the round number can be set according to the
execution context. However it is challenging to guarantee
performance similar to the ones provided by monolithic al-
gorithms. The first issue is that, by distributing the computa-
tion among different rounds, the total amount of communi-
cation in the shuffle steps should not increase with respect to
the monolithic version since, as we have already mentioned,
communication is the main bottleneck. Moreover, the la-
tency required by each new round should be amortized by
a sufficient amount of computation and communication per-
formed within the round.

Our results. In this paper we carry out an experimen-
tal study of multi-round MapReduce algorithms for matrix
multiplication aiming at investigating the performance of the
multi-round approach. Matrix multiplication is an important
building block for many problems arising in different con-
texts, in particular scientific computing and graph process-
ing [7]. Furthermore, we believe that matrix multiplication is
an interesting problem for studying multi-round algorithms
since its high, but still tractable, communication and com-
putation requirements allow to significantly load the system
and to assess the performance under stress. The results pro-
vided in the paper are the following:

1. We propose a scalable Hadoop library, named M3
(Matrix Multiplication in MapReduce), for perform-
ing dense and sparse matrix multiplication in Hadoop.
The library is based on the multi-round algorithms pro-
posed in [16] which exploit a 3D decomposition of the
problem. We fill the gap between the theoretical and
high-level results in [16] and the actual implementa-
tion by providing a detailed description of the map and
reduce functions. For the sake of completeness, M3
also contains a MapReduce algorithm for dense matrix
multiplication based on a 2D approach, which is de-
scribed in Section 3.3. The algorithms exhibit a tradeoff
among round number, the amount of data in the shuf-
fle steps and the amount of memory required by each
reduce function. The library is publicly available at
http://www.dei.unipd.it/m3.

2. We carry out an extensive experimental evaluation
of the M3 library on an in-house cluster and on
Amazon Elastic MapReduce, and show that the 3D
algorithms efficiently scale with increasing input size
and processor number. We compare the performance
of the multi-round approach with the monolithic one
by measuring the performance of our algorithms when
the round number increases. The experiments show
that the running times are mainly dominated by the
amount of communication, while the round number has



a limited impact on performance. This fact suggests
that the common use (in particular in more application-
oriented contexts) to only focus on round number when
designing MapReduce algorithms is not a best practice
for improving performance. The results also give
evidence that multi-round algorithms have performance
comparable with monolithic ones (assuming a similar
total amount of communication) even on the Hadoop
framework, which is not the most suitable MapReduce
implementation for executing multi-round algorithms.
Indeed, the architectural choice of Hadoop to store
pairs between rounds on the distributed file system
HDFS significantly penalizes the performance. We
believe that other implementations (e.g., Spark [23])
may almost remove the performance gap and stimulate
the adoption of multi-round algorithms.

We remark that the performance of our algorithms
should not be compared with state-of-the-art research on par-
allel sparse/dense matrix multiplication in High Performance
Computing (e.g., [4]). Indeed, we are interested in investigat-
ing algorithm performance in cloud systems with MapRe-
duce. In these settings, abstraction layers add a significant
burden to algorithm performance. Research on the reduction
of this load is crucial (see, e.g. [17, 23]), but it is out of the
scope of this paper.

Previous Work. The MapReduce [6] paradigm has
been widely studied and we refer to the book by Lin and
Dyer [11] for a survey. The design of efficient MapRe-
duce algorithms has been investigated from practical and
theoretical perspectives. For instance, best practices in de-
signing large-scale algorithms in MapReduce are proposed
in [1,12], while theoretical models for analyzing MapReduce
are studied in [2, 8, 10, 16]. The majority of the algorithms
requires just a few rounds, although monolithic solutions are
not known for some problems (e.g., computing the diameter
of a graph [5] or matrix inversion [16]). Multi-round algo-
rithms that trade round number with resource requirements
have been proposed, with a theoretical approach, in [16] for
some linear algebra problems, including matrix multiplica-
tion, in [8] for sorting and searching, and in [15] for triangle
enumeration. To the best of our knowledge, the only experi-
mental analysis of multi-round algorithms has been provided
in [15] for triangle enumeration and shows that the perfor-
mance of a multi-round approach is equivalent to a mono-
lithic one.

Matrix multiplication is one of the most studied prob-
lems in the literature and we refer to the book by Golub
and Van Loan [7] for further insights. However, to the
best of our knowledge, this problem has been scarcely stud-
ied in MapReduce: ignoring naive implementations avail-
able on the web, the only scientific works are the aforemen-
tioned [16], and [18]. The latter introduces a library, named

HAMA, including MapReduce algorithms for matrix multi-
plication and conjugate gradient for matrices stored in HBase
databases.

Comparison with previous work. This work com-
pletes the theoretical investigations in [16] by integrating
the original description with more details that allow to fill
the gap between theory and practice, and by proposing an
Hadoop implementation. The M3 library includes as special
case the algorithms in HAMA [18]: the iterative approach
proposed in HAMA requires

√
n rounds for multiplying a

matrix of size
√

n×
√

n and is a special case of the algorithm
based on the 2D approach described in Section 3.3 (i.e., it
suffices to set m =

√
n and ρ = 1). Since the HAMA li-

brary assumes a very different input representation and our
experiments show that the aforementioned 2D approach is
slower than the 3D approach, we do not take into account
HAMA in this paper. Moreover, it should be said that the
algorithms in [18] break the functional approach of MapRe-
duce by allowing concurrent accesses to the distributed file
system within each map and reduce function, and that the ex-
periments have been carried out on small inputs (input side√

n ≤ 5000, while we run our algorithms with input side√
n≥ 16000).

