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Objective: HIV infection is characterized by several immune dysfunctions of both
CD8þ and CD4þ T cells as hyperactivation, impairment of functionality and expansion
of memory T cells. CD8þ T-cell dysfunctions have been associated with increased
expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-
regulation of CD127. The HIV-1 Tat protein, which is released by infected cells and
detected in tissues of HIV-positive individuals, is known to contribute to the dysregula-
tion of CD4þ T cells; however, its effects on CD8þ T cells have not been investigated.
Thus, in this study, we sought to address whether Tat may affect CD8þ T-cell
functionality and programming.

Methods: CD8þ T cells were activated by TCR engagement in the presence or absence
of Tat. Cytokine production, killing capacity, surface phenotype and expression of
transcription factors important for T-cell programming were evaluated.

Results: Tat favors the secretion of interleukin-2, interferon-g and granzyme B in CD8þ

T cells. Behind this functional modulation we observed that Tat increases the expression
of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated
CD8þ T lymphocytes. This effect is associated with the down-regulation of CD127 and
the up-regulation of CD27.

Conclusion: Tat deeply alters the programming and functionality of CD8þ T lympho-
cytes. � 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins
AIDS 2014, 28:000–000
Keywords: CD8þ, Eomes, HIV, immune activation, T-cell programming,
Tat, T-bet
Introduction

HIV is one of the major plagues in the world for the
number of people infected and deaths per year [1]. The
most devastating damages caused by HIV infection
are observed at the level of cellular immunity, and include
the depletion of CD4þ T cells and important dysfunc-
tions of both CD8þ and CD4þ T cells as impairment of
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functionality [2,3], exhaustion [4], increased T-cell
proliferation [5], susceptibility to apoptosis [6,7] and
expansion of memory T cells [8–10]. This status of
chronic immune activation and immune senescence
involves the whole T-cell compartment, including
uninfected and non-HIV-specific T cells [11], is also
present during antiretroviral therapy (ART) and con-
tributes to the appearance of AIDS-defining and
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f Life Sciences and Biotechnology, University of Ferrara, via

the writing of this article.

April 2014.

ealth | Lippincott Williams & Wilkins 1

mailto:r.gavioli@unife.it
http://dx.doi.org/10.1097/QAD.0000000000000315


Co

CE: Namrta; AIDS-D-14-00119; Total nos of Pages: 10;

AIDS-D-14-00119

2 AIDS 2014, Vol 00 No 00
nondefining diseases [12]. Different mechanisms con-
tribute to these phenomena, including CD4þ T-cell loss,
viral replication and effects of HIV proteins such as gp120,
Nef and Tat [5,11].

Several studies have reported that the HIV-1 Tat protein
activates CD4þ T cells and increases pro-inflammatory
cytokine production in both HIV-infected and unin-
fected cells [13–15]. In fact, Tat, in addition to be
required for viral replication and infectivity [16,17], is
released extracellularly [18], even during ART [19], and
enters neighboring cells, affecting their functionality
[20–24]. Moreover, it has been demonstrated that anti-
Tat immunity is important for disease control and
restoration of immune functions [25,26], suggesting that
Tat may contribute to immune activation. In accordance
with this hypothesis, we have recently shown in murine
models that Tat favors the activation and the expansion of
antigen-specific CTLs and modulates antiviral responses
causing dysfunctions similar to those observed in HIV-
infected individuals [22,27].

Dysfunctionality of T lymphocytes in HIV-positive
patients has been linked to the deep modification of
their transcriptional profile [28,29]. In particular, it has
been shown that CD8þ T cells from HIV-positive
patients display an effector phenotype and a simultaneous
increased expression of two T-box transcription factors,
T-bet and Eomesdermin (Eomes), which correlate with
viral load and decrease after ART [29]. T-bet and Eomes
are the master regulators of effector and memory
functions in CD8þ T cells [30]. Indeed, it has been
shown that, although both transcription factors are
important for the generation of different memory T-cell
subsets, higher T-bet expression favors a short-lived
effector phenotype, whereas higher Eomes expression is
important for development of central memory T cells
[31,32]. Moreover, T-bet and Eomes expression is
modulated by Bcl-6 and Blimp-1 [33]. Bcl-6 plays a
central role in survival and proliferation of T cells,
whereas Blimp-1 is required for the development of
CTLs and terminal effector cells [33–35]. These
transcription factors are regulated by or regulate
interferon (IFN)-g and interleukin (IL)-2 signaling
[34–36]. As we have shown in murine models that Tat
enhances TCR stimulation favoring IFN-g production
[27], and several works describe that Tat increases IL-2
release in CD4þ T cells [13,15], we sought to determine
whether Tat may favor the activation of human CD8þ

