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  ABSTRACT 

  Interest in methods that routinely and accurately 
measure and predict animal characteristics is growing 
in importance, both for quality characterization of live-
stock products and for genetic purposes. Mid-infrared 
spectroscopy (MIRS) is a rapid and cost-effective tool 
for recording phenotypes at the population level. Mid-
infrared spectroscopy is based on crossing matter by 
electromagnetic radiation and on the subsequent mea-
sure of energy absorption, and it is commonly used to 
determine traditional milk quality traits in official milk 
laboratories. The aim of this review was to focus on the 
use of MIRS to predict new milk phenotypes of eco-
nomic relevance such as fatty acid and protein composi-
tion, coagulation properties, acidity, mineral composi-
tion, ketone bodies, body energy status, and methane 
emissions. Analysis of the literature demonstrated the 
feasibility of MIRS to predict these traits, with dif-
ferent accuracies and with margins of improvement of 
prediction equations. In general, the reviewed papers 
underlined the influence of data variability, reference 
method, and unit of measurement on the development 
of robust models. A crucial point in favor of the ap-
plication of MIRS is to stimulate the exchange of data 
among countries to develop equations that take into 
account the biological variability of the studied traits 
under different conditions. Due to the large variability 
of reference methods used for MIRS calibration, it is 
essential to standardize the methods used within and 
across countries. 
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  INTRODUCTION 

  In the genomic era, phenomics is becoming a com-
pulsory research field. This new science is concerned 
with the acquisition of phenotypic data on a large scale 
(Houle et al., 2010) and the phenotype can be described 
as the outcome of the interacting development between 
the genotype of an individual and its specific environ-
ment throughout life (Bowman, 1974). The interest 
in methods that routinely and accurately measure 
and predict animal characteristics (i.e., phenotypes) 
is rapidly growing. Accurate phenotypes and efficient 
phenotyping tools are the key ingredients, especially 
for genomic selection of livestock animals, which is ex-
pected to increase the genetic gain of the selected traits 
(Pryce et al., 2010; Lillehammer et al., 2011; Mc Hugh 
et al., 2011). 

  Furthermore, in recent years, consumers and the dairy 
industry have shifted the concept of quality in relation 
to market requirements: for example, milk coagulation 
traits have been studied to improve cheese production 
and FA composition to enrich the nutritional value of 
milk for human health. Breeding goals have followed 
these changes: if phenotypes are accurately and cheaply 
measured at the population level and integrated in the 
national milk recording systems, it may be possible to 
enhance the traits using genetic or genomic tools. 

  The need for fast, cheap, and high-throughput meth-
ods of chemical analysis has also led to the application of 
infrared spectroscopy in both the livestock and food sec-
tors. The spectroscopic technique is based on the study 
of the interaction between matter and electromagnetic 
waves. Electromagnetic radiation comprises different 
regions according to the following wavelengths: the x-
ray region (0.5–10 nm), UV region (10–350 nm), visible 
region (350–800 nm), near-infrared region (800–2,500 
nm), mid-infrared region (2,500–25,000 nm), microwave 
region (100 μm–1 cm), and radio frequency region (1 
cm–1 m). 

  One of the most important historical events for the 
spectroscopic technique was the development of the 
Fourier transform in the 1700s; in later years, this 
mathematical transform was improved with the use of 
the interferometer. In 1969, Digilab Inc. (Marlborough, 
MA) put the first Fourier-transform infrared spectro-
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photometer with a dedicated minicomputer on the 
market, which was later refined in 1983 by the same 
company (Spectra-Tech Inc., Oak Ridge, TN). From 
the 1980s, Fourier-transform infrared spectrophotom-
eters were combined with personal computers and this 
method of analysis became widely used due to its ver-
satility and cost effectiveness. Since then, many studies 
have investigated the relationships between spectra 
wavelengths and several quality traits through the ex-
planation of chemical bond variations.

Mid-infrared spectroscopy (MIRS) has been evalu-
ated as a potential tool to collect data at the popula-
tion level for phenotypic and genetic purposes, and it 
is becoming one of the major topics in dairy science. 
In the mid-infrared region, when matter is crossed by 
electromagnetic radiation, the bonds of the molecules 
make movements (e.g., vibration and rotation), which 
involve a more or less marked absorption of the pro-
vided energy. On the basis of supplied energy and the 
amount absorbed by the irradiated sample, and using 
spectra mathematical pretreatments, it is possible to 
determine the sample’s chemical composition and cor-
related compounds (Figure 1).

The present review summarizes papers that have 
investigated the use of MIRS to predict milk quality 
traits. Furthermore, studies that adopted this technique 
to predict nutritional, technological, and other traits of 
economic relevance are also reviewed.

PHENOTYPING OF MILK BY MIRS

Studies that aimed at investigating the effectiveness 
of MIRS to predict phenotypes for dairy industry appli-
cations or for genetic purposes have markedly increased 
over the years. Figure 2 depicts the trend in the number 
of papers published from 2001 to 2013 on the applica-
tion of MIRS to milk, highlighting a growing interest 
for the topic, particularly in the last 3 yr. This is con-
firmed also by large international research projects that 
aimed at predicting new traits in the dairy industry 
(e.g., OptiMIR, 2012; RobustMilk, 2012). In animal 
science, phenomics is mainly related to the study of 
phenotypes of an individual. A phenotype should be 
routinely, cheaply, and easily measurable, should show 
good to optimal accuracy of prediction, depending on 
its use, and should exhibit genetic variation or, if it 
is a predictor of the real phenotype of interest, high 
genetic correlation with the trait of interest (Berry et 
al., 2012).

Currently, MIRS is used to determine quality traits 
in bulk and individual milk samples. In particular, 
most countries use MIRS in official milk-recording 
schemes to predict protein, casein, fat, lactose, and 
urea contents. Besides these traditional traits, MIRS 

has been used to predict other milk characteristics: FA 
composition (Soyeurt et al., 2006, 2008, 2011; Rutten et 
al., 2009; De Marchi et al., 2011; Ferrand et al., 2011; 
Maurice-Van Eijndhoven et al., 2013), milk protein 
composition (Luginbühl, 2002; Sørensen et al., 2003; 
Etzion et al., 2004; De Marchi et al., 2009a; Bonfatti et 
al., 2011; Rutten et al., 2011), milk coagulation proper-
ties (MCP; Dal Zotto et al., 2008; De Marchi et al., 
2009b, 2013), milk acidity (De Marchi et al., 2009b), 
mineral composition (Soyeurt et al., 2009), melamine 
content (Balabin and Smirnov, 2011), ketone bodies 
(Heuer et al., 2001; de Roos et al., 2007; van Knegsel 
et al., 2010; van der Drift et al., 2012), body energy 
status (McParland et al., 2011), and methane emissions 
(Dehareng et al., 2012).