Paper organization. Section 2 introduces the matrix
multiplication problem, the MapReduce framework and the
experimental settings. Section 3 describes and analyzes the
proposed MapReduce algorithms. Section 4 shows some ad-
ditional technicalities required by the Hadoop implementa-
tion. Section 5 provides and explains the experimental re-
sults. Finally, Section 6 gives some final remarks.

2 Preliminaries
Matrix multiplication. The focus of the paper is ma-

trix multiplication in a general semiring, that is we are ruling
out Strassen-like algorithms. For the sake of simplicity, we
focus on square matrices of size

√
n×
√

n. We denote with
A and B the two input matrices and with C = A ·B the out-
put matrix. In the sparse case, we denote with 0 ≤ δ ≤ 1
the density of non-zero entries in a given matrix of size√

n×
√

n, that is the number of non-zero entries is δn. A
random Erdös-Rényi matrix of size

√
n×
√

n and parame-
ter 0 ≤ δ ≤ 1 is a matrix where each entry is non-zero with
probability δ independently; the expected density is clearly
δ . When δ << 1/n1/4, the expected density of the product
of two Erdös-Rényi matrices is δ 2√n [3].

MapReduce and Hadoop. A MapReduce algorithm
consists of a sequence of rounds. The input/output of a round
is a multiset of key-value pairs 〈k;v〉, where k and v denote
the key and the value respectively. The input of a round may
contain the output of previous rounds but also other pairs. A
round is organized in three steps:

1. Map step: each input pair is individually given in input
to a map function, which returns a new multiset of



pairs. The pairs returned by all applications of the map
function are called intermediate pairs.

2. Shuffle step: the intermediate pairs are grouped by key.
3. Reduce step: each group of pairs associated with the

same key is individually given to a reduce function,
which returns a new multiset of pairs. The pairs
returned by all applications of the reduce function are
the output pairs of the round.

For simplicity we refer to a single application of the map
(resp., reduce) function with mapper (resp., reducer). For
a MapReduce algorithm, we denote with round number the
number of rounds, with shuffle size the maximum number
of intermediate pairs in each round, and with reducer size
the maximum amount of memory words required by each
reducer.2

Hadoop [22] is the most used open source implementa-
tion of the MapReduce paradigm. A MapReduce algorithm
is executed by Hadoop on p processors roughly as follows.
In each round, each processor is associated with a fixed num-
ber of map tasks and reduce tasks. In the map step, the
runtime system evenly distributes the input pairs to the map
tasks and then each map task applies the map function to
each single pair. In the reduce step, all groups of same-key
pairs are randomly assigned to each reduce task and then
each reduce task applies the reduce function to each single
group. The input/output pairs are stored in the distributed file
system HDFS [19], while intermediate pairs are temporarily
stored on the disk of each machine. Hadoop allows to per-
sonalize different settings of the framework, in particular it
allows to specify how groups are distributed among reduce
tasks by defining a partitioner. A partitioner receives as in-
put a key k and the total number T of reduce tasks, and it
returns a value in [0,T ) uniquely denoting the reduce task
that will apply the reduce function to the group associated
with key k.

We recall that there exist other efficient implementa-
tions of the MapReduce paradigm, including Spark [23],
MapReduce-MPI [17], Sphere [9]. Our algorithms can
be executed on these frameworks with minor programming
changes.

Experimental Framework. The in-house cluster con-
sists of 16 nodes, each equipped with a 4-core Intel i7 pro-
cessor Nehalem @ 3.07GHz, 12 GB of memory, 6 disks of
1TB and 7200 RPM in RAID0. The interconnection system
is a 10 gigabit Ethernet network. The operating system is
Debian/Squeeze with kernel 2.6.32. All experiments have
been executed with Hadoop 2.4.0 on 16 nodes (1 master +
16 slaves; a node was both master and slave).

The experiments on Amazon Web Services have been
executed on instances of type c3.8xlarge and i2.xlarge in the

2The memory requirements of the map functions of our algorithms are
very small constants, and therefore they are ignored.

US East Region.3 The c3.8xlarge is a compute optimized in-
stance featuring 32 virtual cores on a physical processor In-
tel Xeon E5-2680 @2.8GHz, 64 GB of memory, 2 solid state
disks of 320 GB; instances are connected by a 10 gigabit net-
work. The i2.xlarge is a storage optimized instance featuring
4 virtual cores on a physical processor Intel Xeon E5-2670
@2.5GHz, 32 GB of memory, 1 solid state disk of 800 GB
optimized for very high random I/O performance; instances
are connected by a moderate-performance network. All ex-
periments have been run on clusters with 9 (1 master + 8
slave) instances of the same type, with a Debian/Squeeze op-
erating system and Hadoop 2.2.0.