T cells affecting the expression of these transcription
factors. We demonstrate here for the first time that CD8þ

T cells activated in the presence of Tat enhance their
effector functions and display an increased expression of
those transcription factors important for T-cell program-
ming.

Thus, this study provides evidence that Tat modulates
the functionality and the fate of human CD8þ T
pyright © Lippincott Williams & Wilkins. Unautho
lymphocytes, suggesting that this viral protein contributes
to T-cell dysfunctions during HIV infection.
Materials and methods

Human cells and culture conditions
Buffy coats from healthy volunteers who provided
consent were obtained from the University Hospital of
Ferrara. Peripheral blood lymphocytes (PBLs) were
separated by use of Ficoll–Hypaque (Lonza, Basel,
Switzerland) density gradient centrifugation followed by
90 min of adhesion on a plastic support at 378C to
remove monocytes.

Peripheral blood lymphocytes (3� 106) were cultured in
2 ml of RPMI (Gibco, Life Technologies, Carlsbad,
California,USA) containing 10% FCS (complete medium)
in the absence or presence of the Tat protein in 24-well flat
bottomed polystyrene plates coated overnight at 48C with
PBS or anti-CD3 mAb (0.5 mg/ml; R&D Systems,
Minneapolis, Minnesota, USA). Soluble anti-CD28
mAb (0.1 mg/ml; R&D Systems), Tat and anti-Tat
immune sera were added, when indicated, after cell
seeding. In the blocking experiments with anti-integrin
antibodies, cells were preincubated with 10 mg/ml of anti-
a5b1 and anti-avb3 antibodies (Merck Millipore, Billerica,
Massachusetts, USA) on rotation in RPMI þ 0.05% BSA
for 1 h at room temperature.

CD8þ T cells were sorted by MACS magnetic negative
selection (Miltenyi Biotec, Bergish Gladbach, Germany)
according to manufacturer’s instructions (purity >95%
assessed by FACS).

Tat protein
HIV-1 Tat from the human T-lymphotropic virus type
IIIB isolate (BH10 clone) was expressed in Escherichia coli
and purified by heparin-affinity chromatography and
HPLC, as described previously [20]. The lyophilized Tat
protein was stored at �808C to prevent oxidation,
reconstituted in degassed buffer before use, and handled,
as described [20]. Endotoxin concentration was undetect-
able (detection threshold: 0.05 EU/mg).

Generation of CTL cultures
EBV-specific and survivin-specific CTL cultures were
obtained by stimulation of PBLs with peptide-pulsed T2
cells [37], in the absence or presence of Tat (see
supplementary materials and methods, http://links.lww.
com/QAD/A525).

Cytotoxicity and Elispot assays
The cytotoxic activity of CTL cultures was assayed against
peptide-pulsed target cells in standard 5-h 51Cr-release
assays [38]. For Elispot assays, CTLs were seeded on
96-well Elispot plates precoated with an anti-IFN-g or
rized reproduction of this article is prohibited.
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antigranzyme B mAb and stimulated with EBV-derived
CD8þ peptides (see supplementary materials and methods,
http://links.lww.com/QAD/A525).

