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THE SIMPLIFIED TOPOLOGICAL ε-ALGORITHMS FOR
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Abstract. When a sequence of numbers is slowly converging, it can be transformed into a new
sequence which, under some assumptions, converges faster to the same limit. One of the best-known
sequence transformations is the Shanks transformation, which can be recursively implemented by the
ε-algorithm of Wynn. This transformation and this algorithm have been extended (in two different
ways) to a sequence of elements of a topological vector space E. In this paper, we present new
algorithms for implementing these topological Shanks transformations. They no longer require the
manipulation of elements of the algebraic dual space E∗ of E, nor do they use the duality product
inside the rules of the algorithms; they need the storage of fewer elements of E, and the stability
is improved. They also allow us to prove convergence and acceleration results for some types of
sequences. Various applications involving sequences of vectors or matrices show the interest of the
new algorithms.
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1. Presentation. Let (Sn) be a sequence of elements of a vector space E on a
field K (R or C). If the sequence (Sn) is slowly converging to its limit S when n tends
to infinity, it can be transformed, by a sequence transformation, into a new sequence
converging, under some assumptions, faster to the same limit. The construction of
most sequence transformations starts from the notion of kernel, which is the set of
sequences which are transformed into a constant sequence with all its elements equal
to S (see [9]).

In section 2, the scalar Shanks transformation for transforming a sequence of
numbers [31] and its implementation by the scalar ε-algorithm [36] are remembered.
This transformation and this algorithm were extended by Brezinski [3] to sequences of
elements of a topological vector space E. The two versions of this topological Shanks
transformation are given in section 3. Their original implementation by two types of
the topological ε-algorithm is discussed in section 4. Both algorithms need to perform
operations involving elements of the algebraic dual space E∗ of E.

The topological Shanks transformations and the topological ε-algorithms received
so much attention in the literature that not all of the contributions could be quoted
here. They have many applications in the solution of systems of linear and nonlinear
equations, in the computation of eigenelements, in Padé-type approximation, in ma-
trix functions and matrix equations, in the Lanczos method, etc. We refer the reader

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section February
13, 2014; accepted for publication (in revised form) July 1, 2014; published electronically September
23, 2014.

http://www.siam.org/journals/sisc/36-5/95704.html
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to [6, 19, 30, 9, 20, 21, 11, 18, 32, 33, 35] and the references therein, in particular, for
the older ones.

Two new algorithms for implementing these topological Shanks transformations,
the first and the second simplified topological ε-algorithms, are introduced in section
5. They have several important advantages: elements of the dual vector space E∗

no longer have to be used in their recursive rules and are replaced by quantities
computed by the scalar ε-algorithm, fewer elements have to be stored than with
the topological ε-algorithms of [3], a very important issue in applications, and the
numerical stability of the algorithms is improved. Moreover, these new algorithms
allow us to prove convergence and acceleration properties that could hardly have been
obtained from the original topological ε-algorithms (section 6). The implementation
of these algorithms is discussed in section 7. Some applications involving sequences
of vectors and matrices are presented in section 8.

In this paper, characters in bold correspond to elements of a vector space E or
its algebraic dual E∗, while regular ones designate real or complex numbers.

2. Shanks transformation and the ε-algorithm. For sequences (Sn) of real
or complex numbers, an important sequence transformation is the Shanks transfor-
mation [31], whose kernel consists of sequences satisfying the homogeneous linear
difference equation of order k,

(2.1) a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0, n = 0, 1, . . . ,

where the ai’s are arbitrary constants independent of n such that a0ak �= 0, and
a0 + · · ·+ ak �= 0, and where the unknown S is the limit of (Sn) if it converges, or is
called its antilimit otherwise. The exact expression of such sequences is given in [8].
Assuming that (2.1) holds for all n, the problem is to compute S. We have, for all n,

(2.2) a0ΔSn + · · ·+ akΔSn+k = 0,

where the forward difference operator Δ is defined by ΔSn = Sn+1−Sn, n = 0, 1, . . . .
Writing (2.2) for the indexes n, . . . , n+k− 1 leads to k homogeneous linear equations
in the k+1 unknowns a0, . . . , ak. Adding the condition a0+ · · ·+ ak = 1 (which does
not restrict the generality), and solving the system obtained, gives the unknowns, and
then, from (2.1), we obtain, for all n,

S = a0Sn + · · ·+ akSn+k.

Now, if (Sn) does not satisfy (2.1), we can still write down the system giving the
unknown coefficients ai and compute the linear combination a0Sn + · · · + akSn+k.
However, these coefficients and the linear combination will now depend on n and k,

and they will be denoted, respectively, by a
(n,k)
i and ek(Sn), and we have

ek(Sn) = a
(n,k)
0 Sn + · · ·+ a

(n,k)
k Sn+k, k, n = 0, 1, . . . ,

where the a
(n,k)
i ’s are solution of the same system as above, that is,

(2.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(n,k)
0 + · · · + a

(n,k)
k = 1,

a
(n,k)
0 ΔSn + · · · + a

(n,k)
k ΔSn+k = 0,

...
...

a
(n,k)
0 ΔSn+k−1 + · · · + a

(n,k)
k ΔSn+2k−1 = 0.
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THE SIMPLIFIED TOPOLOGICAL ε-ALGORITHMS A2229

Thus, the sequence (Sn) has been transformed into the set of sequences {(ek(Sn))}.
The transformation (Sn) �−→ {(ek(Sn))} is the Shanks transformation [31]. It is a gen-
eralization of the well-known Aitken’s Δ2 process which is recovered for k = 1.

Cramer’s rule allows us to write ek(Sn) as the following ratio of determinants:

ek(Sn) =

∣∣∣∣∣∣∣∣∣
Sn · · · Sn+k

ΔSn · · · ΔSn+k

...
...

ΔSn+k−1 · · · ΔSn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

ΔSn · · · ΔSn+k

...
...

ΔSn+k−1 · · · ΔSn+2k−1

∣∣∣∣∣∣∣∣∣

, k, n = 0, 1, . . . .

By construction, we have the following result.
Theorem 2.1 (see [9]). For all n, ek(Sn) = S if and only if ∃a0, . . . , ak, with

a0ak �= 0 and a0 + · · ·+ ak �= 0, such that, for all n,

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0,

that is, in other words, if and only if (Sn) belongs to the kernel of the Shanks trans-
formation (Sn) �−→ (ek(Sn))n for k fixed.

The Shanks transformation can be recursively implemented by the scalar ε-
algorithm of Wynn [36], whose rules are

(2.4)

⎧⎪⎨⎪⎩
ε
(n)
−1 = 0, n = 0, 1, . . . ,

ε
(n)
0 = Sn, n = 0, 1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k, n = 0, 1, . . . ,

and the following property holds.

Property 2.2. For all k and n, ε
(n)
2k = ek(Sn) and ε

(n)
2k+1 = 1/ek(ΔSn).

These elements are usually displayed in a two-dimensional array, the ε-array (see
Figure 1 for a triangular part of it), where the quantities with an odd lower index are
only intermediate results. The rule (2.4) relates numbers located at the four vertices
of a rhombus in the ε-array (see Figure 1).