3 Algorithms
The M3 library contains two MapReduce algorithms for per-
forming matrix multiplication which are based on the 3D ap-
proach proposed in [16]. In this section, we first propose the
algorithm for multiplying two square dense matrices. Then,
we give the algorithm that multiplies two sparse matrices; al-
though it applies to any sparse input, we analyze it in the case
of random Erdös-Rényi matrices. The algorithms exhibit
tradeoff among round number, shuffle size and reducer size,
and rely on the well-know 3D decomposition of the lattice
representing the n3/2 elementary products (some of which
are zeros in the sparse case) into cubes of a given size. In
other words, the problem is decomposed into multiplications
of smaller square matrices that are solved sequentially by the
reducers. The subproblems are evenly distributed among the
rounds in order to guarantee the specified tradeoff.

For the sake of comparison, we also provide in Sec-
tion 3.3 an algorithm for dense matrix multiplication which
is based on the 2D decomposition of the lattice: the problem
is decomposed into the multiplication of smaller rectangu-
lar matrices where the longest side is

√
n. This approach is

quite common in naive implementations of matrix multipli-
cation in MapReduce available on the web: however, as we
will see, this approach is inefficient. The algorithm exhibits a
tradeoff among round number, shuffle size, and reducer size.
This result does not appear in [16].

The tradeoffs in our algorithms are highlighted by ex-
pressing the round number as a function of two parameters:
the replication factor ρ and the subproblem size m. The
replication factor gives an estimate of the desired volume of
intermediate data in each round, while the subproblem size
bounds the memory requirements of each reducer: indeed,
our algorithms guarantee that the shuffle size is Θ(ρ) times
the input size and the reducer size is Θ(m).

3.1 3D Algorithm for Dense Matrix Multiplication. The
3D MapReduce algorithm for dense matrix multiplication
was initially proposed in [16]. The paper provides an high

3http://aws.amazon.com/ec2/instance-types.



Algorithm 1: Map and reduce functions of the r-th round
of the 3D dense algorithm, with 0≤ r <

√
n/(ρ

√
m)+1.

Map: input 〈(i, `, j);D〉; D is Ai, j or Bi, j if `=−1,
or C`

i, j otherwise;
switch D do

case D is Ai. j
for `← 0 to ρ−1 do

h← j− i− `
emit 〈(i, j,h);D〉

case D is Bi. j
for `← 0 to ρ−1 do

h← i− j− `
emit 〈(h, i, j);D〉

case D is C`
i. j

if r is the last round then
emit 〈(i,−1, j);D〉

else
h← i+ j+ `+ rρ

emit 〈(i,h, j);D〉

Reduce: input 〈(i,h, j);{Ai,h,Bh, j,C`
i, j}〉 if

0≤ i, j <
√

n/m and h = (i+ j+ `+ rρ) mod
√

n/m,
or 〈(i,−1, j);{C0

i, j, . . .C
ρ−1
i, j }〉

if r is the last round then
emit 〈(i, j);∑

ρ−1
`=0 C`

i, j〉
else

emit 〈(i, `, j);C`
i, j +Ai,hBh, j〉

level description of the algorithm in the MR computational
model, however it does not provide important details such
as a description of the map and reduce functions that are re-
quired for actually implementing the algorithm in MapRe-
duce. In this section, we close this gap by providing a de-
tailed description of the algorithm, including a pseudocode
for the map and reduce functions in Algorithm 1.

For any 1 ≤ m ≤ n and 1 ≤ ρ ≤
√

n/m, the algorithm
requires R =

√
n/(ρ

√
m)+1 rounds, the shuffle size is 3ρn,

and the reducer size is 3m. For the sake of simplicity, we
assume that

√
n and

√
m are integers and that

√
m divides√

n. The input matrices A, B and the output matrix C are
divided into submatrices of size

√
m×
√

m, and we denote
these submatrices with Ai, j, Bi, j and Ci, j, respectively, for

0 ≤ i, j <
√

n/m. Clearly, we have Ci, j = ∑

√
n/m−1

h=0 Ai,h ·
Bh, j. The input matrix A is stored as a collection of pairs
〈(i,−1, j);Ai, j〉, where−1 is used as dummy value. Matrices
B and C are stored similarly. The division of the input
matrices implies (n/m)3/2 products between submatrices,
which are partitioned into

√
n/m groups as follows: group

G`, with 0≤ ` <
√

n/m, contains the products Ai,h ·Bh, j for

h = (i+ j+ `) mod
√

n/m and for every 0≤ i, j <
√

n/m.
We note that each submatrix of A and B appears exactly once
in each group.

The algorithm works in R rounds. In the r-th round, with
0≤ r < R−1, the algorithm computes all products in G` and
the sum C`

i, j = ∑
r−1
k=0 Ai,i+ j+`+kρ Bi+ j+`+kρ, j for every rρ ≤

` < (r + 1)ρ and 0 ≤ i, j <
√

n/m; each product Ai,h ·Bh, j
is computed within the reducer associated with key (i,h, j).
Eventually, in the last round r =R−1, the matrix C is created
by computing Ci, j = ∑

ρ−1
`=0 C`

i, j for every 0≤ i, j <
√

n/m. A
more detailed explanation follows. At the beginning of the r-
th round, the input pairs are 〈(i,−1, j);Ai, j〉, 〈(i,−1, j);Bi, j〉.
Starting from the second round (i.e., r ≥ 1) the algorithm
also receives as input the pairs 〈(i, `, j);C`

i, j〉, for every 0 ≤
i, j <

√
n/m and 0≤ ` < ρ , that have been outputted by the

previous round. In the map step, each input pair is replicated
ρ times since it is required in ρ reducers. Specifically,
for each pair 〈(i,−1, j);Ai, j〉, the map function emits the
pairs 〈(i, j,h);Ai, j〉 with h = j− i− ` mod