Reverse transcription and quantitative real-time
PCR
DNase-treated total RNA was isolated from cells and
cDNA was PCR-amplified. For each RNA, the relative
levels were calculated by the 2�DDCT method using
human 18S as housekeeping gene (see supplementary
materials and methods, http://links.lww.com/QAD/
A525).
Results

Tat enhances interleukin-2 and interferon-g
production in CD8R T cells
Tat is released by infected cells and is detected in the
tissues and in the sera of HIV-infected individuals at
concentrations within the nanomolar range [18,39–41].
As some reports showed that Tat enhances the release of
IL-2 and pro-inflammatory cytokines from activated
PBLs [13,42], we first sought to determine whether the
amounts of secreted Tat usually found in vivo may account
for this effect. To this aim, PBLs from healthy donors were
activated with anti-CD3/CD28 in the absence or presence
of different doses of Tat (from 0.001 to 1 mg/ml), and IL-2
mRNAlevelswere measured after 4 h by quantitative PCR
(qPCR). As shown in Fig. 1a, a 75-fold increase of IL-2
mRNA was observed in PBLs activated in the absence of
Tat compared to untreated PBLs, whereas the presence of
Tat induced a 150–200-fold increase of IL-2 mRNA
expression. This effect was observed at similar levels for
all Tat doses except at 0.001 mg/ml, and it was abolished
after incubation with anti-Tat-positive sera (Fig. S1,
http://links.lww.com/QAD/A525). Similar results were
obtained at 24 h after activation (Fig. 1b), demonstrating
that this effect is long-lasting. As the highest fold increase
was observed at 0.1 mg/ml of Tat, this dose was chosen to
perform the subsequent experiments.

It is already known that Tat favors the release of IL-2 from
CD4þ T cells [15]; however, the effect of Tat on CD8þ

T lymphocytes has never been investigated. Thus, we
evaluated whether Tat affects the expression of IL-2
mRNA in CD8þ T cells purified from unstimulated or
activated PBLs cultured in the absence or presence of Tat.
Interestingly, Tat significantly increased the expression of
IL-2 mRNA in CD8þ T cells purified from activated
PBLs (Fig. 1c), and this effect was further confirmed by
intracellular cytokine staining (Fig. S2, http://links.lww.
com/QAD/A525).

We next examined whether the presence of Tat could also
modulate IFN-g production. Consistent to what was
observed for IL-2 production, Tat dramatically enhanced
Copyright © Lippincott Williams & Wilkins. Unaut
IFN-g mRNA expression in CD8þ T cells purified from
activated PBLs (Fig. 1d). Of note, Tat did not induce IL-2
or IFN-g production in CD8þ T cells purified from
unstimulated PBLs (Fig. 1c and d).

These results demonstrate that physiological concen-
trations of Tat enhance the production of IL-2 and IFN-g
in CD8þ T cells activated with anti-CD3/CD28.

Tat affects the expression of T-bet, Eomesdermin
and other key transcription factors in activated
CD8R T cells
T-bet and Eomes are transcription factors that are
up-regulated during HIV infection [29] and that control
IFN-g production [30,43]. Since we have shown here
that Tat enhances IFN-g production in human CD8þ

T cells stimulated by TCR engagement, we next
characterized the expression of T-bet and Eomes in
CD8þ T cells purified from unstimulated or activated
PBLs cultured in the absence or presence of Tat.
Moreover, the expression of other transcription factors
important for T-cell functionality, survival and program-
ming, such as Blimp-1, Bcl-6 and Bcl-2, was analyzed.

As shown in Fig. 2, mRNA levels of all five transcription
factors measured were significantly increased in CD8þ

T cells purified from PBLs activated in the presence of
Tat. Notably, Tat up-regulated not only genes required
for effector functions (as T-bet, Eomes and Blimp-1), but
also transcription factors important for memory devel-
opment (Bcl-6 and Eomes) and T-cell survival (Bcl-2).
Tat did not significantly increase transcription factor
expression in CD8þ T cells purified from unstimulated
PBLs, although the results obtained show a tendency of a
Tat-mediated enhancement of the two memory-related
transcription factors Eomes and Bcl-6.

To assess whether the increased mRNA levels resulted in
increased protein expression, T-bet and Eomes proteins
were evaluated by western blotting in CD8þ T cells at
24 and 48 h after activation. As shown in Fig. 3a, CD8þ

T cells purified from PBLs activated in the presence of Tat
exhibited an increase of T-bet and Eomes expression 48 h
after the activation.