In passing, let us give two relations which do not seem to have been noticed
earlier. Their proofs are straightforward by induction.

Property 2.3. For all k and n,

ε
(n)
2k = Sn+k +

k∑
i=1

1/Δε
(n+k−i)
2i−1 , ε

(n)
2k+1 =

k∑
i=0

1/Δε
(n+k−i)
2i ,

where the operator Δ acts on the upper indexes.

3. The topological Shanks transformations. Let us now consider the case
of a sequence of elements Sn of a vector space E. In 1962, Wynn generalized the
scalar ε-algorithm to sequences of vectors (Sn) by defining, in the rule of the scalar
ε-algorithm, the inverse of a vector u ∈ E = Rm by u−1 = u/(u,u), where (·, ·) is
the usual inner product [37]. He thus obtained the vector ε-algorithm (vea), which
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ε
(0)
−1 = 0

ε
(0)
0 = S0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = S1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1 ε

(0)
3

ε
(2)
0 = S2 ε

(1)
2 ε

(0)
4

ε
(3)
−1 = 0 ε

(2)
1 ε

(1)
3

ε
(3)
0 = S3 ε

(2)
2

ε
(4)
−1 = 0 ε

(3)
1

ε
(4)
0 = S4

ε
(5)
−1 = 0

Fig. 1. A triangular part of the ε-array.

had no underlying algebraic foundation. However, it was later proved by McLeod [24]
that the kernel of this vector ε-algorithm is the set of vector sequences satisfying a
relation of the same form as (2.1) with ai ∈ R. The proof was quite technical, and it

involved Clifford algebra. Then, it was shown that the vectors ε
(n)
2k ∈ R

m it computes
are given by ratios of determinants of dimension 2k+1 instead of k+1 as in the scalar
case [17], or by designants of dimension k + 1, objects that generalize determinants
in a noncommutative algebra [29].

To remedy the lack, for the vector ε-algorithm, of an algebraic theory similar to
that existing for the scalar one, Brezinski, following the approach of Shanks, obtained
two versions of the so-called topological Shanks transformation [3]. More generally,
they can be applied to sequences of elements of a topological vector space E (thus the
name) on K (R or C) since, for being able to deal with convergence results, E has to
possess a topology. Starting from a relation of the same form as (2.1), that is,

(3.1) a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0 ∈ E, n = 0, 1, . . . ,

where Sn,S ∈ E and ai ∈ K with a0ak �= 0 and a0 + · · ·+ ak �= 0, we again write

a0ΔSn + · · ·+ akΔSn+k = 0

for the indexes n, . . . , n+ k− 1. However, these relations do not allow us to compute
the numbers ai since the Sn are elements of E (in many practical applications they
are vectors of Rm or matrices of dimension m× s). For that purpose, let y ∈ E∗ (the
algebraic dual space of E, that is, the vector space of linear functionals on E), and
take the duality product of these relations with it. We thus obtain

(3.2) a0〈y,ΔSi〉+ · · ·+ ak〈y,ΔSi+k〉 = 0, i = n, . . . , n+ k − 1.

As in the scalar case, if (Sn) does not satisfy (3.1), the preceding relations, together
with the additional condition that the coefficients ai sum up to 1, can still be written.

We thus obtain a system of k + 1 equations in k + 1 unknowns, denoted by a
(n,k)
i ,

similar to (2.3),

(3.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(n,k)
0 + · · · + a

(n,k)
k = 1,

a
(n,k)
0 〈y,ΔSn〉 + · · · + a

(n,k)
k 〈y,ΔSn+k〉 = 0,

...
...

a
(n,k)
0 〈y,ΔSn+k−1〉 + · · · + a

(n,k)
k 〈y,ΔSn+2k−1〉 = 0,
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and we define the first topological Shanks transformation by

êk(Sn) = a
(n,k)
0 Sn + · · ·+ a

(n,k)
k Sn+k, n, k = 0, 1, . . . .

Thus, as in the scalar case, we have

êk(Sn) =

∣∣∣∣∣∣∣∣∣
Sn · · · Sn+k

〈y,ΔSn〉 · · · 〈y,ΔSn+k〉
...

...
〈y,ΔSn+k−1〉 · · · 〈y,ΔSn+2k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

〈y,ΔSn〉 · · · 〈y,ΔSn+k〉
...

...
〈y,ΔSn+k−1〉 · · · 〈y,ΔSn+2k−1〉

∣∣∣∣∣∣∣∣∣

, k, n = 0, 1, . . . ,

where the determinant in the numerator denotes the element of E obtained by devel-
oping it with respect to its first row by the classical rule for expanding a determinant.

Similarly, the second topological Shanks transformation is defined by

ẽk(Sn) = a
(n,k)
0 Sn+k + · · ·+ a

(n,k)
k Sn+2k, n, k = 0, 1, . . . ,

where the a
(n,k)
i ’s are again solution of the system (3.3) and, thus, are identical to the

coefficients in the first topological Shanks transformation. These ẽk(Sn) are given by
the same ratio of determinants as above after replacing the first row in the numerator
by Sn+k, . . . ,Sn+2k.

Obviously, the linear functional y must be chosen so that the system (3.3) is
nonsingular for the values of k and n considered. This condition will always be
assumed in what follows, thus implying that the results hold for all such y. The
choice of y in the vector and matrix cases will be discussed in section 7.

The following fundamental property shows the connection between the scalar and
the topological Shanks transformations.

Property 3.1. Setting Sn = 〈y,Sn〉, the systems (2.3) and (3.3) giving the

coefficients a
(n,k)
i of the scalar, the first, and the second topological Shanks transfor-

mations are the same.
We will see below that this property is a quite fundamental one, having important

consequences for the convergence and the acceleration properties of the topological
Shanks transformations.

For the first and the second topological Shanks transformations, the following
theorem holds.

Theorem 3.2 (see [3]). For all n, êk(Sn) = S and ẽk(Sn) = S if ∃a0, . . . , ak,
with a0ak �= 0 and a0 + · · ·+ ak �= 0, such that, for all n,

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0.

Remark 3.3. Contrarily to Theorem 2.1, the condition of this theorem is only
sufficient. If the condition is satisfied, we also have, for all n,

a0〈y,Sn − S〉+ · · ·+ ak〈y,Sn+k − S〉 = 0.
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Let us mention that other transformations based on a kernel of the form (3.1)
have been studied in the case where E = Rm or Rm×s (see, for example, [9, 20]).
The idea is always to obtain a system of linear algebraic equations allowing one to
compute the coefficients ai appearing in (3.1). In these methods, the relations (3.2)
are replaced by

a0〈yi,0,ΔSn〉+ · · ·+ ak〈yi,k,ΔSn+k〉 = 0, i = 0, . . . , k − 1,

with yi,j = ΔSn+i for the Reduced Rank Extrapolation (rre), yi,j = ΔSn+i+1−ΔSn+i

for the Minimal Polynomial Extrapolation (mpe), and yi,j = yi+1 (arbitrary linearly
independent linear functionals) for the Modified Minimal Polynomial Extrapolation
(mmpe). These methods were recently studied in [21], including the first topological
Shanks transformation.