In addition, several laboratories involved in routine 
milk-recording systems have been storing spectral data 
to predict a posteriori several phenotypes; this approach 
is very interesting for genetic purposes.

Figure 1. Examples of untreated, first-derivative, and second-de-
rivative spectra.
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SPECTRA PRETREATMENTS

Pretreatments of MIRS spectral data are very com-
mon and often of great importance to obtain robust 
prediction models (Rinnan et al., 2009). The main 
goal of using statistical procedures for preprocessing 
spectral data is to improve the linear relationship be-
tween the spectra and the gold reference. As reported 
by Rinnan et al. (2009), several phenomena can cause 
a deviation from the aforementioned linear relation: 
scatter from particulates, molecular interactions, and 
changes in sample size. The most common preprocess-
ing techniques for MIRS data are those that directly 
use available reference values, such as scatter correction 
and derivation methods. The scatter correction meth-
ods include multiplicative scatter correction, standard 
normal variate, and normalization. Regarding the 
derivation methods, the most commonly used is the 
Savitzky-Golay derivative.

Briefly, multiplicative scatter correction aims at re-
moving nonlinearities in the spectral data caused by 
scatter from particulates in the samples (Martens et 
al., 1983) and this is very similar in result to standard 
normal variate (Rinnan et al., 2009). Figure 1 depicts 
the variation of spectra peaks moving from untreated 
data to first and second derivatives. The main benefits 
of the use of derivative spectra pretreatments are to 
improve the resolution of the spectra (first derivative) 
and to give a negative peak for each band and shoulder 
(second derivative); the most common derivatives used 
for these purposes were developed by Savitzky and 

Golay (1964). Generally, the sharp bands are enhanced 
at the expense of broad ones (Figure 1) and this may 
allow for the selection of suitable peaks (Stuart, 2004).

Despite mathematical pretreatments being widely 
used in the building of MIRS prediction models, the 
authors usually report only the best model with the 
related mathematical method and, hence, the compari-
son among different mathematical pretreatments is not 
possible. Only Soyeurt et al. (2011) and De Marchi et 
al. (2011) investigated the variation in the accuracy 
of MIRS prediction models for FA composition using 
different mathematical pretreatments; they found quite 
similar results, showing better accuracies using deriva-
tive pretreatment than untreated spectral data. In a 
similar manner, De Marchi et al. (2009b) investigated 
the effect of different spectra pretreatments for the 
prediction of MCP and they found better accuracies 
using untreated spectral data; this has been recently 
confirmed by De Marchi et al. (2013).

FITTING STATISTICS OF CHEMOMETRIC ANALYSIS

Partial least squares (PLS) modeling is a powerful 
multivariate statistical tool that has been widely ap-
plied to the quantitative spectral analyses of MIRS and 
near-infrared data (De Marchi et al., 2012; Riovanto 
et al., 2012). Because several software packages using 
the PLS technique are available, it is important to un-
derstand how chemometric results can be compared. 
Several statistic parameters exist that can be used to 

Figure 2. Published papers (retrieved from ISI Web of Science; http://thomsonreuters.com/web-of-science/) on mid-infrared spectroscopy 
(MIRS) and milk. For 2013, papers published up to October are reported.
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assess the goodness of PLS models both in calibration 
and validation (Næs et al., 2002). Reference statistics 
are the validation ones, which are calculated after the 
development of the calibration equation; they are essen-
tial in determining the ability of calibration models to 
predict unknown values. The most important param-
eters are the coefficient of determination and standard 
error of calibration and validation, the relative ability 
of prediction, ratio to performance deviation (RPD), 
range error ratio (RER), relative prediction error 
(RPE), and concordance correlation coefficient (CCC; 
Williams and Norris, 2001; Williams, 2003).

The coefficient of determination in calibration RC
2( ) 

and validation (1 − VR, where VR = variance ratio) 
are calculated as the square of the correlation coeffi-
cient between the reference values and their correspond-
ing predicted values obtained using calibration and 
validation sets. The coefficient of determination in 
validation depends on the validation technique: (1) use 
of an external data respect to calibration set or (2) 
cross-validation on calibration data according to Stone 
(1974).

The standard error is essential to determine the abil-
ity of the calibration equation to predict unknown val-
ues as good calibration equations have small standard 
errors. Three types of standard error exist: (1) standard 
error of calibration, which is obtained by testing the 
calibration equation directly on calibration data and it 
is usually a highly over-optimistic estimate of the pre-
diction ability; (2) standard error of external validation 
(SEP), which is based on splitting the data set into 2 
subsets, one for calibration and the other for valida-
tion; and (3) standard error of cross-validation, based 
on the previously described cross-validation technique 
(Williams and Norris, 2001; Sivakesava and Irudayaraj, 
2002; Williams, 2003). During the development of cali-
bration models, the SEP is used for determining the 
optical number of components (#L); usually the SEP 
is large when #L is low and decreases as #L increases. 
Partial least squares models allow the selection of ap-
propriate #L to model as much of the complexity of 
the system without overfitting the data (Haaland and 
Thomas, 1988; Næs et al., 2002). The relative ability 
of prediction is defined as a variant of the correlation 
coefficient and it aims at correcting the standard cor-
relation for the variance of error in the calibration set 
(Hildrum et al., 1983).

The RPD, RER, RPE, and CCC provide information 
on the practical utility of prediction models and al-
low the comparison of models among different studies. 
The RER is calculated by dividing the range of a given 
parameter by the standard error in validation; models 
with RER values lower than 3 have little practical util-

ity, values between 3 and 10 have limited to good prac-
tical utility, and values greater than 10 have high utility 
(Williams, 1987). The RPD is calculated by dividing 
the standard deviation and standard error in validation 
of a given trait; values of RPD greater than 10 are 
considered equivalent to reference methods, whereas 
values larger than 2 are considered adequate for ana-
lytical purposes (Karoui et al., 2006). As reported by 
Fuentes-Pila et al. (1996) and Lopez-Villalobos et al. 
(2009), RPE values lower than 10% indicate satisfac-
tory predictions, from 10 to 20% indicate relatively 
acceptable predictions, and larger than 20% indicate 
poor predictions. Regarding the CCC, values from 0.81 
to 1.00 indicate perfect prediction ability, from 0.61 to 
0.80 substantial prediction ability, from 0.41 to 0.60 
moderate prediction ability, and from 0.21 to 0.40 fair 
prediction ability (Lin, 1989; Lopez-Villalobos et al., 
2009).