√
n/m for every

0 ≤ ` < ρ . Similarly, for each pair 〈(i,−1, j);Bi, j〉, the map
function emits the pairs 〈(h, i, j);Bi, j〉 with h = i− j − `

mod
√

n/m for every 0 ≤ ` < ρ . On the other hand, the
map function emits for each pair 〈(i, `, j);C`

i, j〉 the pair
〈(i,h, j);C`

i, j〉 with h = i+ j+ `+ rρ mod
√

n/m. Finally,
each reducer associated with key (i,h, j) with h = i+ j+ `,
for any 0 ≤ i, j <

√
n/m and 0 ≤ ` < ρ , receives as input

Ai,h, Bh, j and C`
i, j, computes C`

i, j = C`
i, j +Ai,hBh, j and emits

〈(i, `, j),C`
i, j〉.

THEOREM 3.1. The above algorithm requires
R =

√
n/(ρ

√
m) + 1 rounds, the shuffle size is 3ρn,

and the reducer size is 3m.

Proof. The correctness of the algorithm is proved in [16].
However, we have to show that each reducer receives the
correct set of submatrices since pair distribution is not taken
into account in the original paper. Each product Ai,k ·Bk, j
is computed when ` = (k − i − j) mod ρ and in round
r = (k− i− j− `)/ρ . In this round, the mapper associated
with pair 〈(i,k);Ai,k〉 emits the pair 〈(i,k,k− i−`−rρ);Ai,k〉
where k− i− `− rρ = j for the above values of ` and r. A
similarly argument applies to Bh, j and C`

i, j.
Since each submatrix of A and B is replicated ρ times

and there are ρn/m matrices C`
i, j, the shuffle size is 3ρn.

Each reducer requires at most 3m memory words for com-
puting C`

i, j =C`
i, j +Ai,i+ j+`+rρ ·Bi+ j+`+rρ, j. �

We observe that there are 3n
√

n/m pairs in each shuffle
in a two-round algorithm for matrix multiplication (i.e, ρ =√

n/m). As shown in [16], this is the best we can get if
only semiring operations are allowed. Finally, we note that
the algorithm guarantees that almost all mappers perform the
same amount of work because each submatrix of A and B is
replicated ρ times.



3.2 3D Algorithm for Sparse Matrix Multiplication. An
algorithm for sparse matrix multiplication easily follows
from the previous 3D algorithm by exploiting the sparsity
of the input and output matrices. We assume that the
input matrices are random Erdös-Rényi matrices with size√

n×
√

n and expected density δ << n1/4; we will later see
how to extend the result to the general case. We recall that
the output density of the product of two random Erdös-Rényi
matrices is δO = δ 2√n [3].

The input matrices A and B and the output matrix C
are partitioned into blocks of size

√
m′×

√
m′, where m′ =

m/δO = m/(δ 2√n). Each submatrix is represented as a
list of non-zero entries, although other formats can be used
like the Compressed Row Storage. The sparse algorithm
follows by applying the previous 3D dense algorithm to
the submatrices of size

√
m′×

√
m′. The sparse algorithm

exploits the fact that each submatrix Ai, j or Bi, j (resp., Ci, j)
is a random Erdös-Rényi matrix with expected density δ

(resp., δO). Then the expected space required for computing
Ai,h ·Bh, j is (2δ +δ 2√n)m′ ∼ 3m, and thus the reducer size
is 3m even for this algorithm. The pseudocode can be easily
derived from the pseudocode for the dense case, proposed in
Algorithm 1, by replacing m with m′.

THEOREM 3.2. The above algorithm requires
R = δn3/4/(ρ

√
m) + 1 rounds, the expected shuffle

size is 3ρδ 2n3/2, and the expected reducer size is 3m.

Proof. The claim easily follows from Theorem 3.1 and by
the sparsity of the input/output matrices. �

Suppose that A and B are general sparse matrices with
density δ << 1 and that an approximation of the density size
of the output matrix is known δ̃O. Let δM =max{δ , δ̃0}, then
it is sufficient to split each input/output matrix into blocks
of size

√
m′×

√
m′ with m′ = m/δM and apply the previous

sparse algorithm. For improving the load balancing among
reducers, columns and rows of the input matrices should be
randomly permuted [16]. In this case it is easy to show that
the algorithm requires R =

√
δMn/(ρ

√
m) + 1 rounds, the

expected shuffle size is 3ρδMn, and the expected reducer size
is 3m. A good approximation of the output matrices can be
computed with a scan of the input matrices (see, e.g., [14]).
Finally, we observe that if the output size is not known, then
it suffices to set m′ = m/δ but the bounds on shuffle and
reducer sizes do not apply anymore.

3.3 2D Algorithm for Dense Matrix Multiplication The
2D MapReduce algorithm divides the input matrix A into
n/m submatrices of size m/

√
n×
√

n, the input matrix B
into n/m submatrices of size

√
n×m/

√
n, and the output

matrix into (n/m)2 submatrices of size m/
√

n×m/
√

n. We
label each submatrix of A and B with Ai and Bi and each
submatrix of C with Ci, j, for any 0≤ i, j < n/m. We clearly
have Ci, j =Ai ·B j. The input matrix A is stored as a collection

Algorithm 2: Map and reduce functions of the r-th round
of the 2D algorithm, with 0≤ r < n/(ρm).