4. The topological ε-algorithms. Let us now discuss how to compute recur-
sively the elements êk(Sn) ∈ E and ẽk(Sn) ∈ E.

The elements êk(Sn) ∈ E can be recursively computed by the first topological
ε-algorithm (tea1) [3], whose rules are

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̂
(n)
−1 = 0 ∈ E∗, n = 0, 1, . . . ,

ε̂
(n)
0 = Sn ∈ E, n = 0, 1, . . . ,

ε̂
(n)
2k+1 = ε̂

(n+1)
2k−1 +

y

〈y, ε̂(n+1)
2k − ε̂

(n)
2k 〉

∈ E∗, k, n = 0, 1, . . . ,

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε̂
(n+1)
2k − ε̂

(n)
2k

〈ε̂(n+1)
2k+1 − ε̂

(n)
2k+1, ε̂

(n+1)
2k − ε̂

(n)
2k 〉

∈ E, k, n = 0, 1, . . . .

Let us recall that the idea which led to the discovery of the two topological
ε-algorithms for implementing the two versions of the topological Shanks sequence
transformation was based on the definition of the inverse of a couple (u,y) ∈ E ×E∗

defined as u−1 = y/〈y,u〉 ∈ E∗ and y−1 = u/〈y,u〉 ∈ E [3]. Keeping this definition
in mind, we see that the inverse used in the first recurrence relation of the algorithm

is the inverse of ε̂
(n+1)
2k − ε̂

(n)
2k in the couple (ε̂

(n+1)
2k − ε̂

(n)
2k ,y) ∈ E × E∗, while, in

the second relation, we use the inverse of ε̂
(n+1)
2k+1 − ε̂

(n)
2k+1 in the couple (ε̂

(n+1)
2k −

ε̂
(n)
2k , ε̂

(n+1)
2k+1 − ε̂

(n)
2k+1) ∈ E × E∗.

The elements ẽk(Sn) ∈ E of the second topological Shanks transformation can
be recursively computed by the second topological ε-algorithm (tea2) [3], whose rules
are (see [9] for a fortran subroutine)

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̃
(n)
−1 = 0 ∈ E∗, n = 0, 1, . . . ,

ε̃
(n)
0 = Sn ∈ E, n = 0, 1, . . . ,

ε̃
(n)
2k+1 = ε̃

(n+1)
2k−1 +

y

〈y, ε̃(n+1)
2k − ε̃

(n)
2k 〉

∈ E∗, k, n = 0, 1, . . . ,

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε̃
(n+2)
2k − ε̃

(n+1)
2k

〈ε̃(n+1)
2k+1 − ε̃

(n)
2k+1, ε̃

(n+2)
2k − ε̃

(n+1)
2k 〉

∈ E, k, n = 0, 1, . . . .

The following property holds.
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THE SIMPLIFIED TOPOLOGICAL ε-ALGORITHMS A2233

Odd rule (tea1, tea2) Even rule (tea1) Even rule (tea2)

ε
(n)
2k ε̂

(n)
2k↗ ↘ ↘

ε
(n+1)
2k−1 ε

(n)
2k+1 ε̂

(n)
2k+1 ε̃

(n)
2k+1

↘ ↗ ↗ ↘ ↗ ↘
ε
(n+1)
2k ε̂

(n+1)
2k ε̂

(n)
2k+2 ε̃

(n+1)
2k ε̃

(n)
2k+2

↘ ↗ ↘ ↗
ε̂
(n+1)
2k+1 ε̃

(n+1)
2k+1

↗
ε̃
(n+2)
2k

Fig. 2. The relations for the first (tea1) and the second (tea2) topological ε-algorithms (in
the odd rule ε is ε̂ for tea1 and ε̃ for tea2).

Property 4.1 (see [3]).

ε̂
(n)
2k = êk(Sn), 〈y, ε̂(n)2k 〉 = ek(〈y,Sn〉),

ε̂
(n)
2k+1 = y/〈y, êk(ΔSn)〉, ε̂

(n)
2k+1 = y/ek(〈y,ΔSn〉), k, n = 0, 1, . . . .

These relations are also true for the ε̃
(n)
k ’s and the ẽk’s.

Remark 4.2. Due to the first rule of the algorithms, ε̂
(n)
2k+1 = y

∑k
i=0 1/〈y, ε̂(n+1)

2k −
ε̂
(n)
2k 〉, and a similar relation for ε̃

(n)
2k+1, which shows that these elements of E∗ are

multiples of y.
If E = R or C, the rules (4.1) and (4.2) of the first and the second topological

ε-algorithms reduce to those of the scalar ε-algorithm.
The relationships between the elements of E and E∗ in the topological ε-array

involved in these two topological algorithms are shown in Figure 2. The odd rules
(those for computing elements with an odd lower index) have the same structure as
the rule of the scalar ε-algorithm, but the even ones need an additional term of the
topological ε-array.

In the first and the second topological ε-algorithms, the difficulty could be to
compute the duality products appearing in their denominators since they involve linear
functionals which, in the general case, cannot be easily handled on a computer when E

is a general vector space (for example, if Sn is a function and if 〈y,Sn〉 =
∫ b

a
Sn(t)dt).

Of course, when E = Rm or Rm×s, handling linear functionals is trivial because
those spaces are their own dual spaces. However, the duality product has to be
used recursively at each step of the algorithms. Moreover, in the even rules of the
algorithms, the duality has to be taken with linear functionals computed recursively
by the odd rules. These computational problems will be solved by the new algorithms
given in the next section.

5. The simplified topological ε-algorithms. We will now derive new algo-
rithms for implementing the two topological Shanks sequence transformations of sec-
tion 3 which avoid the manipulation of elements of E∗ and the use of the duality
product with y inside the rules of the algorithms. In these new algorithms, the linear
functional y will only be applied to the terms of the initial sequence (Sn). Moreover,
they require the storage of a fewer number of elements of E and no element of E∗
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since they connect only terms with an even lower index in the topological ε-array.
Their implementation will be described in section 7.

5.1. The first simplified topological ε-algorithm. Applying Wynn’s scalar

ε-algorithm (2.4) to the sequence (Sn = 〈y,Sn〉), from Property 4.1, we have ε
(n)
2k =

ek(〈y,Sn〉) and, by Property 2.2, we obtain

ε̂
(n+1)
2k+1 − ε̂

(n)
2k+1 =

y

〈y, êk(ΔSn+1)〉 −
y

〈y, êk(ΔSn)〉
= y

(
1

ek(〈y,ΔSn+1〉) −
1

ek(〈y,ΔSn〉)
)

= y(ε
(n+1)
2k+1 − ε

(n)
2k+1).

Thus, the last relation in (4.1) becomes

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε̂
(n+1)
2k − ε̂

(n)
2k

〈y, ε̂(n+1)
2k − ε̂

(n)
2k 〉(ε(n+1)

2k+1 − ε
(n)
2k+1)

, k, n = 0, 1, . . . .