FA COMPOSITION OF MILK

Milk fat and FA composition are important quality 
traits, as they influence the sensory attributes, techno-
logical properties, and nutritional value of milk, and 
are related to human health. Bovine milk contains 
70% SFA, 25% MUFA, and 5% PUFA (Grummer, 
1991). The daily intake of SFA from dairy products 
has great relevance for the consumer (Chilliard et al., 
2001) and the effects of variation of SFA, MUFA, and 
PUFA content in the diet on human health have been 
widely described (Mensink and Katan, 1992; Ger-
man et al., 2009), along with the role of conjugated 
linoleic acid. Furthermore, FA composition influences 
the technological traits of butter, such as the spread-
ability (MacGibbon and McLennan, 1987). Therefore, 
feeding and breeding strategies to favorably alter the 
FA composition of bovine milk could be very beneficial. 
Recently, Lopez-Villalobos (2012) reviewed the genetic 
basis of FA and reported moderate heritability for FA, 
suggesting that the improvement of these traits through 
selection is feasible.

In recent years, several authors have attempted to 
predict FA and groups of FA (GFA) using MIRS (Table 
1). Studies were conducted using (1) different numbers 
of samples, (2) different spectra pretreatments, (3) 
different reference methods, and (4) different units of 
measures of FA and GFA. The number of milk samples 
used to build prediction models for FA and GFA ranged 
from 49 to 3,622 (Table 1) and influenced the PLS 
analysis, in particular the validation procedures (cross-
validation vs. independent validation). The cross-vali-
dation procedure has been used for a limited number 
of samples, as reported by Soyeurt et al. (2006, 2008) 
and De Marchi et al. (2011); however, independent 
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validation is more commonly used (Rutten et al., 2009; 
Ferrand et al., 2011; Soyeurt et al., 2011; Maurice-Van 
Eijndhoven et al., 2013). These studies were conducted 
on individual milk samples, mostly collected on differ-
ent cow breeds; only De Marchi et al. (2011) used milk 
samples from a single breed and reported difficulties in 
developing MIRS prediction models for several FA due 
to the limited range of variation of these compounds.

Concerning the methods of spectra preprocessing, 
most studies have been conducted on untreated spec-
tral data or, to a less extent, using first-derivative 
spectra pretreatment. Soyeurt et al. (2011) and De 
Marchi et al. (2011) investigated the variation in the 
accuracy of MIRS prediction models using different 

mathematical pretreatments; they reported quite 
similar results, with better accuracies of prediction 
models using derivative pretreatment with respect to 
untreated spectral data.

The reference method for the assessment of FA com-
position is based on 2 major phases: fat extraction and 
gas chromatography analysis. The extraction procedure 
has been conducted using 3 methods and gas chroma-
tography using very different columns and analytical 
conditions (Table 1). Because calibration models were 
carried out using different spectral data, statistical 
procedures, and gold standard methods, the effect of 
reference method on the accuracy of MIRS prediction 
models is not determinable.

Table 1. Number of calibration samples, number of breeds, reference method, and validation procedures used in the studies aimed at developing 
mid-infrared spectroscopy (MIRS) prediction models for milk FA 

Reference n1 Dairy breed Reference method
Spectra  
pretreatments2

Validation  
procedure

Soyeurt et al. (2006) 49 Multibreed ISO standard 14156 (ISO-IDF, 
2001). Column: length of 50 m, 
internal diameter of 0.25 mm, film 
thickness of 0.20 μm. Average 
velocity of 35 cm/s; flame-ionization 
detector at 265°C; temperature 
program from 40 to 250°C

Untreated Cross-validation

Soyeurt et al. (2008) 78 Multibreed ISO standard 14156 (ISO-IDF, 
2001). Column: length of 100 m, 
internal diameter of 0.25 mm, film 
thickness of 0.20 μm. Average 
velocity of 19 cm/s; flame-ionization 
detector at 255°C; temperature 
program from 60 to 225°C

Untreated Cross-validation

Rutten et al. (2009) 3,622 — ISO standard 15884 (ISO-IDF, 
2002). Column: length of 100 m, 
internal diameter of 0.25 mm. 
Temperature held at 225°C for 5 
min.

VSS of Höskuldsson External

De Marchi et al. (2011) 267 Single breed Mele et al. (2009). Column: length 
of 100 m, internal diameter of 0.25 
mm, film thickness of 0.20 μm. 
Injector temperature set at 270°C; 
detector temperature set at 300°C; 
temperature program from 60 to 
230°C

1D, MSC + 1D Cross-validation

Ferrand et al. (2011) 250 Multibreed ISO standard 14156 (ISO-IDF, 
2001). Column: length of 100 m. 
Splitless injector at 250°C; flame 
detector at 250°C; temperature 
program from 70 to 215°C

Untreated External

Soyeurt et al. (2011) 517 Multibreed ISO standard 14156 (ISO-IDF, 
2001). Column: length of 50 m, 
internal diameter of 0.25 mm, film 
thickness of 0.20 μm. Average 
velocity of 19 cm/s; cold on-column 
injector; flame-ionization detector 
at 255°C; temperature program 
from 60 to 225°C

1D, 2D External

Maurice-Van Eijndhoven et al. (2013) 1,236 Multibreed ISO standard 15884 (ISO-IDF, 
2002). Column: length of 100 m, 
internal diameter of 0.25 mm

1D External

1Number of samples used for calibration models.
2VSS = variable selection strategy; 1D = first derivative; 2D = second derivative; MSC = multiplicative scatter correction.
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The unit of measure of FA and GFA is another cru-
cial point in the development of accurate MIRS predic-
tion models. Most studies expressed FA and GFA as 
the quantity per unit of milk, and only Soyeurt et al. 
(2006) and Rutten et al. (2009) predicted FA composi-
tion for FA expressed as quantity of total fat (Tables 
2, 3, and 4). Both studies reported that, on average, 
the accuracy of MIRS prediction models were better 
when FA and GFA were expressed as quantity per unit 
of milk. This was also confirmed by De Marchi et al. 
(2011), who reported that the prediction of FA using 
MIRS is the combined effect of predicting fat content 
and fat composition. The prediction of FA is performed 
on milk samples, whereas reference methods for FA de-
termination are performed on fat extracted from milk, 
which means that their relationship is affected also 
by the variation in fat percentage. Therefore, we will 
hereafter focus on prediction models developed on FA 
and GFA expressed per unit of milk. The difficulty of 
MIRS to predict FA when they are expressed on a fat 
basis represents a limitation in the application of this 
technique; in fact, this information is essential when 
the interest is to change only the fat composition (e.g., 
through selection). This situation represents a critical 
point also in the case of protein, as described in the 
following section and as previously reported by Rutten 
et al. (2011).

