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Optimal Exercise of Swing Contracts in Energy Markets: An Integral
Constrained Stochastic Optimal Control Problem∗

Matteo Basei†, Annalisa Cesaroni†, and Tiziano Vargiolu†

Abstract. We characterize the value of swing contracts in continuous time as the unique viscosity solution
of a Hamilton–Jacobi–Bellman (HJB) equation with suitable boundary conditions. The case of
contracts with penalties is straightforward, and in that case only a terminal condition is needed.
Conversely, the case of contracts with strict constraints gives rise to a stochastic control problem
with a nonstandard state constraint. We approach this problem by a penalty method: we consider a
general constrained problem and approximate the value function with a sequence of value functions
of appropriate unconstrained problems with a penalization term in the objective functional. Coming
back to the case of swing contracts with strict constraints, we finally characterize the value function
as the unique viscosity solution with polynomial growth of the HJB equation subject to appropriate
boundary conditions.
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1. Introduction. Energy is traded in financial markets, in its various forms (electricity,
coal, gas, oil, etc.), mainly through two types of contracts, namely forwards and swings.
Forward contracts are obligations between two parts to exchange some amount of energy in a
specified form (electricity or some fuel) and for a prespecified amount of money: once settled,
this contract is strictly binding for both parts, giving no flexibility to them. Conversely, swing
contracts give a certain amount of flexibility to the buyer, while also giving the seller a certain
guarantee that a minimum quantity of energy will be bought. This is due to the fact that
energy storage is costly in the case of fuels and almost impossible in the case of electricity;
moreover, energy markets are influenced by many elements (peaks in consumption related to
sudden weather changes, breakdowns in power plants, financial crises, etc.). As a consequence,
the price of energy is subject to remarkable fluctuations, so that flexibility is much welcomed
by contract buyers.

The flexibility in swing contracts is implemented in this way (we here follow the approach
in [3] and model the contract in continuous time): for a fixed contract maturity T (usually
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one or several years), the buyer can choose, at each time s ∈ [0, T ], to buy a marginal amount
of energy u(s) ∈ [0, ū] at a prespecified strike price K, thus realizing a marginal profit (or
loss) equal to (P (s)−K)u(s), where P (s) is the spot price of that kind of energy. This gives
to the buyer the potential profit (or loss)∫ T

0
e−rs(P (s)−K)u(s) ds,

with r > 0 the risk-free interest rate.
However, the energy seller usually wants the total amount of energy Z(T ) =

∫ T
0 u(s) ds to

lie between a minimum and a maximum quantity, that is, Z(T ) ∈ [m,M ]. This is implemented
in two main ways. The first way is to impose penalties when Z(T ) /∈ [m,M ], i.e., to make the
buyer pay a penalty Φ̃(P (T ), Z(T )), where Φ̃(p, z) is a contractually fixed function, null for
z ∈ [m,M ] and convex in z. The second way is to impose the constraint Z(T ) ∈ [m,M ] to
be satisfied strictly, i.e., to force the buyer to withdraw the minimum cumulative amount of
energy m and to stop giving the energy when the maximum M has been reached.

We are interested in the problem of optimally exercising a swing contract in both cases.
This problem can be modeled as a continuous time stochastic control problem: our aim is to
study the corresponding value function and to characterize it as the unique viscosity solution
of the related Hamilton–Jacobi–Bellman (HJB) equation. Swing contracts are treated either
in discrete time [1, 2, 10, 15] via the dynamic programming principle and Bellman equations
or in continuous time [3, 12] only by reporting a verification theorem for a smooth solution
of the HJB equation, without reporting existence or uniqueness results for that. Besides, we
also extend the approach in [3, 12], which treats only the case m = 0, to the case when m > 0,
which is the most relevant case in practical applications (in fact, [17] reports that typically
m ∈ [0.8M,M ]). We also refer the reader to [7], where swing contracts in continuous time are
treated with multiple stopping techniques, and [4], where swings are priced using a discrete
time backward scheme for solving BSDEs with jumps.