Moreover, due to Property 4.1, the quantities 〈y, ε̂(n+1)
2k − ε̂

(n)
2k 〉 can be computed

by the scalar ε-algorithm, and we finally obtain the rule

(5.1) ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

1

(ε
(n+1)
2k − ε

(n)
2k )(ε

(n+1)
2k+1 − ε

(n)
2k+1)

(ε̂
(n+1)
2k −ε̂

(n)
2k ), k, n = 0, 1, . . . ,

with ε̂
(n)
0 = Sn ∈ E, n = 0, 1, . . . .

This relation was already given in [3] as Property 10 but not in an algorithmic
form. It shows that the first topological Shanks transformation can now be imple-
mented by a triangular scheme involving the scalar ε-algorithm and elements of E
exclusively, instead of extended rhombus rules needing the duality product with ele-
ments of E∗. Moreover, we now have only one rule instead of two.

Thanks to the recursive rule of the scalar ε-algorithm, the algorithm (5.1) can
also be written under one of the following equivalent forms:

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+1 − ε

(n+1)
2k−1

ε
(n+1)
2k+1 − ε

(n)
2k+1

(ε̂
(n+1)
2k − ε̂

(n)
2k ),(5.2)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

(ε̂
(n+1)
2k − ε̂

(n)
2k ),(5.3)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k + (ε

(n)
2k+1 − ε

(n+1)
2k−1 )(ε

(n)
2k+2 − ε

(n+1)
2k )(ε̂

(n+1)
2k − ε̂

(n)
2k ).(5.4)

Notice that (5.3) can also be written as

ε̂
(n)
2k+2 =

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε

(n)
2k

ε̂
(n+1)
2k − ε

(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

ε̂
(n)
2k(5.5)

= ε̂
(n)
2k +

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε

(n)
2k

(ε̂
(n+1)
2k − ε̂

(n)
2k ).(5.6)

This new algorithm, in any of the preceding forms, is called the first simplified
topological ε-algorithm, and it is denoted by stea1.
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Taking the duality product of y with any of the preceding relations (5.1)–(5.6)
allows one to recover the rule of the scalar ε-algorithm or leads to an identity. The
same is true when E is R or C.

From (5.5), we have the following property.

Property 5.1. The computation of ε̂
(n)
2k+2 is stable for all n if ∃Mk, independent

of n, such that ∣∣∣∣∣ ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε

(n)
2k

∣∣∣∣∣+
∣∣∣∣∣ε

(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

∣∣∣∣∣ ≤ Mk.

Remark 5.2. Although the ε̂
(n)
2k+1’s are no longer needed, it holds from Property

4.1 that ε̂
(n)
2k+1 = ε̂

(n+1)
2k−1 + y/(ε

(n+1)
2k − ε

(n)
2k ), and thus, similarly to Property 2.3, we

obtain ε̂
(n)
2k+1 = y

∑k
i=0 1/Δε

(n+k−i)
2i . Since ΔSn = 〈y,ΔSn〉, we also have, from

what precedes and Property 4.1, ε̂
(n)
2k+1 = yε

(n)
2k+1 and ε

(n)
2k+1 = 1/ek(〈y,ΔSn〉). These

relations also hold for the ε̃
(n)
2k+2’s of the second simplified topological ε-algorithm (see

below).

5.2. The second simplified topological ε-algorithm. Since similar algebraic
properties hold for the second topological Shanks transformation and the second topo-
logical ε-algorithm, we can derive, in the same way, a second simplified topological
ε-algorithm, denoted by stea2. Its rules can be written in any of the four following
equivalent forms:

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

1

(ε
(n+2)
2k − ε

(n+1)
2k )(ε

(n+1)
2k+1 − ε

(n)
2k+1)

(ε̃
(n+2)
2k − ε̃

(n+1)
2k ),

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n+1)
2k+1 − ε

(n+2)
2k−1

ε
(n+1)
2k+1 − ε

(n)
2k+1

(ε̃
(n+2)
2k − ε̃

(n+1)
2k ),

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+2)
2k − ε

(n+1)
2k

(ε̃
(n+2)
2k − ε̃

(n+1)
2k ),

ε̃2k+2
(n) = ε̃

(n+1)
2k + (ε

(n+1)
2k+1 − ε

(n+2)
2k−1 )(ε

(n)
2k+2 − ε

(n+1)
2k )(ε̃

(n+2)
2k − ε̃

(n+1)
2k ),

with ε̃
(n)
0 = Sn ∈ E, n = 0, 1, . . . .

In these formulae, the scalar quantities are the same as those used in the first
simplified topological ε-algorithm, and they are again obtained by applying the scalar
ε-algorithm to the sequence (〈y,Sn〉).

In Figure 3, we show the very simple triangular relationships between the elements
of E in the topological ε-array for the two simplified algorithms. Remark that only
the even terms are needed and computed.

Remark 5.3. Since the ε̂
(n)
2k and the ε̃

(n)
2k are related by a triangular recursive

scheme, they satisfy the theory of reference functionals developed in [12].

6. Convergence and acceleration. Several convergence and acceleration re-
sults for the topological ε-algorithm were already given in [3]. However, the conditions
of these theorems are difficult to check since they involved elements of E∗ which are
recursively computed. The fact that now the simplified algorithms no longer involve
these linear functionals will allow us to obtain new results, easier to verify in practice.
Thus, the simplified ε-algorithms not only play a major role in the implementation of
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stea1 stea2

ε̂
(n)
2k ↘

ε̂
(n+1)
2k −→ ε̂

(n)
2k+2 ε̃

(n+1)
2k −→ ε̃

(n)
2k+2

↗
ε̃
(n+2)
2k

Fig. 3. The relations for the first (stea1) and the second (stea2) simplified topological ε-
algorithms.

the topological Shanks transformations, but they also have a primary impact on the
theoretical results that can be proved.

Property 3.1 means that the numbers ek(Sn), obtained by applying the scalar
Shanks transformation to the sequence of numbers (Sn = 〈y,Sn〉), and the elements
êk(Sn) and ẽk(Sn) of E, obtained by the topological Shanks transformations applied
to the sequence (Sn) of elements of E, are computed by a linear combination with the
same coefficients. It implies that, under some circumstances, the sequences (ek(Sn)),
(êk(Sn)), and (ẽk(Sn)) can share similar convergence and acceleration behaviors, and
we will now illustrate this fact.

Let us begin by two results about important classes of sequences which, despite
their simplicity, remained unnoticed.

Definition 6.1. A sequence of vectors in Rm or matrices in Rm×s is totally
monotonic, and we write (Sn) ∈ TM if, for all k and n, (−1)kΔkSn ≥ 0, where the
inequality has to be understood for each component of the vectors or each element of
the matrices. A sequence of vectors or matrices is totally oscillating, and we write
(Sn) ∈ TO if ((−1)nSn) ∈ TM.

In the scalar case, these sequences were first studied by Wynn [41], and his results
were complemented by Brezinski [1, 2]. Their construction and their properties were
studied in [5, 42]. For the vector and the matrix cases, we have the following new
results.