Map: input 〈(i, j);D〉; D is Ai if j =−1 or B j if i =−1;
switch D do

case D is Ai
for l ← 0 to ρ−1 do

j← (i+ l + rρ) mod (n/m)
emit 〈(i, j);D〉

case D is Bi
for l ← 0 to ρ−1 do

i← ( j− l− rρ) mod (n/m)
emit 〈(i, j);D〉

Reduce: input
〈
(i, j);{Ai,B j}

〉
for 0≤ i, j < n/m

emit
〈
(i, j);Ai ·B j

〉

of pairs 〈(i,−1);Ai〉, for any 0 ≤ i < n/m, where −1 is
used as dummy value; similarly for matrix B. The output
matrix is stored as a collection of pairs 〈(i, j);Ci, j〉, for any
0≤ i, j < n/m.

For any
√

n ≤ m ≤ n and 1 ≤ ρ ≤ n/m, the algorithm
requires R = n/(ρm) rounds, the shuffle size is 2ρn, and the
reducer size is 3m. For the sake of simplicity, we assume
that
√

n is an integer and that
√

n divides m. In the r-th
round, with 0≤ r < R, the algorithm computes the products
Ci, j = Ai ·B j with j = i+ `+ rρ mod (n/m), for any 0 ≤
i < n/m and 0 ≤ ` < ρ . Specifically, at the beginning of
the r-th round, the input pairs are 〈(i,−1);Ai〉, 〈(−1, j);B j〉.
Then, the map function emits for each pair 〈(i,−1);Ai〉 the
pairs 〈(i, j);Ai〉 with j = (i + `+ rρ) mod (n/m) for any
0 ≤ ` < ρ; similarly, for each pair 〈(−1, j);B j〉, the mapper
emits the pairs 〈(i, j);B j〉 with i = ( j− `− rρ) mod (n/m)
for any 0 ≤ ` < ρ . Then, each reducer associated with key
(i, j) receives Ai and B j and emits the pair 〈(i, j);Ai · B j〉.
The pseudocode of the map and reduce functions is in
Algorithm 2.

THEOREM 3.3. The above algorithm requires R = n/(ρm)
rounds, the shuffle size is 2ρn, and the reducer size is 3m.

Proof. Subproblem (i, j) is executed with `= ( j− i) mod ρ

in round r = ( j− i− `)/ρ . The reducer associated with key
(i, j) correctly receives matrices Ai and B j in round r since
the mapper with input 〈(i, j);Ai〉 emits the pair 〈(i, i+ `+
rρ);Ai〉 where i+ `+ rρ = j for the above values of ` and r
(a similar argument applies for B j). The shuffle size is 2ρn
since there are at most ρ copies of each submatrix Ai and
B j. Each reducer just requires at most 3m memory words for
computing Ci, j = Ai ·B j. �

Our algorithm guarantees that each mapper performs the
same amount of work: indeed, each submatrix of A and B
is replicated exactly ρ times. We observe that a naive way
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Figure 1: The figure reports the number of reducers in the i-th
reduce task using a simple partitioner and the one proposed in
Algorithm 3 when

√
n = 32000,

√
m = 4000, and ρ = 8 (only first

round).

to distribute subproblems among rounds may significantly
unbalance the work performed by mappers: in the worst
case, there can be one submatrix of A replicated n/m times,
while the remaining submatrices of A are replicated once
(similarly for B); then one mapper requires O(n/m) work,
while all the remaining mappers perform O(1) work.

4 Implementation
The algorithms described in previous sections are imple-
mented as Hadoop jobs, one for each round. Each job com-
prises a single map and a single reduce function. Matrices
are represented as SequenceFiles where keys are triplets or
pairs (for 3D and 2D multiplication, respectively) and values
are serialized objects representing blocks. The representa-
tion used for blocks will vary, depending on the matrix being
dense or sparse. For dense matrices, each serialized block is
the sequence of elements of the matrix in row-major order.
As for sparse matrices, only non-zero elements are serial-
ized along with their indexes. The entries of the matrices
are doubles. Further details on the Hadoop configuration are
provided in Section 4.2.

4.1 Map and reduce implementation Map functions are
straightforward implementations of the algorithms in Sec-
tion 3. Reduce functions, while being adherent to the given
specifications, present a few caveats from both a correctness
and a performance perspective. Reduce functions in Hadoop
take input values as instances of the Iterable interface, giv-
ing Hadoop developers the freedom of changing the actual
underlying implementation without breaking client code. If
one needs all the input values at the same time to perform
the reduce computation (as is our case), then a deep copy
of each value must be saved in local variables or collections
to ensure correctness. Simply storing the reference does not
work, since the implementation of the Iterable interface
used by Hadoop returns a mutable object for each next call

Algorithm 3: Partitioner of the 3D dense algorithm

Partitioner: input: (i,h, j), number of reduce tasks T ;
B← bρn/(mT )c
k← iρn/m+ jρ +(h mod ρ)
if z < B ·T then return k/B
else return Random number in [0,T )

(at least in the most recent version, 2.4.0). Failing to per-
form a deep copy of the input will make the reducer use the
same block three times instead of the proper blocks from ma-
trices A, B, and C. Note that by performing this copy we
incur an unavoidable performance penalty.