The accuracies of prediction models for SFA from dif-
ferent studies are reported in Table 2. Overall, predic-
tion models for C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, 
and C16:0 showed high accuracy. Stearic acid (C18:0) 
had quite good predictability by MIRS, with 1 − VR 
from 0.09 to 0.88. Only De Marchi et al. (2011) have 
attempted to predict C20:0, but with unsatisfactory re-
sults (1 − VR of 0.29). Prediction models achieved bet-
ter results for SFA than unsaturated FA. Mid-infrared 
spectroscopy showed quite good potential to predict 
cis-9 C14:1 (1 − VR from 0.07 to 0.53), cis-9 C16:1 
(1 − VR from 0.28 to 0.65), trans-11 C18:1 (1 − VR 
from 0.31 to 0.63), and cis-9,cis-12,cis-15 C18:3 (1 − 
VR from 0.14 to 0.60; Table 3). Very good results were 
obtained for C18:1 (1 − VR from 0.53 to 0.91) and 
cis-9 C18:1 (1 − VR from 0.53 to 0.95). Only 3 stud-
ies have attempted to predict linolenic acid (cis-9,cis-
12,cis-15 C18:3), obtaining low to medium accuracy of 
prediction. Mid-infrared spectroscopy showed medium 
potential to predict the 2 isomers of conjugated linoleic 
acid (cis-9,trans-11 C18:2 and cis-9,cis-12 C18:2; Table 
3), with 1 − VR from 0.07 to 0.71 and a wide vari-
ability of accuracy of prediction models.

Regarding the GFA, MIRS prediction models high-
lighted very good accuracies; SFA and MUFA achieved 
1 − VR up to 0.85 (Soyeurt et al., 2006, 2011; Ferrand 
et al., 2011; Maurice-Van Eijndhoven et al., 2013), 

with the exception of De Marchi et al. (2011), who 
reported 1 − VR of 0.52 and 0.55 for SFA and MUFA, 
respectively. Polyunsaturated FA were not very well 
predicted by MIRS (1 − VR from 0.10 to 0.41); only 
Soyeurt et al. (2011) found high 1 − VR for PUFA 
(0.81). Regarding the short-chain, medium-chain, and 
long-chain FA, results were often very satisfactory, with 
1 − VR up to 0.90 (Table 4). The notably better results 
obtained by Soyeurt et al. (2011) could be related to 
(1) huge biological variability of calibration data (milk 
samples were collected from different breeds, countries, 
and production systems) and (2) statistical procedures 
that used several different mathematical pretreatments 
of spectral data.

The accuracies of MIRS prediction models for major 
FA were better than for minor FA; the relationship be-
tween FA content in milk and accuracy of prediction was 
discussed by Soyeurt et al. (2006), Rutten et al. (2009), 
De Marchi et al. (2011), and Maurice-Van Eijndhoven 
et al. (2013). In particular, Rutten et al. (2009) and De 
Marchi et al. (2011) reported a strong relationship of 
FA concentration with 1 − VR and the RPD (which is 
the ratio of the standard deviation to standard error of 
validation of the trait; Williams, 2001).

The accuracy of prediction models can be affected 
by the characteristics of the data set; in particular, 
breed of cows, stage of lactation, and season of sam-
pling are the main aspects to take into consideration 
during sample collection (Rutten et al., 2009; Maurice-
Van Eijndhoven et al., 2013). Moreover, as reported by 
Soyeurt et al. (2011), the variation of MIRS prediction 
accuracy is not only related to FA concentration but 
also to spectra variability, the maximization of which is 
an effective way to improve the accuracy of prediction.

In general, MIRS has widely demonstrated its poten-
tial to predict FA and GFA. Nevertheless, milk compo-
sition of calibration data set plays a fundamental role 
in building good prediction models. The development 
of MIRS prediction equations using milk selected from 
different breeds, countries, and seasons, and the use 
of the same reference method seem the best way to 
improve the accuracy and robustness of MIRS calibra-
tions.

MILK COAGULATION PROPERTIES AND ACIDITY

The volume of milk destined for cheese manufactur-
ing is growing worldwide and, thus, the characteristics 
of milk related to cheese making, and cheese yield and 
quality are relevant for the dairy industry. Milk coagu-
lation properties, acidity, and protein composition are 
important actors in cheese production (Aleandri et al., 
1989; Wedholm et al., 2006; De Marchi et al., 2009a; 
Pretto et al., 2013).
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Table 2. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models 
of selected SFA 

Reference Unit

SFA

C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C20:0

Soyeurt et al. (2006) g/dL of milk 0.51 (0.08) 0.52 (0.04) 0.59 (0.02) 0.64 (0.04) 0.74 (0.02) 0.82 (0.05) 0.82 (0.17) 0.69 (0.13) —
g/100 g of fat 0.39 (1.60) 0.41 (0.98) 0.46 (0.50) 0.53 (0.90) 0.64 (0.53) 0.67 (1.14) 0.50 (3.50) 0.09 (2.77) —

Soyeurt et al. (2008) g/dL of milk — — — — — 0.90 (0.05) 0.84 (0.17) 0.85 (0.10) —
Rutten et al. (2009)1 g/dL of milk 0.91 (0.1) 0.96 (0.2) 0.94 (0.5) 0.92 (0.1) 0.85 (0.3) 0.94 (0.03) 0.94 (0.1) 0.82 (0.7) —

g/100 g of fat 0.55 (0.0) 0.73 (0.3) 0.73 (0.6) 0.75 (0.2) 0.68 (0.3) 0.73 (0.3) 0.71 (0.0) 0.51 (1.2) —
De Marchi et al. (2011) g/kg of milk — — 0.55 (0.07) 0.53 (0.19) 0.56 (0.25) 0.59 (0.60) 0.49 (1.59) 0.42 (0.75) 0.29 (0.01)
Ferrand et al. (2011) g/100 mL of 

milk
0.90 (0.005) 0.96 (0.002) 0.96 (0.002) 0.91 (0.006) 0.91 (0.007) 0.93 (0.015) 0.90 (0.058) 0.77 (0.033) —

Soyeurt et al. (2011) g/dL of milk 0.89 (0.01) 0.95 (0.01) 0.93 (0.00) 0.92 (0.01) 0.92 (0.01) 0.95 (0.03) 0.93 (0.08) 0.88 (0.06) —
Maurice-Van Eijndhoven et al. (2013) g/dL of milk 0.92 (0.012) 0.93 (0.006) 0.92 (0.005) 0.93 (0.019) 0.85 (0.036) 0.95 (0.039) 0.93 (0.192) 0.72 (0.132) —
1Prediction bias within parentheses.