Extracellular Tat is known to activate CD4þ T cells by
binding with its RGD region the avb3 and a5b1 integrins
[44]. To understand whether the enhancement of
transcription factor expression induced by Tat was
integrin-mediated, PBLs were preincubated with Abs
directed against avb3 and a5b1 and subsequently acti-
vated with anti-CD3/CD28 in the absence or presence of
Tat. As shown in Fig. 3b, transcription factor expression
was not up-regulated by Tat in CD8þ T cells purified
from PBLs activated in the presence of anti-integrin Abs,
suggesting that the binding of Tat with avb3 and a5b1
may be required for the enhancement of transcription
factor expression. However, we have to point out that
horized reproduction of this article is prohibited.
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Fig. 1. Tat enhances interleukin-2 and interferon-g production. (a, b) PBLs from healthy donors (n¼6) activated with anti-CD3/
CD28 were cultured in the absence or presence of the indicated concentrations of Tat for (a) 4 h or (b) 24 h and IL-2 mRNA levels
were quantified by qPCR and normalized to untreated cells. (c, d) PBLs from healthy donors (n¼6) unstimulated or activated with
anti-CD3/CD28 were cultured in the absence or presence of Tat (0.1 mg/ml). After 4 h, CD8þ T cells were purified and (c) IL-2 and
(d) IFN-g mRNA levels were quantified by qPCR and normalized to untreated cells. Data are presented as mean� SEM. For
statistical analysis, two-tailed Wilcoxon signed-rank test was used. �P<0.05: Tat-treated cells compared to Tat-untreated control
cells. IFN-g, interferon-g; IL, interleukin; PBL, peripheral blood lymphocyte; qPCR, quantitative PCR.
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Fig. 2. The effect of Tat on transcriptional profile of CD8R T cells. The PBLs from healthy donors (n¼8) unstimulated or activated
with anti-CD3/CD28 were cultured in the absence or presence of Tat (0.1 mg/ml). After 4 h, CD8þ T cells were purified and mRNA
levels of the indicated molecules were quantified by qPCR and normalized to untreated cells. Data are presented as mean� SEM.
For statistical analysis two-tailed Wilcoxon signed-rank test was used. �P< 0.05: Tat-treated cells compared to Tat-untreated
control cells. PBL, peripheral blood lymphocyte; qPCR, quantitative PCR.
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Fig. 3. The effect of Tat is inhibited by integrins blocking. The PBLs from healthy donors (n¼ 6) unstimulated or activated with
anti-CD3/CD28 were cultured in the absence or presence of Tat (0.1 mg/ml). (a) CD8þ T cells were purified after 24 and 48 h, and
expression of T-bet and Eomes proteins was assessed by western blotting. The results of one representative experiment out of six are
shown. (b) PBLs were preincubated with anti-integrins monoclonal antibodies for 1 h at room temperature before activation with
anti-CD3/CD28 and Tat treatment. After 4 h, CD8þ T cells were purified and mRNA levels of the indicated molecules were
quantified by qPCR and normalized to untreated cells. Eomes, Eomesdermin; PBL, peripheral blood lymphocyte; qPCR,
quantitative PCR.
preincubation with anti-integrin antibodies affected
CD8þ T-cell activation induced by anti-CD3/CD28.
In particular, integrin blocking prevented the mRNA
level increase of Bcl-6 and Bcl-2 and down-modulated
Eomes (compare Fig. 2 and Fig. 3b), but did not affect the
increase of T-bet and Blimp-1 in activated CD8þ T cells.
Thus, our results indicate that the Tat-mediated increase
of T-bet and Blimp-1 is abolished by integrins blocking,
whereas the role of the binding of Tat to integrins on the
expression of Eomes, Bcl-6 and Bcl-2 remains to be
elucidated.

Taken together, these data demonstrate that Tat favors the
activation of CD8þ T cells affecting the expression of
transcription factors crucial for T-cell programming
and functionality.

Tat down-regulates CD127 expression and
modulates T-cell fate
It has been recently shown that the expression of T-bet
and Eomes in memory CD8þ T cells from HIV-infected
individuals is associated with decreased expression of
the IL-7 receptor CD127, and increased IFN-g and
Copyright © Lippincott Williams & Wilkins. Unaut
granzyme B levels [29]. As Tat up-regulates T-bet and
Eomes (Figs. 2 and 3), as well as IFN-g (Fig. 1) and
granzyme B production (Fig. 4), we then assessed
whether Tat could affect CD127 expression in activated
CD8þ T cells. Moreover, we also measured the
expression of CD25, the alpha chain of the receptor
for IL-2, whose production is modulated by Tat. As
shown in Fig. 5a, activation of PBLs with anti-CD3/
CD28 increased the expression of CD25 and decreased
the expression of CD127 on CD8þ T cells. The presence
of Tat did not affect the percentage of CD8þ T cells
expressing CD25, whereas it decreased the fraction of
CD8þ T lymphocytes expressing CD127. Interestingly,
this effect was mediated by Tat in both unstimulated and
activated CD8þ T cells.