As for the performance in general, it is crucial to use a
fast linear algebra library for local multiplications. For the
dense case, we use the JBLAS library4, that provides Java
bindings to the fast BLAS/LAPACK routines. Unfortunately,
JBLAS does not support sparse matrices, for which we
use MTJ5. Although this is the fastest library for sparse
matrix multiplication among the tested ones, it is orders of
magnitude slower than JBLAS on inputs of the same size thus
preventing us to perform complete experiments on sparse
matrices.

4.2 Hadoop configuration As mentioned in Section 2,
we used both a in-house cluster and Amazon Web Services
(AWS) to carry out our experiments. Our cluster has been
configured as follows. HDFS replication has been set to one,
that is, redundancy has been disabled. We found that the
default replication, 3, degraded performance of ≈ 5% while
not providing benefits in our experimental setting. Each
machine of the cluster runs two mappers and two reducers,
each with 3GB of memory, in order to allow us to use matrix
blocks with many elements.

As for the configuration of Hadoop instances provided
by AWS, we used the default configuration, customized by
Amazon for each machine instance type. The rationale is that
AWS provides Hadoop as-a-service, enabling users to con-
centrate on their application rather than on the configuration
and management of an Hadoop cluster.

4.3 Partitioner The keys of the dense 3D algorithms pro-
posed in the Section 3 are triplets (i, j,k). A partitioner
receives as input a key and the number T of reduce tasks
in the system and returns the identifier t ∈ [0,T ) of the re-
duce tasks that will be responsible of the key. When the key
is a triplet (i, j,k), a common partitioner for these keys is
t = (312i+ 31 j + k) mod T . However, as Figure 1 shows,
this function is not able to evenly distribute reducers among
the T reduce tasks.

4http://jblas.org/
5https://github.com/fommil/matrix-toolkits-java/



We propose an alternative partitioner. In the r-th round
there are ρ(n/m) reducers denoted by keys (i,h, j) with
0 ≤ i, j <

√
n/m and (i+ j + rρ) mod

√
n/m ≤ h < (i+

j + (r + 1)ρ) mod
√

n/m. The partitioner uniquely maps
each key (i,h, j) in the range [0,ρn/m) by setting z =
iρn/m + jρ + h′ with h′ = h mod ρ . We note that the
mapping consists of a row-major ordering on the first, third
and second coordinates, where the second coordinate has
been adjusted to be in the range [0,ρ). Keys mapped in
[0,Tbρn/(mT )c) are evenly distributed among the reduce
tasks, while the remaining at most T − 1 keys are randomly
distributed among the tasks. The pseudocode is given in
Algorithm 3. This partitioner is also used in the 3D sparse
algorithm, while a slightly different approach is used for the
2D algorithm.

5 Experiments
In this section we propose our experimental analysis of the
M3 library. To better capture the impact of the parameters of
the computational model on the performance, we focus on
the dense algorithm which heavily loads the communication
and computational resources and whose performance does
not depend on the particular input matrix. We aim at
answering the following questions:
Q1: How much does the subproblem size m affect the

performance?
Q2: Are the performance of multi-round algorithms compa-

rable with a monolithic algorithm?
Q3: Which are the major factors affecting the running time?
Q4: Does the algorithm scale efficiently with processor

number?
Q5: How much is the performance gap between the 2D and

3D approaches?
Q6: Does the sparse algorithm efficiently exploit the input

sparsity?
In Section 5.1 we discuss the results on the in-house

cluster. Our claims are also supported by the experiments
carried out in the cloud service Amazon Elastic MapReduce
and proposed in Section 5.2.

5.1 Experiments on the in-house cluster In this section
we report our investigations on the in-house cluster targeting
all of the above questions.

Q1: Impact of subproblem size m. The total amount
of shuffled data in all rounds is O

(
n
√

n/m
)

. This quantity
is independent of the replication factor ρ , but increases
as m decreases. Since the performance of an algorithm
strongly relies on the total amount of shuffled data, it is
reasonable to select a large m and then to decompose the
problem into larger subproblems. On the other hand, a
large value of m reduces parallelism since there are (n/m)3/2

independent subproblems. Moreover, it increases the load on
each machine since a matrix multiplication of size

√
m×
√

m
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Figure 2: Time vs subproblem size with
√

n ∈ {16000,32000}.
The label max (resp., min) means that it has been used maximum
(resp., minimum) replication, that is ρ =

√
n/m (resp., ρ = 1).

is computed by each reducer with Θ
(
m3/2

)
work and Θ(m)

memory, which may exceed hardware limits.
This fact is highlighted in Figure 2 which shows

the running time for
√

n ∈ {16000,32000} and
√

m ∈
{1000,2000,4000}; the experiments have been carried out
with ρ =

√
n/m and with ρ = 1, that is with a monolithic

approach and the extreme case of multi-round. All experi-
ments show that the performance improves with larger values
of m, but the gain decreases for larger values: with input side√

n = 32000 and ρ =
√

n/m, the performance gain when√
m moves from 1000 to 2000 is 1.99, while it is 1.12 when

it moves from 2000 to 4000. The monolithic approach is
slightly less sensible to variations of m since it can exploit
much more parallelism in each round than a multi-round
approach. The value

√
m = 8000 is missing in the experi-

ments since all executions failed due to an out-of-memory
error, thus reinforcing the previous claim that larger values
of m may exceed hardware limits. Although each subma-
trix requires 488MB, the actual memory requirements are
much more due to the internal structure of Hadoop, which
may keep in the memory of each processor the submatrices
outputted by map tasks as well as the submatrices required
in input by the reduce tasks. Advanced optimizations can
increase the maximum value of m, but do not significantly
change the proposed results.