Table 3. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models 
of selected unsaturated FA 

Reference Unit

Unsaturated FA

cis-9 C14:1 cis-9 C16:1 C18:1 cis-9 C18:1 trans-11 C18:1
cis-9,trans-11 

C18:2
cis-9,cis-12 

C18:2
cis-9,cis-12,cis-15 

C18:3

Soyeurt et al. (2006) g/dL of milk 0.07 (0.01) 0.65 (0.02) 0.88 (0.18) — — 0.07 (0.02) 0.62 (0.02) 0.14 (0.01)
g/100 g of fat 0.23 (0.28) 0.37 (0.37) 0.53 (3.99) — — 0.34 (0.37) 0.44 (0.11) 0.20 (0.20)

Soyeurt et al. (2008) g/dL of milk 0.53 (0.01) 0.28 (0.03) — — — — — —
Rutten et al. (2009)1 g/dL of milk — — — 0.92 (0.3) 0.63 (0.4) 0.58 (1.0) 0.36 (0.9) 0.45 (3.3)

g/100 g of fat — — — 0.84 (0.5) 0.57 (0.6) 0.56 (1.1) 0.28 (0.6) 0.38 (2.8)
De Marchi et al. (2011) g/kg of milk 0.46 (0.08) 0.36 (0.11) — 0.53 (1.13) 0.31 (0.09) 0.34 (0.04) — —
Ferrand et al. (2011) g/100 mL of milk — — 0.91 (0.037) 0.91 (0.036) — — 0.65 (0.004) —
Soyeurt et al. (2011) g/dL of milk — — — 0.95 (0.06) — 0.63 (0.01) 0.71 (0.01) 0.60 (0.01)
Maurice-Van Eijndhoven et al. (2013) g/dL of milk — — — — — — — —
1Prediction bias within parentheses.
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Table 5. Number of calibration samples, dairy breed, reference method, range, spectra pretreatments, coefficient of determination (1 – VR, where VR = variance ratio), and SE 
of cross-validation (SECCV) of validation procedures for mid-infrared prediction models of milk coagulation properties and milk acidity 

Reference Trait1 n Dairy breed
Reference  
method2 Range

Spectra  
pretreatment3 1 − VR SECCV

Dal Zotto et al. (2008) RCT (min) 158 Holstein-Friesian CRM 9.20–25.8 1D 0.73 1.80
a30 (mm) 11.00–55.00 1D 0.45 5.49

De Marchi et al. (2009b) RCT (min) 1,064 Brown Swiss CRM 4.40–29.30 Untreated 0.62 2.36
a30 (mm) 6.00–64.00 Untreated 0.37 6.86
pH 5.88–7.03 1D, 1D + N 0.59 0.07
TA (°SH/50 mL) 1.19–4.77 1D 0.66 0.25

De Marchi et al. (2013) RCT (min) 350 Holstein-Friesian FOR 7.75–59.00 Untreated 0.76 7.05
k20 (min) 2.00–28.45 Untreated 0.72 3.54
a30 (mm) 0.36–51.30 Untreated 0.70 7.68
a60 (mm) 0.76–40.96 Untreated 0.40 7.26

1RCT = rennet coagulation time; a30 = curd firmness 30 min after rennet addition; TA = titratable acidity; °SH = Soxhlet-Henkel degree; k20 = curd-firming time; a60 = curd 
firmness 60 min after rennet addition.
2CRM = computerized renneting meter (Polo Trade, Monselice, Italy); FOR = Formagraph (Foss Electric A/S, Hillerød, Denmark). 
31D = first derivative; 1D + N = first derivative and normalization.

Table 4. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models 
of selected groups of FA 

Reference Unit

FA category1

SFA UFA MUFA PUFA SC MC LC

Soyeurt et al. (2006) g/dL of milk 0.94 (0.20) 0.66 (0.34) 0.85 (0.22) 0.39 (0.04) — — —
g/100 g of fat 0.63 (3.75) 0.63 (3.75) 0.52 (4.10) 0.10 (0.74) — — —

Rutten et al. (2009)2 g/dL of milk — — — — 0.95 (0.0) 0.97 (0.0) —
g/100 g of fat — — — — 0.82 (0.3) 0.77 (0.1) —

De Marchi et al. (2011) g/kg of milk 0.52 (2.97) 0.50 (1.57) 0.55 (1.39) 0.41 (0.22) — 0.53 (2.66) 0.58 (1.94)
Ferrand et al. (2011) g/100 mL of milk 0.98 (0.038) 0.91 (0.043) 0.92 (0.040) 0.38 (0.008) 0.97 (0.008) — —
Soyeurt et al. (2011) g/dL of milk 0.99 (0.08) 0.97 (0.07) 0.97 (0.06) 0.81 (0.02) 0.95 (0.02) 0.96 (0.12) 0.96 (0.12)
Maurice-Van Eijndhoven et al. (2013) g/dL of milk 0.99 (0.078) — — — 0.95 (0.028) 0.96 (0.190) —
1UFA = unsaturated FA; SC = short-chain FA; MC = medium-chain FA; LC = long-chain FA.
2Prediction bias within parentheses.
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Milk clotting characteristics affect the efficiency of 
the cheese-making process. Milk with good aptitude to 
coagulate after rennet addition and to form a firm curd 
has been associated with increased cheese yield com-
pared with milk that poorly reacts to the presence of 
the enzyme (Bynum and Olson, 1982; Riddell-Lawrence 
and Hicks, 1989). Common measures of MCP are ren-
net coagulation time (RCT; min), curd-firming time 
(k20; min), and curd firmness (a30; mm). Several stud-
ies reported across-breed (Auldist et al., 2002, 2004; De 
Marchi et al., 2007, 2008) and genetic variation of MCP, 
measured by reference mechanical methods (Ikonen et 
al., 2004; Tyrisevä et al., 2004; Cassandro et al., 2008) 
and predicted by MIRS (Cecchinato et al., 2009).

Prediction of MCP by MIRS has been investigated 
by Dal Zotto et al. (2008) and De Marchi et al. (2009b, 
2013; Table 5). Dal Zotto et al. (2008) and De Marchi 
et al. (2009b) analyzed individual cow milk samples 
using the computerized renneting meter (Polo Trade, 
Monselice, Italy) as reference method, and they devel-
oped MIRS prediction models for RCT and a30, and 
De Marchi et al. (2013) developed MIRS prediction 
models for MCP (including k20) of samples that co-
agulated beyond 30 min from rennet addition, using 
the Formagraph (Foss Electric A/S, Hillerød, Den-
mark) as a reference instrument. The best calibration 
models were developed by De Marchi et al. (2013); 
according to Table 5, 1 − VR were 0.76, 0.72, and 
0.76; the root mean square error of cross-validation 
(RMSEcv) were 7.05 min, 3.54 min, and 7.68 mm; 
and the RPD were 2.03, 1.86, and 1.80 for RCT, k20, 
and a30, respectively.