Theorem 6.2. If (Sn) converges to S, if (Sn = 〈y,Sn〉) ∈ TM, and if ∃a �= 0
and b ∈ Rm (or Rm×s in the matrix case) such that (aSn + b) ∈ TM, then

0 ≤ aε̂
(n)
2k+2 + b ≤ aε̂

(n)
2k + b, 0 ≤ aε̂

(n+1)
2k + b ≤ aε̂

(n)
2k + b,

0 ≤ aε̂
(n)
2k+2 + b ≤ aε̂

(n+1)
2k + b, 0 ≤ aε̂

(n)
2k+2 + b ≤ aε̂

(n+2)
2k + b,

∀k, fixed, lim
n→∞ ε̂

(n)
2k = S, ∀n, fixed, lim

k→∞
ε̂
(n)
2k = S.

Moreover, if limn→∞〈y,Sn+1 − S〉/〈y,Sn − S〉 �= 1, then

∀k, fixed, lim
n→∞ ‖ε̂(n)2k − S‖/‖Sn+2k − S‖ = 0,

∀n, fixed, lim
k→∞

‖ε̂(n)2k − S‖/‖Sn+2k − S‖ = 0.

The same results hold for the ε̃
(n)
2k .

Proof. Since the coefficients a
(n,k)
i in (2.3) and (3.3) are the same, then, if (Sn) ∈

TM or TO and if (Sn = 〈y,Sn〉) ∈ TM or TO, the scalars ε
(n)
2k , the components of
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the vectors or the elements of the matrices ε̂
(n)
2k , and those of ε̃

(n)
2k satisfy the same

inequalities, which proves the results.
Equivalent results hold for TO sequences of vectors and matrices. The proof is

the same as for the preceding theorem.
Theorem 6.3. If (Sn) converges to S, if (Sn = 〈y,Sn〉) ∈ TO, and if ∃a �= 0

and b ∈ Rm (or Rm×s in the matrix case) such that (aSn + b) ∈ TO, then

0 ≤ aε̂
(2n)
2k+2 + b ≤ aε̂

(2n)
2k + b, a(ε̂

(2n+1)
2k − ε̂

(2n)
2k ) ≤ a(ε̂

(2n+1)
2k+2 − ε̂

(2n)
2k+2) ≤ 0,

aε̂
(2n+1)
2k + b ≤ aε̂

(2n+1)
2k+2 + b ≤ 0, 0 ≤ a(ε̂

(2n+2)
2k+2 − ε̂

(2n+1)
2k+2 ) ≤ a(ε̂

(2n+2)
2k − ε̂

(2n+1)
2k ),

0 ≤ aε̂
(2n)
2k+2 + b ≤ aε̂

(2n+2)
2k + b, ∀k, fixed, lim

n→∞ ε̂
(n)
2k = S,

aε̂
(2n+3)
2k + b ≤ aε̂

(2n+1)
2k+2 + b ≤ 0, ∀n, fixed, lim

k→∞
ε̂
(n)
2k = S.

Moreover,

∀k, fixed, lim
n→∞ ‖ε̂(n)2k − S‖/‖Sn+2k − S‖ = 0,

∀n, fixed, lim
k→∞

‖ε̂(n)2k − S‖/‖Sn+2k − S‖ = 0.

The same results hold for the ε̃
(n)
2k .

Remark 6.4. If the vectors Sn belong to TM or TO and if y ≥ 0, then (Sn =
〈y,Sn〉) ∈ TM or TO. If the matrices Sn belong to TM and if y is the linear form
such that, for any matrix M, 〈y,M〉 = trace(M), then (Sn = 〈y,Sn〉) ∈ TM or TO.
Thus, the convergence of the first simplified topological ε-algorithm depends on the
behavior of the scalar one, and the choice of y intervenes in the conditions to be
satisfied. As noticed in [25], if, for all n, Sn ∈ Rm is replaced by DSn, where D
is a diagonal regular matrix of dimension m, and if y is replaced by λD−1y, where

λ is a nonzero scalar, then, for all k and n, ε̂
(n)
2k becomes Dε̂

(n)
2k and ε̂

(n)
2k+1 becomes

D−1ε̂
(n)
2k+1. The same property holds for the ε̃

(n)
k ’s. This remark allows one to extend

the two previous theorems.
Let us continue by some other convergence and acceleration results that would not

have been easily obtained directly from the determinantal formulae of the topological
Shanks transformations or from the rules of the topological ε-algorithms.

Assume now that E is a normed vector space and that y ∈ E′ ⊆ E∗, where E′

is the space of all continuous linear functionals on E. We will consider only the case
of the first transformation and the first algorithm; the second ones could be treated
similarly and lead to equivalent results.

Let us set

(6.1) r
(n)
k = (ε

(n)
2k+2 − ε

(n+1)
2k )/(ε

(n+1)
2k − ε

(n)
2k ).

The rule (5.3) of the first simplified topological ε-algorithm gives∥∥∥ε̂(n)2k+2 − ε̂
(n+1)
2k

∥∥∥ / ∥∥∥ε̂(n+1)
2k − ε̂

(n)
2k

∥∥∥ = |r(n)k |,

which shows that both ratios have the same form and behave similarly. We have the
following convergence result.

Theorem 6.5. If limn→∞ ε̂
(n)
2k = S, and if ∃M such that, for all n ≥ N , |r(n)k | ≤

M , then limn→∞ ε̂
(n)
2k+2 = S.

D
ow

nl
oa

de
d 

10
/0

6/
14

 to
 1

47
.1

62
.2

2.
17

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2238 C. BREZINSKI AND M. REDIVO–ZAGLIA

Proof. The relation (5.3) can be written as

ε̂
(n)
2k+2 = (1 + r

(n)
k )ε̂

(n+1)
2k − r

(n)
k ε̂

(n)
2k .

By the assumption on r
(n)
k and since the two scalar coefficients in the right-hand side

sum up to 1, the conditions of the Toeplitz theorem for summation processes are
satisfied, which proves the result.

The other forms of the first simplified ε-algorithm lead to different ratios linking
its behavior with that of the scalar ε-algorithm

Let us now give an acceleration result in the case where E = Rm, m > 1.

Theorem 6.6. Assume that E = Rm, that r
(n)
k = rk + o(1) with rk �= −1, and

that for all i, (ε̂
(n+1)
2k − S)i/(ε̂

(n)
2k − S)i = rk/(1 + rk) + o(1). Then limn→∞ ‖ε̂(n)2k+2 −

S‖/‖ε̂(n)2k − S‖ = 0.
Proof. Writing (5.3) as (which is the same as (5.5))

ε̂
(n)
2k+2 − S = (1 + r

(n)
k )(ε̂

(n+1)
2k − S)− r

(n)
k (ε̂

(n)
2k − S),

we have from the assumptions on r
(n)
k and on the components of the vectors

(ε̂
(n)
2k+2−S)i = [(1+rk+o(1))(rk/(1+rk)+o(1))−(rk+o(1))](ε̂

(n)
2k −S)i = o(1)(ε̂

(n)
2k −S)i.

Thus, we prove the result since all norms are equivalent.
Remark 6.7. By the assumptions on the components of the vectors, it holds,

for the scalar ε-algorithm, that limn→∞(ε
(n+1)
2k − S)/(ε

(n)
2k − S) = rk/(1 + rk). Since

r
(n)
k = rk + o(1) and

r
(n)
k =

(
ε
(n)
2k+2 − S

ε
(n)
2k − S

− ε
(n+1)
2k − S

ε
(n)
2k − S

)/(ε
(n+1)
2k − S

ε
(n)
2k − S

− 1

)
,

it follows that we also have limn→∞(ε
(n)
2k+2 − S)/(ε

(n)
2k − S) = 0.