As T-bet, Eomes, Bcl-6, Blimp-1 and Bcl-2 regulate at
different extent the T-cell programming and memory
development, we next sought to determine the fate of
CD8þ T cells exposed for a longer time to Tat. To this
aim, we evaluated the expression of the memory markers
CD45RO and CD27 and of the exhaustion marker PD-1
in unstimulated or activated PBLs cultured for up to
horized reproduction of this article is prohibited.
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Fig. 4. Tat favors the activation of antigen-specific memory
and naı̈ve CTLs. (a–c) CTL cultures specific for (a) YLQ,
(b) CLG, or (c) IVT EBV-derived epitopes were generated,
in the absence or presence of Tat (0.1 mg/ml), from lympho-
cytes purified from EBV-positive donors and tested for their
cytotoxic activity by 51Cr-release assay against autologous
unpulsed or peptide-pulsed PHA blasts (E : T ratio 10 : 1).
(d) CTL cultures specific for the ELT survivin-derived epitope
were generated, in the absence or presence of Tat (0.1 mg/ml),
from lymphocytes purified from healthy donors and tested for
their cytotoxic activity by 51Cr-release assay against auto-
logous unpulsed or peptide-pulsed PHA-blasts (E : T ratio
10 : 1). (e) CTL cultures specific for the CLG peptide epitope
were generated from lymphocytes purified from EBV-positive
donors. 24 or 48 h before the 51Cr-release assay (E : T
ratio 10 : 1), CTL cultures were treated with the Tat protein
(0.1 mg/ml). (f) CTL cultures specific for YLQ and CLG EBV-
derived epitopes were generated, in the absence or presence of
Tat (0.1 mg/ml), from lymphocytes purified from EBV-positive
donors, and tested for their IFN-g and granzyme B release by
Elispot assay. Data are presented as mean� SEM. For statistical
analysis two-tailed Wilcoxon signed-rank test was used.
�P< 0.05: Tat-treated cells compared to Tat-untreated control
cells. IFN-g, interferon-g.
8 days in the absence or presence of Tat. In long-term cell
cultures, the presence of Tat did not modulate the
expression of CD45RO (Fig. 5b) and PD-1 (Fig. S3,
http://links.lww.com/QAD/A525), whereas it increased
the expression of CD27 in activated but not in unstimu-
lated CD8þ T cells (Fig. 5b). Interestingly, CD27 expres-
sion was not affected by Tat after 24 or 48 h of culture (not
shown). These results suggest that the Tat-mediated
modulation of T-bet, Eomes and the other transcription
factors may be associated with the CD127 down-
regulation and the accumulation of CD27þCD8þ T cells.

Tat favors the activation of antigen-specific naı̈ve
and memory CD8R T cells
We next assessed whether the presence of Tat in long-
term cell cultures could also affect activation and
functionality of antigen-specific memory and naı̈ve
CD8þ T cells. To this aim, PBLs obtained from healthy
HLA class I-typed EBV-seropositive donors were
stimulated ex vivo with cells pulsed with EBV-derived
CTL peptide epitopes in the absence or presence of Tat.
Specifically, PBLs were stimulated with the subdomi-
nant HLA-A2-restricted CLGGLLTMV (CLG) or
YLQQNWWTL (YLQ) epitope [45,46], or with the
immunodominant HLA-A11-restricted IVTDFSVIK
(IVT) epitope [38]. The cytotoxic activity of each
CTL culture generated in the absence or presence of Tat
was tested against autologous PHA blasts, pulsed or
not with the relevant synthetic peptide, in a standard
51Cr-release assay. As shown in Fig. 4a–c, all the three
CTL cultures generated in the presence of Tat exhibited
higher percentages of specific lysis compared to those
generated in the absence of Tat.