In the case of swing contracts with penalties, we get a standard stochastic control problem,
as the maximization of the final expected payoff for a buyer entering in the contract at a generic
time t ∈ [0, T ] is given by

(1.1) Ṽ (t, p, z) = sup
u∈At

Etpz

[∫ T

t
e−r(s−t)(P (s)−K)u(s) ds− e−r(T−t)Φ̃(P (T ), Z(T ))

]
,

with (t, p, z) ∈ [0, T ]×R2, whereAt is the set of [0, ū]-valued progressively measurable processes
u = {u(s)}s∈[t,T ]. Thus, in this case classical theory (see [9, 11, 13]) can be applied: see
section 2.

Conversely, swing contracts with strict constraints give rise to a stochastic control problem
with integral constraints in the control:

(1.2) V (t, p, z) = sup
u∈Aadm

tz

Etpz

[ ∫ T

t
e−r(s−t)(P (s)−K)u(s) ds

]
,

with (t, p, z) in a suitable domain D ⊆ [0, T ] × R2, where Aadm
tz is the set of processes u ∈ At

such that Ptpz-a.s. Z
t,z;u(T ) = z+

∫ T
t u(s) ds ∈ [m,M ]. Due to the presence of the constraint

on Zt,z;u(T ), here classical theory does not apply.
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This motivates us to consider in section 3 a more general class of integral constrained
stochastic problems in the form

(1.3) V (t, p, z) = sup
u∈Aadm

tz

Etpz

[ ∫ T

t
e−r(s−t)L(s, P (s), Z(s), u(s))ds+e−r(T−t)Φ(P (T ), Z(T ))

]
.

with (t, p, z) in a suitable domain D ⊆ [0, T ] × Rn × R, where Aadm
tz is the set of processes

u ∈ At such that, Ptpz-a.s., Z(T ) = z +
∫ T
t g(s, u(s)) ds ∈ [m,M ].

Control problems with integral constraints are classical in control theory; for instance, they
naturally arise in applications, e.g., control problems with bounded Lp norm of the controls,
control problems with prescribed bounded total variation or total energy of the trajectories,
and control systems with design uncertainties. However, the dynamic programming approach
presents several technical difficulties. The main one relies on the fact that the dynamic
programming principle is not satisfied directly by the value function, and the problem has to
be attacked differently. As for the case of deterministic systems, we refer the reader to [19, 20]
and references therein. As for the case of stochastic controls, the upper bound Z(T ) ≤ M
is analogous to the constraint of the so-called finite fuel problems, which are optimal control
problems with an upper bound on the integral of the absolute value of the controls (see,
e.g., [13, Chapter VIII] for an introduction to the problem and [18] and references therein).
Instead, the lower bound Z(T ) ≥ m is nonstandard. In the particular case of (1.2), and only
with m = 0, such a bound has been studied (treated in [3] and generalized in [12], still with
m = 0). However, we already said that this case is quite unrealistic, as the seller wants to be
sure to sell some amount of energy, so typically m > 0.

Note that the control problem in (1.3) can be interpreted as a state constraint control
problem in the following way. First of all, the integral constraint on the control can be
written as a terminal constraint on the state variables (P (s), Z(s)): they have to satisfy a.s.
(P (T ), Z(T )) ∈ G, where G is a closed set in Rn+1. In our case, G = Rn × [m,M ]. Then, we
introduce the set of points such that G is reachable from (t, p, z), i.e.,

D = {(t, p, z) ∈ [0, T ] × Rn × R : Aadm
tz �= ∅}.

Thus, we can redefine Aadm
tz in (1.3) as the set of processes u ∈ At such that, Ptpz-a.s.,

(s, P (s), Z(s)) ∈ D for all s ∈ [t, T ].
Note that here D is not given explicitly, but it is defined by a stochastic target problem.

In [6], a similar stochastic control problem has been considered, with G = {(p, z) ∈ Rn ×
R | g(p, z) ≥ 0} and g(p, ·) increasing and right continuous. In this case, though, differently
from our case, the set D can be described as the epigraph of a continuous function, that
is, D = {(t, p, z) | w(t, p) ≥ z}. We also refer the reader to [5], where reachable sets for
state-constrained controlled stochastic systems have been studied.