Results of De Marchi et al. (2013) on an extended 
testing time of analysis (60 min instead of the typical 
30 min) showed notably better prediction models for 
RCT and a30 than those reported by Dal Zotto et al. 
(2008) and De Marchi et al. (2009b; Table 5). More-
over, De Marchi et al. (2013) highlighted the potential 
of MIRS to predict k20, which is considered a trait of 
great practical importance in the dairy industry, as it 
suggests the optimal time at which curd-cutting should 
commence and, thus, it is related to product yield 
and quality (Bynum and Olson, 1982). Nevertheless, 
the comparison of papers in the literature is difficult 
because of different reference methods and the differ-
ent types and concentrations of rennet used. The role 
of different methodologies in the assessment of MCP 
was investigated by Pretto et al. (2011), who proposed 
a method for the transformation of MCP obtained 
from various methodologies, and by Cipolat-Gotet et 
al. (2012), who compared MCP determined by Forma-
graph and by an optical instrument.

The prediction model for curd firmness 60 min after 
rennet addition was not completely satisfactory, as 1 − 

VR, RMSEcv, and RPD for this trait were 0.40, 7.26 
mm, and 1.26, respectively (De Marchi et al., 2013). 
The low accuracy of prediction might be related to 
low accuracy of reference analysis for late-coagulating 
milk samples. This was previously reported by Cipolat-
Gotet et al. (2012), who found large variability for curd 
firmness measured 45 min after rennet addition.

Finally, in most studies MIRS prediction models were 
developed using untreated spectral data. This consisted 
with the results reported by De Marchi et al. (2009b) 
who investigated the effect of different spectra pretreat-
ments for the prediction of MCP, showing better ac-
curacies using untreated spectral data with respect to 
first- or second-derivative pretreatments.

Concerning milk acidity, 2 main measures could be 
identified: pH and titratable acidity (TA). Both traits 
are very important in cheese production. Titratable 
acidity is related to the aggregation rate of paracasein 
micelles, the reactivity of rennet, and the rate of synere-
sis; usually, milk with low values of TA (hypoacid milk) 
is considered unsuitable for cheese making (Formag-
gioni et al., 2001). The pH of milk affects enzymatic 
and aggregation reactions. De Marchi et al. (2009b) 
evaluated the potential of MIRS to predict TA and 
pH (Table 5); results were quite satisfactory, as 1 − 
VR were 0.59 and 0.66, and RMSEcv were 0.07 and 
0.25 Soxhlet-Henkel degrees (°SH)/50 mL for pH and 
TA, respectively. Quite similar results were found by 
Colinet et al. (2010), who predicted TA with 1 − VR 
greater than 0.90 and RPD of 3.13.

Overall, MIRS is a valid tool for predicting MCP 
and milk acidity of bovine milk and, thus, it might be 
adopted in payment systems to reward or penalize pro-
ducers of milk, according to its clotting characteristics, 
as well as for breeding purposes (Tiezzi et al., 2013; 
Penasa et al., 2014).

MILK PROTEIN COMPOSITION

Milk proteins have gained interest in dairy organiza-
tions worldwide mainly for their role in cheese produc-
tion. Several studies have dealt with the effects of milk 
protein polymorphisms, in particular those of casein, 
on MCP (Comin et al., 2008; Heck et al., 2009; Penasa 
et al., 2010) and cheese yield (Wedholm et al., 2006; 
Bonfatti et al., 2011). Furthermore, milk proteins are 
relevant for some aspects related to human nutrition, 
such as the release of peptides with biological function 
(Caroli et al., 2009). Lactoferrin is one of these pro-
teins and it can be found in most biological fluids (e.g., 
colostrum, milk, and blood). Lactoferrin is important 
for immune system maintenance, as it has antibacte-
rial, antifungal, and antiviral properties (Farnaud and 
Evans, 2003; Baker and Baker, 2005).
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Heritability estimates of individual milk proteins are 
moderate to high, suggesting wide opportunity to alter 
the composition in cow milk using breeding if individual 
measurements of milk protein fractions are available on 
a large scale (Lopez-Villalobos, 2012).

Mid-infrared prediction models for protein, casein, 
and casein fractions are shown in Table 6. Only De 
Marchi et al. (2009a), Bonfatti et al. (2011), and Rut-
ten et al. (2011) developed prediction models for casein 
fractions, whereas Luginbühl (2002), Sørensen et al. 
(2003), and Etzion et al. (2004) reported predictions 
only for casein and protein contents. As in the case of 
FA composition, reference methods play a basic role in 
the development of prediction models for milk protein 
composition. Studies that dealt with the use of MIRS 
to predict protein and casein contents referred to the 
Kjeldahl analytical method (Sørensen et al., 2003), and 
they reported excellent 1 − VR and RMSEcv of 0.94 
to 0.97, and 0.08 to 0.05 g/100 g of milk, respectively 
(Table 6). On the other hand, MIRS models for casein 
and whey fractions measured using capillary zone elec-
trophoresis or reversed-phase HPLC as reference meth-
ods showed moderate predictive ability (De Marchi et 
al., 2009a; Bonfatti et al., 2011; Rutten et al., 2011). 
On average, casein fractions were better predicted when 
the reference method was HPLC than capillary zone 
electrophoresis. We can hypothesize that the accuracies 
of gold standard methods play a key role in the devel-
opment of infrared prediction models. Moreover, in this 
specific case and as reviewed by Recio et al. (1997), 
HPLC methods showed better accuracies with respect 
to capillary zone electrophoresis in the determination of 
protein composition.

The best prediction models were described by Bon-
fatti et al. (2011), with 1 − VR of 0.66, 0.49, 0.53, 
0.63, and 0.40 for αS1-CN, αS2-CN, β-CN, κ-CN, and 
γ-CN, respectively, whereas no satisfactory results were 
obtained by Rutten et al. (2011), who reported 1 − VR 
of 0.18 and 0.28 for αS1-CN and κ-CN, respectively. De 
Marchi et al. (2009a) showed slightly lower accuracies 
compared with Bonfatti et al. (2011), analyzing similar 
data and using the same reference methods. Bonfatti et 
al. (2011) tried to predict casein fractions changing the 
unit of measurement of the traits (percentage of protein 
or casein); results were not satisfactory compared with 
those obtained from traits expressed per unit of milk 
and this confirms previous findings for FA.