To determine whether the Tat protein also favors the
activation of naı̈ve T cells, PBLs from HLA-A2 healthy
donors were stimulated with the synthetic ELT peptide in
the absence or presence of the Tat protein. The ELT
(ELTLGEFLKL) peptide is a CTL epitope, presented by
HLA-A2 [47,48], belonging to the surviving antiapop-
totic protein, which is overexpressed in tumor cells [49].
No T-cell reactivity against this epitope is normally
detected in healthy individuals [49]. The specificity of
CTL cultures was tested against PHA blasts, pulsed or not
with the ELT peptide, by 51Cr-release assays (Fig. 4d).
HLA-A2-positive PHA blasts pulsed with the ELT
peptide were efficiently lyzed only by CTL cultures
generated in the presence of Tat, demonstrating that Tat
favors the priming of naive CD8þ T cells.

These observations suggest that Tat favors the activation
of CD8þ T cells, but do not clarify whether the increased
cytotoxic activity observed in CTL cultures generated in
the presence of Tat depends on a higher number or a
higher functionality of epitope-specific CD8þ T cells. To
address this issue, CTL cultures specific for the HLA-A2-
restricted CLG epitope were generated in the absence of
Tat and were then left untreated or preincubated with the
rized reproduction of this article is prohibited.
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Fig. 5. Tat modulates the phenotype of CD8R T cells. PBLs from healthy donors (n¼ 6) unstimulated or activated with anti-CD3/
CD28 were cultured in the absence or presence of Tat (0.1 mg/ml). (a) After 24 h, the percentage of CD8þ T cells expressing CD25
and CD127 was measured. (b) After 8 days, the percentage of CD8þ T cells expressing CD45RO and CD27 was measured. Results
are presented after normalization to untreated cells. Data are presented as mean� SEM. For statistical analysis two-tailed
Wilcoxon signed-rank test was used. �P< 0.05: Tat-treated cells compared to Tat-untreated control cells. PBL, peripheral blood
lymphocyte.
Tat protein 24/48 h before the cytotoxic activity. As shown
in Fig. 4e, CTL cultures lyzed target cells at similar levels,
suggesting that Tat does not enhance effector functions, but
rather must be present at the time of the priming, thus
favoring CTL expansion. To confirm this hypothesis, CLG
and YLQ-specific CTLs generated in the absence or
presence of Tat were assayed in IFN-g and granzyme B
Elispot assays to evaluate differences in the number of
antigen-specific T cells. As shown in Fig. 4f, CTL cultures
generated in the presence of Tat exhibited higher numbers
of both IFN-g and granzyme B CLG and YLQ-specific
CTLs, suggesting that Tat favors the expansion of epitope-
specific and actively secreting CD8þ T cells.
Discussion

We demonstrate here that the HIV-1 Tat protein, which is
released by infected cells and found extracellularly in
HIV-positive individuals [18,39,40], favors the activation
and effector functions of CD8þ T cells (Figs. 1 and 4).
Copyright © Lippincott Williams & Wilkins. Unaut
Interestingly, behind this functional modulation we
observed that Tat increases the expression of T-bet,
Eomes, Blimp-1, Bcl-6 and Bcl-2 in activated but not in
unstimulated CD8þ T lymphocytes (Fig. 2), leading to
the down-regulation of CD127 and the up-regulation of
CD27 (Fig. 5). The Tat-mediated increase of T-bet and
Blimp-1 require the binding of Tat to integrins (Fig. 3).
Thus, these results are indicating that the programming
and functionality of CD8þ T cells are deeply altered by
the amount of Tat close to the concentrations measured in
HIV-infected individuals. Indeed, it has been demon-
strated that the plasma of HIV-positive patients may
contain up to 40 ng/ml of soluble Tat [39,41], value
which probably reaches higher concentrations in tissues
where Tat is sequestered by glycosaminoglycans and
heparan sulphate proteoglycans of the extracellular matrix
[18,41]. Moreover, it has been proposed that Tat
continues to be secreted even during HAART [19], as
confirmed by the immune restoration observed after
the induction of anti-Tat immunity in HIV-infected
HAART-treated individuals [26].
horized reproduction of this article is prohibited.
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It is known that Tat favors IL-2 secretion in CD4þ T cells
[15]. Here we show for the first time that CD8þ T cells
activated in the presence of Tat also exhibited increased
production of IL-2 (Fig. 1). Several mechanisms may
account for this effect, as it has been reported that Tat
favors the activation of transcription factors required for
IL-2 transcription, like NF-kB [13,14], NFAT [50] and
AP-1 [51]. Moreover, Tat superinduces factors binding to
the CD28-responsive element (CD28RE), which med-
iates IL-2 gene activation by CD28 costimulation [13,14].