To study our problem, we adopt a classical penalization method. We introduce the set
D̃ ⊆ D (which is the set of points such that the interior of G is reachable from (t, p, z); for
a precise definition we refer the reader to section 3.1), and we show that in D̃ the function
V in (1.3) is the limit of the value functions V c of suitable unconstrained problems, where
the constraint has been substituted by an appropriate penalization in the objective functional.
This convergence result is obtained under a technical assumption (see Assumption 2), ensuring
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that, roughly speaking, given a control inAadm
tz we can modify it in order to steer the trajectory

in the interior of G, not paying too much in the cost functional. This result is contained in
Theorem 3.5 and Corollary 3.6. In Propositions 3.8 and 3.9 we prove that, under suitable
assumptions, the function V (t, ·, z) is Lipschitz continuous and a.e. twice differentiable. In
section 3.4 we show that Assumption 2 is satisfied in the cases g(s, v) = v and g(s, v) = |v|p
(p ≥ 1) if f and σ satisfy appropriate conditions.

In section 4 we apply these general results to the problem in (1.2). In this case stronger
results will be achieved, since it can be proved directly that the value function is continuous
not only in D̃ � D but in the whole domain D (Propositions 4.1 and 4.3). Thus, V can be
characterized as the unique continuous viscosity solution with polynomial growth of the HJB
equation under suitable boundary conditions (Theorem 4.4). As for the regularity of the value
function, besides the above cited general results about the variable p (Proposition 4.5), we
prove that V (t, p, ·) is concave and study its monotonicity (Proposition 4.6).

The structure of the paper is as follows. In section 2 the evaluation problem for a swing
contract with penalty is studied. Section 3 deals with a general class of constrained control
problems, as in (1.3). Finally, in section 4 we deeply analyze the problem, outlined in (1.2),
of the optimal exercise of swing contracts with strict constraints.

Notation. By ‖ · ‖∞ we denote the sup-norm. If B ∈Mij(R) (i.e., a real i× j matrix), Bt

denotes the transpose of B and tr(B) denotes its trace. By B(x,R) we mean the closed ball
in Rn with center x and radius R. If O ⊆ Rn and k ∈ N, we denote by Ck

b (O) (resp., Ck
p (O))

the set of functions of class Ck(O) whose derivatives up to order k are bounded (resp., are
polynomially growing). If ψ is a function from (t, p, z) ∈ A ⊆ R× Rn × R to R, by ψt, ψz we
mean the derivatives with respect to t and z, and by Dpψ,D

2
pψ we mean the Jacobian and

the Hessian matrix with respect to the variable p.

2. Swing contracts with penalties. In this section we consider the problem of the optimal
exercise of swing contracts with penalties described in the introduction: to this purpose, we
formalize a continuous time model to which we apply classical results in stochastic control.

Let T > 0, and fix a filtered probability space (Ω, FT , {Fs}s∈[0,T ], P) and a real {Fs}s-
adapted Brownian motion W = {W (s)}s∈[0,T ]. Let t ∈ [0, T ] and p ≥ 0. We model the price

of energy through a stochastic process {P t,p(s)}s∈[t,T ] which satisfies the SDE

(2.1) dP t,p(s) = f(s, P t,p(s))ds + σ(s, P t,p(s))dW (s), s ∈ [t, T ],

with initial condition P t,p(t) = p. We assume

(2.2)
f, σ ∈ C([0, T ]× R;R),

|f(t, p)− f(t, q)|+ |σ(t, p) − σ(t, q)| ≤ Ĉ|p − q| ∀p, q ∈ R, ∀t ∈ [0, T ],

where Ĉ > 0 is a constant.
In each s ∈ [t, T ], the holder can buy energy at a fixed unitary price K > 0 and with

purchase intensity u(s) ∈ [0, ū], where ū > 0 is a constant: this gives a net instantaneous profit
(or loss) of (P t,p(s)−K)u(s). Let At be the set of all [0, ū]-valued progressively measurable
processes u = {u(s)}s∈[t,T ] (i.e., all the possible usage strategies of the contract). Let z be the
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amount of energy purchased until time t, and let u ∈ At be an exercise strategy from time t
on; for each s ∈ [t, T ] we denote by Zt,z;u(s) the energy bought up to time s:

Zt,z;u(s) = z +

∫ s

t
u(τ)dτ, s ∈ [t, T ].