Regarding the total whey protein and whey protein 
fractions, very similar results were obtained by De 
Marchi et al. (2009a), Bonfatti et al. (2011), and Rut-
ten et al. (2011), with 1 − VR, on average, of 0.55, 
0.35, and 0.55 for total whey protein, α-LA, and β-LG, 
respectively (Table 7). As with casein fractions, MIRS 
predictions of whey fractions were better when traits 

were expressed per unit of milk. Concerning the spec-
tra pretreatments, the scientific literature reported 
contradictory results; in fact, De Marchi et al. (2009a) 
and Rutten et al. (2011) used untreated spectral data, 
whereas Bonfatti et al. (2011) used several preprocessed 
spectra methods.

According to Table 7, 1 − VR values for predicted 
lactoferrin would be 0.66, 0.73, and 0.75 in Lopez-Vil-
lalobos et al. (2009), Soyeurt et al. (2012), and Soyeurt 
et al. (2007), respectively. The prediction models were 
developed using 2 gold standard methods: (1) a com-
mercial ELISA kit in the case of Soyeurt et al. (2007, 
2012) and (2) HPLC in the case of Lopez-Villalobos et 
al. (2009). The large number (n = 2,499) and the origin 
(3 countries) of milk samples, combined with first-
derivative pretreatments, were probably responsible for 
the better prediction of lactoferrin from Soyeurt et al. 
(2012) compared with the other studies.

In general, results of the reviewed studies indicate 
that MIRS cannot predict milk protein composition 
with high accuracy and, hence, the prediction models 
are not currently suitable for the dairy industry (e.g., 
milk payment system).

COW HEALTH AND ENERGY STATUS

Mid-infrared spectroscopy has been studied as po-
tential tool to predict several milk traits related to 
cow health and robustness, which are closely related 
to cow fertility and production. This is the case for ke-
tosis, a metabolic disorder that affects high-producing 
cows and causes a loss of production and infertility. 
Ketosis is related to the abnormal increase of acetone 
and BHBA in blood and milk, and the potential to 
predict the ketone bodies using MIRS has been tested 
by several authors. Hansen (1999) obtained 1 − VR 
and RMSEcv of 0.81 and 0.27 mM, respectively, for 
acetone content of bovine milk; these results were use-
ful for screening purposes (healthy vs. potential ketotic 
cows). Heuer et al. (2001) studied the ability of MIRS 
to predict acetone content and found greater 1 − VR 
compared with Hansen (1999), a specific relationship 
between 1,370 and 1,239 cm−1 wavelengths and acetone 
prediction, and an advantage in the accuracy of predic-
tion related to second-derivative spectra pretreatment. 
The results reported by Hansen (1999) and Heuer et 
al. (2001), which allowed the screening of cows with 
subclinical ketosis, were confirmed by the calibration 
models developed by de Roos et al. (2007). de Roos et 
al. (2007) investigated the potential of MIRS to predict 
acetone and BHBA concentrations on 1,080 bovine 
samples and reported RMSEcv of 0.184 and 0.064 
mM for acetone and BHBA, respectively. The ability 
of MIRS to predict acetone and BHBA concentrations 
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Table 6. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models 
of total protein, total casein, and protein fractions 

Reference
Spectra  
pretreatment1 Unit

Protein

Protein Casein αS1-CN αS2-CN β-CN κ-CN γ-CN

Luginbühl (2002) — g/100 g of milk — 0.997 (0.047) — — — — —
Sørensen et al. (2003) — % — 0.97 (0.035) — — — — —
Etzion et al. (2004) — % 0.94 (0.08) — — — — — —
De Marchi et al. (2009a) Untreated g/L of milk 0.58 (3.11) 0.58 (2.76) 0.50 (1.07) 0.35 (0.58) 0.33 (1.77) 0.44 (0.68) —
Bonfatti et al. (2011) SNV, De, MSC, 1D, 2D g/L of milk 0.78 (2.13) 0.77 (1.91) 0.66 (0.89) 0.49 (0.48) 0.53 (1.37) 0.63 (0.55) 0.40 (0.10)

% protein — — 0.23 (1.95) 0.17 (1.08) 0.13 (2.42) 0.36 (1.44) 0.08 (1.00)
% casein — — 0.20 (2.34) 0.19 (1.25) 0.16 (2.63) 0.36 (1.62) 0.09 (1.14)

Rutten et al. (2011) Untreated g/100 g of milk — 0.25 (1.50) 0.18 (1.52) 0.26 (1.20) 0.19 (1.42) 0.28 (0.49) —
1SNV = standard normal variate; De = detrend; MSC = multiplicative scatter correction; 1D = first derivative; 2D = second derivative.

Table 7. Unit of measurement, coefficient of determination, and prediction error (in parentheses) of validation procedures for mid-infrared spectroscopy (MIRS) prediction models 
of whey protein and selected whey protein fractions 

Reference
Spectra  
pretreatment1 Unit

Protein

Whey protein α-LA β-LG Lactoferrin

Soyeurt et al. (2007) Untreated mg/L of milk — — — 0.75 (103.93)
De Marchi et al. (2009a) Untreated g/L of milk 0.53 (0.51) 0.29 (0.19) 0.55 (0.43) —
Lopez-Villalobos et al. (2009) Untreated mg/L of milk — — — 0.812

Bonfatti et al. (2011) SNV, De, MSC, 1D, 2D g/L of milk 0.61 (0.45) 0.31 (0.18) 0.64 (0.37) —
% protein — 0.31 (0.42) 0.42 (0.74) —
% whey protein — — 0.36 (3.02) —

Rutten et al. (2011) Untreated g/100 g of milk 0.53 (0.84) 0.20 (0.29) 0.56 (0.79) —
Soyeurt et al. (2012) Untreated, rep, 1D, 1D + rep, 2D, 2D + rep mg/L of milk — — — 0.72 (50.55)
1SNV = standard normal variate; De = detrend; MSC = multiplicative scatter correction; 1D = first derivative; 2D = second derivative; rep = repeatability file.
2Concordance correlation coefficient calculated according to Lin (1989).
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was also demonstrated by van Knegsel et al. (2010), 
who reported that cow hyperketonemia could be bet-
ter predicted using models developed for acetone and 
BHBA contents than using fat-to-protein ratio.

The negative energy balance, typical of dairy cows, 
especially in early lactation (Berry et al., 2006, 2009), 
is known to be related to animal health and fertility 
(Beam and Butler, 1999). Several studies estimated 
genetic association between negative energy balance 
and animal health (Collard et al., 2000; Veerkamp et 
al., 2000), and proposed energy balance predictors such 
as change in BCS, milk fat-to-protein ratio, and FA 
composition of milk (de Roos et al., 2007; Roche et al., 
2009; Stoop et al., 2009).