Q2: Impact of replication factor ρ . We are ready to
study the performance of a multi-round approach. We re-
call that, for any replication factor 1≤ ρ ≤

√
n/m, the num-
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Figure 3: Time vs replication charts. In each bar of the histogram, the i-th colored block denotes the time of the i-th round.
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Figure 4: Component cost vs replication. Each bar shows the time of the communication, computation, and infrastructure components.



ber of rounds is
√

n/(ρ
√

m)+1. Figures 3a and 3b investi-
gate the running times with different values of the replication
factor and input size

√
n = 16000 and

√
n = 32000, respec-

tively. For ρ =
√

n/m, we get a monolithic approach (i.e.,
two rounds). Without any surprise, the best running time is
reached by the monolithic approach: this supports the com-
mon practice to minimize round number, but only if the total
amount of communication remains unchanged. However, we
observe that a multi-round approach increases the running
time with respect to the monolithic two-round approach by
an average factor 7% for each additional round. We believe
that the main reason of this increase is due to the distributed
file system HDFS, which is used for storing pairs between
rounds and is optimized for writing and reading large files.
When ρ =

√
n/m, each reduce task writes two large chunks

of output pairs (one per round) on HDFS containing all out-
puts of the associated reducers in a given round. On the other
hand, for values of ρ smaller than

√
n/m, each reduce task

writes a larger number of chunks of smaller size. Although
the total size of the written files is the same in each approach,
the system is not able to exploit the features of HDFS with
a multi-round approach. We conjecture that the performance
gap can be closed by exploiting other implementations that
use local file systems for storing intermediate pairs (e.g.,
Spark).

Figures 3a and 3b also show the running time of each
round: for each histogram bar, the i-th colored block from
the bottom denotes the time of the i-th round. The work
is evenly distributed among rounds and the cost of each
round decreases with the replication factor ρ . In each run,
the last round is faster than the remaining ones since the
reduce function only performs the addition of ρ submatrices.
Finally, we observe that the algorithm efficiently scales with
the input size: the running time, for any replication factor,
increases on the in-house cluster by a factor ∼ 8 when the
input side doubles, which agrees with the cubic (in the matrix
side) complexity of the algorithm.

Q3: Cost analysis. We now analyze how communica-
tion, computation and infrastructure affect the running time.
We define the following three costs:
• Infrastructure cost Tin f r: It is the time for setting up the

Hadoop system and each round. It is given by the time
of the algorithm when no computation is done in the
reduce functions and the value of each pair is replaced
by an empty matrix (i.e., the amount of shuffled data is
negligible).

• Computation cost Tcomp: It is the time for performing
the local computation. Let T̂comp be the time of the
algorithm when any local multiplication is performed
on two locally created matrices (the cost of the creation
is negligible) and the value of each pair is replaced
by an empty matrix. Then, the computation cost is
T̂comp−Tin f r.

4 8 16
Number of machines

100

200

300

400

500

600

700

800

900

1000

tim
e 

(s
)

replication 1
replication 2
replication 4

Figure 5: Time vs number of nodes with
√

n = 16000. The
experiments have been carried out with replication ρ ∈ {1,2,4} and
p ∈ {4,8,16} nodes.

• Communication cost Tcomm: It is the time for exchang-
ing pairs between mappers and reducers, and includes
the costs of reading/writing data on HDFS and of
shuffle steps. Let T̂comm be the time of the algorithm
when no computation is done in the reduce function
(the output pair is a copy of an input pair). Then, the
communication cost is T̂comm−Tin f r.

We think that the infrastructure cost is a good approx-
imation of the true time for setting up the system and each
round. However, this is not true for the communication and
computation costs since the procedure does not take into ac-
count the concurrency between the three components. Nev-
ertheless, these costs still provide an interesting overview of
the main factors determining the running time of an algo-
rithm. (To the best of our knowledge no tools for cost anal-
ysis are available.) Figures 4a and 4b show the costs of the
three components for

√
n = 16000 and ρ ∈ {1,2,4}, and for√

n = 32000 and ρ ∈ {1,2,4,8}, respectively. The infras-
tructure cost increases linearly with the round number, and
the average fixed cost of a round is 17 seconds. The com-
putation cost for a given input size is independent of the
replication value, which confirms that the work is evenly
distributed among cluster nodes. The communication cost
increases when ρ increases as already noted for Figures 3a
and 3b, and dominates the total time.

Q4: Scalability. We now study the scalability of the
algorithm by running the dense algorithm on a smaller
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number of nodes. For this experiment, we run the dense
algorithm with input size 16000 on 4, 8 and 16 nodes of
the in-house cluster. The results are given in Figure 5 with
different replication factors ρ ∈ {1,2,4}. The algorithm
scales efficiently although there is a small reduction in the
speed up with 16 nodes. This may be due to a loss in data
locality and to a larger cost of the shuffle step when the
algorithm is run on 16 nodes.

Q5: 2D vs. 3D algorithms We now move to analyze
the performance of the 3D multiplication strategy compared
with the 2D strategy. Figure 6 clearly shows that the 3D
approach has a significant performance advantage. This
is due to the fact that the total shuffle size is, for the 3D
approach, O

(
n
√

n/m
)

, whereas for the 2D approach it

is O
(
n2/m

)
. Since the major bottleneck in MapReduce

is communication, the 2D approach incurs a significant
penalty.