Let us now give convergence and acceleration results concerning four special types
of sequences. These sequences were considered by Wynn in the scalar case for the
scalar ε-algorithm [41]. We will see that his results can be extended to similar se-
quences of elements of E. The first result is the following.

Theorem 6.8. We consider sequences of the form

(a) Sn − S ∼
∞∑
i=1

aiλ
n
i ui (n → ∞) or (b) Sn − S ∼ (−1)n

∞∑
i=1

aiλ
n
i ui (n → ∞),

where ai, λi ∈ K, ui ∈ E, and 1 > λ1 > λ2 > · · · > 0. Then, when k is fixed and n
tends to infinity,

ε̂
(n)
2k − S = O(λn

k+1),
‖ε̂(n)2k+2 − S‖
‖ε̂(n)2k − S‖

= O((λk+2/λk+1)
n).

Proof. We consider sequences of the form (a). We have

〈y,Sn〉 − 〈y,S〉 ∼
∞∑
i=1

aiλ
n
i 〈y,ui〉.
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If the scalar ε-algorithm is applied to the sequence (〈y,Sn〉), Wynn [41] proved that

ε
(n)
2k − 〈y,S〉 = ak+1

(λk+1 − λ1)
2 · · · (λk+1 − λk)

2

(1− λ1)2 · · · (1− λk)2
λn
k+1〈y,uk+1〉+O(λn

k+2).

After some algebraic manipulations using (6.1), we get

r
(n)
k ∼ λk+1

1− λk+1
+

ak+2〈y,uk+2〉(λk+2 − λ1)
2 · · · (λk+2 − λk+1)

2

ak+1〈y,uk+1〉(λk+1 − λ1)2 · · · (λk+1 − λk)2(1− λk+1)3

(
λk+2

λk+1

)n
+ o

(
λk+2

λk+1

)n
.

Assume that

ε̂
(n)
2k − S ∼

p∑
i=k+1

αk,iλ
n
i ui,

where the coefficients αk,i depend on k and i but not on n (by assumption, this is
true for k = 0).

Plugging this relation into the rule (5.3) of the first simplified topological ε-

algorithm, and using the preceding expression for r
(n)
k , we obtain (see [4] for a similar

proof) that

ε̂
(n)
2k+2 − S ∼ 1

1− λk+1

(
p∑

i=k+1

αk,iλ
n+1
i ui − λk+1

p∑
i=k+1

αk,iλ
n
i ui

)
,

which proves the first result by induction. The second result follows immediately.
The proof for sequences of the form (b) is similar to the preceding case by replacing

each λi by −λi.
An application of this result will be given in section 8.1.

The next theorem is obtained by expressing r
(n)
k as above and using the result of

Wynn for the scalar case [41].
Theorem 6.9. We consider sequences of the form

Sn − S ∼
∞∑
i=1

ai(n+ b)−iui (n → ∞),

where ai, b ∈ K, ui ∈ E. Then, when k is fixed and n tends to infinity,

ε̂
(n)
2k − S ∼ a1u1

(k + 1)(n+ b)
.

Thus, when n tends to infinity, the sequence (ε̂
(n)
2k+2) does not converge to S faster

than the sequence (ε̂
(n)
2k ). We finally have a last result whose proof uses (5.6) and the

expression given by Wynn [41] in the scalar case.
Theorem 6.10. We consider sequences of the form

Sn − S ∼ (−1)n
∞∑
i=1

ai(n+ b)−iui (n → ∞),
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where ai, b ∈ K, ui ∈ E. Then, when k is fixed and n tends to infinity,

ε̂
(n)
2k − S ∼ (−1)n

a1(k !)2u1

4k(n+ b)2k+1
,

‖ε̂(n)2k+2 − S‖
‖ε̂(n)2k − S‖

= O(1/(n+ b)).

The results of [16] about sequences with more complicated asymptotic expansions
could possibly be extended similarly to the first simplified topological ε-algorithm.
Since the vector E-algorithm [7] can be used for implementing the first topological
Shanks transformation, the acceleration results proved for it should also be valid for
the first simplified topological ε-algorithm [23].

7. Implementation and performances. To implement all the ε-algorithms
and to construct the ε-array, the simplest procedure is to store all its elements for
all k and n. Starting from a given number of terms in the two initial columns (the
second one for the simplified algorithms), the other columns are computed one by
one, each of them having one less term than the preceding one (two less terms for the
simplified algorithms). Thus, a triangular part of the ε-array is obtained (only the
even columns in the simplified cases), as can be seen in Figure 1. However, such a
procedure requires storing all the elements of this triangular part, and it can be costly
for sequences of vectors or matrices.

A better procedure, which avoids storing the whole triangular array, is to add each
new term of the original sequence one by one and to proceed with the computation of
the ε-array by ascending diagonal as far as possible (or required). This technique was
invented by Wynn for the scalar ε-algorithm and other algorithms having a similar
structure [38, 40] (see also [9, pp. 397ff.]), including the vector ε-algorithm [37]. It
can be summarized as follows: after having computed a triangular part of the ε-
array and stored only its last ascending diagonal (for example, the ascending diagonal

ε
(3)
0 , ε

(2)
1 , ε

(1)
2 , ε

(0)
3 of Figure 1 which contains all the terms needed for computing the

next diagonal), a new element of the initial sequence is introduced (ε
(4)
0 = S4 in our

example), and the next ascending diagonal is computed element by element, that is,

ε
(3)
1 , ε

(2)
2 , ε

(1)
3 , ε

(0)
4 , by using the rhombus rule of the algorithm. This technique requires

only the storage of one ascending diagonal and three temporary auxiliary elements.

Let us mention that, for computing the descending diagonal ε
(0)
0 , ε

(0)
1 , ε

(0)
2 , . . ., the new

ascending diagonal has to be computed as far as possible, while, for computing the

descending column ε
(0)
2k , ε

(1)
2k , ε

(2)
2k , . . ., for a fixed value of k, the new ascending diagonal

has to be computed only until the column 2k has been reached.
In the topological ε-algorithms, the odd rule has the same form as the rule of

the scalar ε-algorithm, but the even rule needs an extra element, as shown in Figure
2. This is not a problem for implementing tea2 by exactly the same technique as

Wynn’s since the extra term, namely ε̃
(n+2)
2k needed for computing ε̃

(n)
2k+2, was already

computed in the diagonal we are constructing. Thus, it is necessary to store only the
preceding diagonal consisting of elements of E and E∗.

Contrarily to tea2, for implementing tea1, the extra element, namely ε̂
(n)
2k , is in

the diagonal above the preceding one. Thus, in addition to the full preceding diagonal,
we also need to store the even elements of the diagonal above it. Thus, in total, one
and a half diagonals (of elements of E and E∗) have to be stored.