The results also demonstrate that naı̈ve and memory
CD8þ T cells activated in vitro in the presence of Tat
exhibit an increased IFN-g production and cytotoxic
activity (Figs. 1 and 4). The effect was abolished when Tat
was added after the stimulation, suggesting that Tat favors
the expansion and the functionality of effector cells only if
present at the beginning of the stimulation. It is likely that
Tat potentiates the production of cytokines and cytolytic
molecules through the induction of T-bet, Eomes and
Blimp-1 (Fig. 2), which control at different levels the
transcription of IFN-g, perforins and granzymes
[30,43,52]. The interaction of the RGD domain of Tat
with avb3 and a5b1 integrins seems to be necessary, as
we observed that the Tat-mediated up-regulation of the
T-bet and Blimp-1 was abolished by integrin blocking. It
is known that Tat mediates the activation of the ERK/
MAPK and PI3K/Akt pathways through its RGD
domain [53,54], and both ERK and Akt are involved
in T-bet induction [55,56]. Moreover, the ERK pathway
also favors Eomes and Blimp-1 up-regulation [57,58].

Of note, an increased production of effector molecules
like IFN-g and granzymes, as well as an enhancement of
T-bet and Eomes in CD8þ T cells, is observed in HIV-
infected individuals [29,59–62]. Thus, our in-vitro
observations suggest that Tat may be responsible for, or
contribute to, all these effects in vivo.

The role of Tat on T-cell survival is highly debated
[63–66]. We report that Tat enhances the expression of the
antiapoptotic marker Bcl-2 in activated CD8þ T cells.
However, the up-regulation of Bcl-2 does not appear to be
due to a direct effect of Tat on Bcl-2 expression, as instead
demonstrated in CD4þ T cells [63], since it was observed
after activation with anti-CD3/CD28 and Tat further
increased it. Thus, our results indicate that Tat may
differently affect Bcl-2 expression in CD4þ and CD8þ

T cells. Interestingly, the presence of Tat did not modulate
PD-1 expression (Fig. S3, http://links.lww.com/QAD/
A525), a marker of exhaustion up-regulated in HIV-
specific CD8þ T cells which poorly control the infection
[67,68].

We found that CD8þ T cells activated in the presence of
Tat exhibited increased levels of Blimp-1, which favors
the development of effector memory T cells [34,52].
Intriguingly, we also observed the up-regulation of Bcl-6,
pyright © Lippincott Williams & Wilkins. Unautho
which promotes the development of a central memory
phenotype and is repressed by Blimp-1 [34], suggesting a
Tat-mediated mechanism that deserves further investi-
gations. Moreover, the presence of Tat favors the
expression of CD27, a hallmark of incomplete differen-
tiation to effector cells [10,69,70], and causes CD127
down-regulation not only in unstimulated CD8þ T cells,
as previously demonstrated [71,72], but also in activated
CD8þ T lymphocytes. Interestingly, CD127 down-
regulation is observed in HIV-infected individuals in
association with immune activation [73,74], higher levels
of T-bet and Eomes, and increased granzyme B and IFN-
g release [29]. In conclusion, our results indicate that Tat
modulates programming and secretory capacity of CD8þ

T cells, suggesting that it may be involved in the
development of CD8þ T lymphocytes with an effector
profile as observed during HIV infection [2,29]. We
propose a model by which HIV, through the release of
Tat, may affect T-bet and Eomes expression, thus
contributing to immune activation and to a profound
and long-lasting modulation of CD8þ T-cell responses.
Thus, our observations provide new hints on the role that
Tat may play in CD8þ T-cell dysfunctionalities during
HIV infection, suggesting that the induction anti-Tat
immune responses may be a valuable tool to protect HIV-
infected individuals from immune dysfunctions.
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