Q6: Sparse matrices. We now investigate the perfor-
mance of the 3D sparse algorithm and show that it improves
performance by exploiting input sparsity. Figure 7 shows
the running times with different replication factors of the 3D
sparse algorithm with two input Erdös-Rényi matrices with√

n ∈ {220,222,224}, and an average of 8 non-zero entries
per row and per column (i.e., δ ∈ {1/217,1/219,1/221}, re-
spectively). Since the output matrices have expected density
δO ∈ {1/214,1/216,1/218} (see Section 2), the input matri-
ces are partitioned into submatrices of size 218, 219 and 220,
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Figure 7: Time vs replication for sparse matrix multiplication with√
n ∈ {220,222,224} and an average of 8 non-zero entries per row

and per column. For each input size, we consider all possible
replication factors, from 0 to

√
n/
√

m′ (
√

m′ is set to {218,219,220},
respectively).

respectively, so that the expected number of non-zero ele-
ments in each submatrix of the output is comparable with
the subproblem size of the dense case. This shows that, by
exploiting the sparseness of the input matrix, we can tackle
much bigger problems, under the same memory constraints.
As mentioned in Section 4, we avoided the computation of
local products because of the lack of an efficient Java imple-
mentation of sequential sparse matrix multiplication. How-
ever, as we have experimentally shown, the time spent com-
puting local products is a fixed additive factor, whereas the
communication is the dominant component, thus these ex-
periments clearly show the tradeoffs between round number
and time for sparse matrix multiplication.

5.2 Experiments on Amazon Elastic MapReduce In this
section we report our investigations in Amazon Elastic
MapReduce (EMR) targeting the questions Q1, Q2 and Q3
described at the beginning of Section 5.

Q1: Impact of subproblem size m. These experiments
show a similar behavior on c3.8xlarge and i2.xlarge in-
stances, with

√
m = 4000 being the optimal choice. In-

terestingly, smaller instance types (like c3.xlarge) require√
m = 2000 for avoiding memory errors. All the following

experiments assume
√

m = 4000.
Q2: Impact of replication factor ρ . The experi-

ments have been carried out on EMR with c3.8xlarge in-



stances and the results are in Figures 8 and 10a with
√

n ∈
{16000,32000}, respectively. Running times significantly
increase with respect to experiments on the in-house cluster:
the running times with

√
n = 16000 (resp.,

√
n = 32000) on

EMR are on the average 4.7 (resp., 1.4) times larger than the
ones on the in-house cluster, even if the computational re-
sources of the two systems are somewhat similar. It is inter-
esting to note that the gap decreases with larger input sizes.
The average performance loss with respect to the monolithic
two-round approach is 17% for each additional round.

As for the scalability, we observe that the scaling factor
on EMR is ∼ 5, smaller than the one achieved on the in-
house cluster (∼ 8). This is due to high fixed costs which are
not efficiently amortized with small inputs.

Q3: Cost analysis. The cost analysis on EMR with
c3.8xlarge instances is reported in Figures 9a and 10b for√

n = 16000 and ρ ∈ {1,2,4}, and for
√

n = 32000 and ρ ∈
{1,2,4,8}, respectively. It should be noted that the average
computation cost is similar to the respective component in
the in-house cluster, although there is a larger variance due
to the unpredictable load of the physical machines of EMR.
The average infrastructure cost is 30 seconds.

Finally, we report in Figure 9b the cost analysis with√
n = 16000 and ρ ∈ {1,2,4} on i2.xlarge instances. A

i2.xlarge instance has faster disks optimized for random I/Os
but slower network than a c3.8xlarge instance. However, we
observe that the communication costs are smaller than the
respective costs in Figure 9a for c3.8xlarge instances. This
fact supports the claim in Section 5.1 (question Q2) that
the main bottleneck is the inability of HDFS to efficiently
read/write small chunks of data.

6 Conclusion
In this paper we have proposed the Hadoop library M3
for performing dense and sparse matrix multiplication in
MapReduce by exploiting the theoretical results in [16], and
we have carried out an extensive experimental study on an
in-house cluster and Amazon Web Services. The results
give evidence that multi-round algorithms can have perfor-
mance comparable with monolithic ones (assuming a similar
total amount of communication) even on the Hadoop frame-
work, which is not the most suitable MapReduce implemen-
tation for executing multi-round algorithms. Moreover, ex-
periments suggest that the common attitude to only focus on
round number when designing MapReduce algorithms could
significantly reduce performance if it implies a larger amount
of total communication. This fact supports recent computa-
tional models for MapReduce that mainly focus on the min-
imization of the total communication complexity [8], or that
aim at reducing round number when an upper bound on the
allowed total communication complexity is given [16].

As future work, we plan to further investigate sparse ma-
trix multiplication on MapReduce and to test our algorithms
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Figure 8: Time vs replication with
√

n = 16000 and ρ = {1,2,4}
on c3.8xlarge instances. In each bar of the histogram, the i-th
colored block denotes the time of the i-th round.

on other implementations of the MapReduce paradigm. In
particular, we are currently developing our algorithms in the
Spark framework, where the management of the input/output
pairs of each round is more efficient than Hadoop.
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