For the simplified topological ε-algorithms, only elements with an even lower index
are used and computed, and the rules are shown in Figure 3. Similar considerations
as above can be made for the new algorithms. Thus, for stea1, by the ascending
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diagonal technique, one need only store the elements of E, that is, those with an even
lower index, located in the two preceding diagonals, and, for stea2, only the elements
of E located in the preceding diagonal.

Of course, we also have to compute, by the ascending diagonal technique of Wynn,
the elements of the scalar ε-array, but this is cheep in terms of storage requirements
and arithmetical operations. Each new scalar term Sn is obtained by computing the
duality product of Sn with y and is immediately used for building the new ascending
diagonal of the scalar ε-array. Then, the new ascending diagonal of the topological ε-
array consisting only of elements of E is constructed. A paper with the corresponding
matlab programs is in preparation.

The storage requirements of the four topological algorithms for computing ε̂
(0)
2k or

ε̃
(0)
2k , including the temporary auxiliary elements, are given in Table 1.

Table 1

Storage requirements.

Algorithm # elements ε-array In spaces # auxiliary elements

tea1 3k E,E∗ 3

stea1 2k E 2

tea2 2k E,E∗ 3

stea2 k E 2

Let us now discuss some possible choices for the linear functional y ∈ E∗. When
E = Cm, we can define it as y : Sn ∈ Cm �−→ 〈y,Sn〉 = (y,Sn), the usual inner
product of the vectors y and Sn, or, more generally, as (y,MSn), where M is some
matrix.

When E = Cm×m, the linear functional y ∈ E∗ can be defined as y : Sn ∈
Cm×m �−→ 〈y,Sn〉 = trace(Sn) or, more generally, for Sn ∈ Cm×s, as trace(YTSn),
where Y ∈ Cm×s. We can also define y by (u,Snv), where u ∈ Cm and v ∈ Cs.

The simplified topological ε-algorithms for implementing the topological Shanks
transformations also allow us to improve its numerical stability. This is due to the
existence, for the scalar ε-algorithm, of particular rules derived by Wynn [39] for this
purpose, while the topological ε-algorithms have no particular rules (such rules also
exist for other acceleration algorithms [28]). These particular rules are used as soon
as, for some fixed p,

|ε(n+1)
k − ε

(n)
k |/|ε(n)k | < 10−p.

When this condition is satisfied, a so-called singularity occurs, the particular rule is
used instead of the normal one for computing the term of the table possibly affected by
numerical instability, and a counter σ indicating the number of singularities detected
is increased by 1.

Let us give two numerical examples which show the gain in numerical stability
and accuracy brought by the simplified topological ε-algorithms with the particular
rules of the scalar ε-algorithm. We denote by stea1–1, stea1–2, stea1–3, and
stea1–4, respectively, the four rules (5.1)–(5.4) of the first simplified topological ε-
algorithm, and we use similar notation for the equivalent forms of the second simplified
topological ε-algorithm given in section 5.2.

We consider the sequence of vectors defined by

S0 = r, S1 = (1, . . . , 1)T , S2 = (1, . . . , 1)T + 10−11r, S3 = S0, S4 = S0 + 10−11r,
Sn = 3Sn−1 − Sn−2 + 2Sn−3 + Sn−4 − 5Sn−5, n = 5, 6, . . . ,
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Table 2

Performances of the various algorithms for a sequence of vectors.

p = 12 p = 13

Algorithm σ ‖ε(0)10 ‖∞ σ ‖ε(0)10 ‖∞

tea1 9.92 × 10−1 9.92× 10−1

stea1–x 2 9.35 × 10−4 0 1.15

tea2 6.01 6.01

stea2–1 2 9.42× 10−13 0 3.10

stea2–2 2 1.67× 10−12 0 3.10

stea2–3 2 9.46× 10−13 0 3.10

stea2–4 2 1.66× 10−12 0 3.10

where r is a fixed random vector whose components are uniformly distributed in [0, 1].
Since the vectors Sn satisfy a linear difference equation of order 5 whose constant term

is 0, we must have, from (3.1) and Theorem 3.2, ε̂
(n)
10 = ε̃

(n)
10 = 0 for all n. With vectors

of dimension 10000 and y = (1, . . . , 1)T , we obtain the results of Table 2 (stea1–x

denotes any of the forms of the algorithm). The notation ε
(0)
10 corresponds to ε̂

(0)
10 for

tea1 and stea1–x, and to ε̃
(0)
10 for tea2 and stea2–x. We can see the important

improvement obtained by stea2 when σ = 2 singularities have been detected and
treated by the particular rules of the scalar ε-algorithm.

Table 3

Performances of the various algorithms for a sequence of matrices.

p = 7 p = 8 p = 10

Algorithm σ ‖ε(0)10 ‖∞ σ ‖ε(0)10 ‖∞ σ ‖ε(0)10 ‖∞

stea1–x 2 6.14× 10−7 1 1.04 0 1.04

stea2–1 2 1.31× 10−12 1 3.02 0 3.02

stea2–2 2 1.05× 10−12 1 3.02 0 3.02

stea2–3 2 1.30× 10−12 1 3.02 0 3.02

stea2–4 2 1.04× 10−12 1 3.02 0 3.02

Let us now consider the case where the Sn’s are m × m matrices constructed
exactly by the same recurrence relation as the vectors of the previous example and
with the same initializations (r is now a fixed random matrix). The linear functional
y is defined as 〈y,Sn〉 = trace(Sn). For m = 2000, we obtain the results of Table
3. We remark that the treatment of only one singularity is not enough for avoiding
numerical instability but that, when σ = 2, both stea1 and stea2 give pretty good
results, which underlines the importance of detecting the singularities and using the
particular rules.

To end this section, we want to add two remarks. In our tests, even if the speed of
convergence is the same, the results obtained with stea2 are often better. This could
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be due to the fact that stea2 computes a combination (with the same coefficients)
of Sn+k, . . . ,Sn+2k (which are usually closer to S) instead of Sn, . . . ,Sn+k for stea1.
Also, from the tests performed, we cannot decide which of the four equivalent forms of
each simplified algorithm seems to be the most stable one. However, these experiments
suggest that we avoid using terms of the scalar ε-algorithm with an odd lower index,
and thus, in the next section, where some applications of the topological Shanks
transformations are presented, we will show only the results obtained by stea1–3

and stea2–3.

8. Applications. We consider two types of applications, one with sequences of
vectors and another one with sequences of matrices.

8.1. System of equations. There exist many iterative methods for solving
systems of nonlinear and linear equations. For nonlinear systems, the ε-algorithms
(scalar, vector, topological) lead to methods with a quadratic convergence under some
assumptions [9]. For linear systems, these algorithms are, in fact, direct methods, but
they cannot be used in practice since the computation of the exact solution requires
too much storage. However, they can be used for accelerating the convergence of
iterative methods. Let us look at such an example.