McParland et al. (2011) investigated the feasibility 
of using the MIRS spectrum as an indicator of body 
energy status in Holstein cows; the authors found quite 
satisfactory accuracies for direct energy balance, with 1 
− VR from 0.50 to 0.56. However, the prediction mod-
els were developed using data from a single herd and 
2 diets that differed only for the level of concentrates 
offered, and this might have affected the variability of 
data. McParland et al. (2012) went on to evaluate the 
ability of MIRS to predict body energy status across 
the United Kingdom and Ireland in both confinement 
and grazing systems. The accuracies of prediction 
models were quite satisfactory, with square root of the 
coefficients of multiple determination from 0.47 to 0.69, 
0.51 to 0.56, and 0.76 to 0.80 for direct energy balance, 
body energy content, and energy intake, respectively. 
Moreover, in the same study, McParland et al. (2012) 
highlighted the importance of limiting the error on the 
reference measurements to obtain a satisfactory equa-
tion. In conclusion, MIRS prediction models developed 
by McParland et al. (2011, 2012) provided useful infor-
mation on the energy status of cows to dairy farmers; in 
fact, through routine recording of these traits, changes 
in the energy status of cows could be related to herd 
management practices or cow individual characteristics 
(e.g., genetic merit).

MINERAL COMPOSITION OF MILK  
AND OTHER TRAITS

Minerals in milk play a key role for human health 
and for some technological aspects (e.g., coagulation 
process). Recently, Caroli et al. (2011) reviewed the re-
lationships between the intake of several milk and dairy 
products and bone health (e.g., osteoporosis), with 
particular emphasis to calcium and other macro- and 
micronutrients. Calcium associated with phosphorus 
influenced the ability of milk to coagulate and affected 
the final consistency of coagulum (Fossa et al., 1994; 
Mariani et al., 1996).

As for the previously reviewed traits, the opportunity 
to predict mineral composition using MIRS is desir-
able, as it allows rapid and large-scale data recording. 
Only Soyeurt et al. (2009) investigated the potential of 
MIRS to predict the calcium, phosphorus, magnesium, 
sodium, and potassium content of cow milk based on 
the inductively coupled plasma atomic emission spec-
trometry gold method. Results showed the ability of 
MIRS to predict calcium and phosphorus (1 − VR of 
0.87 and 0.85, respectively), reasonable accuracies for 
magnesium and sodium (coefficient of determination 
in cross-validation of 0.65), and unsatisfactory results 
for potassium. Moreover, Soyeurt et al. (2009) reported 
that inductively coupled plasma atomic emission spec-
trometry without mineralization was an inappropriate 
method to determine the sodium concentration in milk.

Recently, Toffanin and De Marchi (2013) investi-
gated the effectiveness of MIRS to predict calcium and 
phosphorus, and the relations of these traits with MCP. 
Milk samples of about 200 Holstein-Friesian cows were 
collected and MIRS spectra and reference values ob-
tained by the inductively coupled plasma atomic emis-
sion spectroscopy method were recorded. Statistical 
analysis using external and cross-validation procedures 
showed quite satisfactory results, with 1 − VR ranging 
from 0.50 to 0.60 and from 0.67 to 0.80 for calcium and 
phosphorus, respectively.

Mid-infrared spectroscopy has also been used to pre-
dict hydrochloride tetracycline concentration in milk 
(Sivakesava and Irudayaraj, 2002); those authors re-
ported very high accuracy of prediction using a limited 
range of tetracycline concentration (4 to 2,000, 520 to 
2,000, and 4 to 520 ppb) and first-derivative spectra 
pretreatment. More recently, MIRS has been used to 
predict methane emission of dairy cows (Dehareng et 
al., 2012) on a limited number of animals fed 2 diets 
to induce large variation in methane emissions, mea-
sured using the sulfur hexafluoride method. Predic-
tion models were developed using the average daily 
milk spectrum that was collected at 5 different times 
over 5 d from each diet to find the best relationship 
between methane emissions and spectra information. 
The best results were obtained for spectra collected for 
1.5 d after methane determination, with 1 − VR of 
0.79. Moreover, an interesting relationship between FA 
and methane emissions was confirmed. Dehareng et al. 
(2012) suggested the use of MIRS models for screening 
purposes; however, the application of MIRS to predict 
methane emission needs to be further studied.

CONCLUSIONS AND PERSPECTIVES

Mid-infrared spectroscopy is a fast, large-scale, 
and low-cost methodology for collecting phenotypes. 
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Its potential to predict milk quality traits (e.g., FA 
composition, MCP, and mineral content) and other 
milk characteristics related to cow health and energy 
status has been demonstrated. In the near future, 
MIRS could be used for the prediction of other milk 
traits: (1) potassium, magnesium, and zinc content, 
which are important for transmitting nerve impulses, 
for mineral structure of bones, for wound healing, and 
healthy immune systems; (2) phospholipids and acidic 
glycolipids, which are important for infant develop-
ment; (3) vitamins A and B, which are important 
for healthy eyes and skin; (4) sensory features, which 
are important for the characterization of milk taste, 
beyond its nutritional value; (5) cheese yield; and (6) 
whey components, such as glutathione, α-tocopherol, 
and vitamin C.

Several studies on the effect of spectra pretreatment 
and type of software are needed. From this point of view, 
the effect of the use of mathematical pretreatments is 
not completely known, especially when prediction mod-
els are developed for a new trait for which the success 
of calibration models is related to several spectra peaks. 
Moreover, the potential of different statistical software 
packages should be investigated; in fact, no studies 
have been conducted to compare the performance of 
chemometric with general statistics software.

Efforts should be made to transfer prediction models 
for new phenotypes to MIRS instruments available in 
milk laboratories to allow routine data recording at the 
population level. To facilitate the implementation of 
MIRS models in field conditions, close collaboration 
with companies producing MIRS instruments is recom-
mended.

Another crucial point for improving the use of MIRS 
is to favor the exchange of spectra databases among 
countries to develop across-country MIRS prediction 
models that take into account the biological vari-
ability of the studied traits in different environmental 
conditions. To do this, standardized reference methods 
within and across country are needed. As reviewed in 
this paper, large variability of reference methods used 
for MIRS calibration exists, and this does not facilitate 
the exchange and comparison of predicted phenotypes 
from different countries.

Finally, MIRS allows the recording of many new phe-
notypes that can be used for breeding purposes. The 
application of MIRS predictions in breeding programs 
depends upon the genetic correlation between the pre-
dicted and measured values. If the correlation and the 
genetic variance of MIRS phenotypes are sizable with 
reasonable accuracies, practical utility exists in the 
MIRS models.
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