Kaczmarz’s method [22] is an iterative method for linear equations. It is used, in
particular, in tomographic imaging, where it is known as the Algebraic Reconstruction
Technique (art). It is well suited for parallel computations and large-scale problems
because each step requires only one row of the matrix (or several rows simultaneously
in its block version) and no matrix-vector products are needed. It is always converging,
but its convergence is often quite slow. Procedures for its acceleration were studied
in [10]. For the parter matrix (a Cauchy matrix and a Toeplitz matrix with singular
values near π and with elements 1/(i− j + 0.5)) of dimension 5000 from the matlab

gallery of test matrices with x = (1, . . . , 1)T , b = Ax computed accordingly, and
y = b, Kaczmarz’s method achieves an error of 3.44× 10−1 after 48 iterations. With
k = 1, 3, or 5, all our algorithms produce an error between 10−12 and 10−13 after
41, 24, and 19 iterations, respectively. The simplified ε-algorithm requires only the
computation of 2k + 1 scalar products, some simple arithmetical operations, and the
storage of a number of auxiliary vectors, as stated in Table 1. Thanks to the ascending
diagonal technique presented in the preceding section, it can be applied simultaneously
to the computation of the iterates of Kaczmarz’s method. As soon as a new iterate
of it is obtained, its scalar product with y is computed and the iterate is no longer
required. Thus, the parallelism of Kaczmarz’s method is not affected.

Kaczmarz’s method belongs to the class of Alternating Projection Methods for
finding a point in the intersection of several subsets of an Hilbert space. They are
studied in [14], where some procedures for their acceleration are given. The algorithms
proposed in this paper could also be helpful in this context.

8.2. Matrix equations. Matrix equations, such as the algebraic Riccati, Lya-
punov, or Sylvester equations, form an important domain of numerical analysis, and
they intervene in many applications: Newton’s method for computing the inverse of a
matrix, or its square root, or the matrix sign function, etc.; see [15] for some of these
applications. Let us also mention the computation of matrix functions. The solution
of these problems usually requires iterative methods.

To illustrate our algorithms, let us consider some examples where a sequence of
square matrices Sn ∈ Rm×m has to be accelerated. In these examples, the duality
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product with y corresponds to the trace of the matrix.
Example 1. A new inversion-free iterative method for obtaining the minimal

Hermitian positive definite solution of the matrix rational equation F (S) = S +
A∗S−1A− I = 0, where I is the identity matrix and A is a given nonsingular matrix,
was proposed in [26]. It consisted of the following iterations, denoted by ns:

Sn+1 = 2Sn − SnA
−∗(I− Sn)A

−1Sn, n = 0, 1, . . . ,

with S0 = AA∗. All iterates Sn are Hermitian. The inverse of A has to be computed
once at the beginning of the iterations, each of them needing three matrix-matrix
products since SnA

−∗ is the conjugate transpose of A−1Sn. However, in practice,
rounding errors destroy the Hermitian character of Sn when n grows. Thus, it is better
to program the method as written above without using the conjugate transpose of
A−1Sn, and, thus, each iteration requires four matrix-matrix products, as explained
in [27].

We tried the five examples given in [26]. Each of them corresponds to a different
nonsingular matrix A of dimension 3 or 4. For example 1, the gain is only one or two
iterations. For example 2, the same precision is obtained by stea1 and stea2 with
k = 1 in 19–20 iterations instead of 27 for ns, and in 16 for k = 2 and k = 3. For
examples 3 and 5, no acceleration is obtained since the ns iterations converge pretty
well. As proved in [13], a universal algorithm able to accelerate the convergence of
all converging sequences cannot exist. Even for large classes of special sequences such
an algorithm cannot exist. Thus, a gain can only be guaranteed under theoretical
results.

For example 4, we have the results of Table 4. If we denote by m the number of
terms of ns used, the results given in this table correspond to the Frobenius norm of

F (ε
(m−2k)
2k ) for the simplified ε-algorithms, and to that of F (Sm) for ns.

Table 4

Performances of the various algorithms for the equation F (S) = 0 (Example 1).

k = 1 k = 2 k = 3

Algorithm m Frob. norm m Frob. norm m Frob. norm

stea1 60 1.47× 10−15 60 1.52× 10−15 43 1.63× 10−15

ns 60 6.80× 10−9 60 6.80× 10−9 43 5.62× 10−7

stea2 61 1.84× 10−15 61 1.93× 10−15 49 1.61× 10−15

ns 61 5.25× 10−9 61 5.25× 10−9 49 1.18× 10−7

Example 2. More generally, consider now the matrix equation S+A∗S−qA = Q
for 0 < q ≤ 1. It can be solved by the iterative method (2.6) of [43],

Sn = Q−A∗Sq
nA,

Yn+1 = 2Yn −YnSnYn,

with Y0 = (γQ)−1 and γ conveniently chosen. For example 4.2 of dimension 5 with
q = 0.7 and γ = 0.9985 treated in [43], the Euclidean norm of the error is 1.30×10−10

at iteration 13 of the iterative method, while, with k = 3, it is 5.8× 10−11 for stea1
and 6.5 × 10−14 for stea2. At iteration 17, the norm of the error of the iterative
method is 4.11× 10−14, that of stea1 is 3.5× 10−12, and stea2 gives 1.49× 10−14.
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This example illustrates the fact that no improvement is obtained when the iterative
method converges pretty well. We also see that stea2 gives slightly better results
than stea1. However, when full machine precision is reached, the two algorithms are
equivalent.

For the same example, but now with q = 0.5, we obtain the results of Figure
4(left). The solid line represents the iterative method, the dash-dotted curve is ob-
tained by stea1, and the dashed one is obtained by stea2. This example clearly
shows the acceleration which can be brought by the algorithms.
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Fig. 4. Iterative method (solid line), stea1 (dash-dotted line), and stea2 (dashed line) for
Examples 2 (left) and 3 (right).

Example 3. We consider now the symmetric Stein matrix equation, also called
the discrete-time Lyapunov equation, S −ASAT = FFT , F ∈ Rm×s, s � m, with
the eigenvalues of A inside the unit disk. As explained in [21], this equation can be
solved by the iterative method given in [34], Sn+1 = FFT + ASnA

T , n = 0, 1, . . . ,
with S0 = 0.

The results of Figure 4(right) correspond to the moler matrix for A divided by
an adequate factor so that its spectral radius is equal to 0.9. The moler matrix
is a symmetric positive definite matrix with one small eigenvalue. Its elements are
aij = min(i, j) − 2 and aii = i. The matrix F is the parter matrix of dimension
500 × 30. These two matrices are from the matlab gallery of test matrices. We
took k = 3 in the simplified algorithms.

9. Conclusions. To conclude, let us summarize the characteristics of the old
and new algorithms for implementing the topological Shanks transformations and
compare them.

Topological ε-alg. (tea1, tea2) Simplified ε-alg. (stea1, stea2)

– two rules; – only one rule;
– storage of one and a half ascending diag-
onals for tea1, and one ascending diagonal
for tea2;

– storage of two half ascending diagonals for
stea1, and half of an ascending diagonal for
stea2;

– storage of elements of E and E∗; – storage of only elements of E;
– use of the duality product by elements of
E∗ computed recursively, and by y inside
the rule of the algorithms;

– application of y only to Sn ∈ E, and no
use of the duality product inside the rules;

– convergence and acceleration results diffi-
cult to obtain (rules too complicated);

– possibility of proving convergence and ac-
celeration results;

– numerical instability can be present. – possibility of improving the numerical sta-
bility.
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