If the globally purchased energy Zt,z;u(T ) does not fall within a fixed range [m,M ]
(m,M ∈ R, with m ≤ M), the holder must pay a penalty Φ̃(P t,p(T ), Zt,z;u(T )), where Φ̃
is a function from R2 to R. In the typical case (see, for example, [1, 2, 11]) the penalty is
directly proportional to P t,p(T )+ and to the entity of the overrunning or underrunning: this
is obtained by setting

Φ̃(p, z) = −Ap+(z −M)+ −Bp+(m− z)+

for all (p, z) ∈ R2, where A,B > 0 are suitable constants. In several practical cases, A = B.
However, other kind of penalties are possible (see, e.g., [15]): typically p+, representing the
spot price at the end T of the contract, is replaced either by an arithmetic mean of spot prices
(thus requiring another state variable in the problem) or by a fixed (high) penalty. In light of
the above discussion, we assume that, for all p ∈ R,

Φ̃(p, z) = 0 ∀z ∈ [m,M ],

Φ̃(p, ·) is concave,(2.3)

|Φ̃(p + h, z)− Φ̃(p, z)| ≤ Ch(1 + |z|), |Φ̃(p, z + h)− Φ̃(p, z)| ≤ Ch(1 + |p|) ∀z ∈ R, h > 0,

where C > 0 is a constant.
Let r ≥ 0 be the risk-free rate. We get a stochastic optimal control problem with the

following value function:

(2.4) Ṽ (t, p, z) = sup
u∈At

J̃(t, p, z;u)

for each (t, p, z) ∈ [0, T ]× R2, where

J̃(t, p, z;u) = Etpz

[∫ T

t
e−r(s−t)(P t,p(s)−K)u(s)ds + e−r(T−t)Φ̃(P t,p(T ), Zt,z;u(T ))

]
,

and by Etpz we denote the mean value with respect to the probability P (subscripts recall
initial conditions).

Problem (2.4) belongs to a widely studied class of control problems: by well-known classical
results, summarized in Theorem 2.1, the value function is the unique viscosity solution of the
corresponding HJB equation subject to appropriate conditions (we refer the reader to [8] for
the definition of viscosity solutions).

Theorem 2.1. Under assumptions (2.2) and (2.3), the function Ṽ is the unique viscosity
solution of

(2.5) − Ṽt(t, p, z) + rṼ (t, p, z)− f(t, p)Ṽp(t, p, z)− 1

2
σ2(t, p)Ṽpp(t, p, z)

+ min
v∈[0,ū]

[−v(Ṽz(t, p, z) + p−K)] = 0 ∀(t, p, z) ∈ [0, T [× R2,
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with final condition

(2.6) Ṽ (T, p, z) = Φ̃(p, z) ∀(p, z) ∈ R2,

and such that

|Ṽ (t, p, z)| ≤ Č(1 + |p|2 + |z|2) ∀(t, p, z) ∈ [0, T ]× R2

for some constant Č > 0.
Proof. See Theorem 3.4, of which this theorem is a particular case.
We now list some properties of the function Ṽ with respect to the variables p and z. Let

us start by proving regularity results with respect to the variable p.
Proposition 2.2. Under assumptions (2.2) and (2.3), for each (t, z) ∈ [0, T ]×R the function

Ṽ (t, ·, z) is Lipschitz continuous, uniformly in t. Moreover, the derivative Ṽp(t, p, z) exists for

a.e. (t, p, z) ∈ [0, T ] × R2, and we have |Ṽp(t, p, z)| ≤ M1(1 + |z|) for some constant M1 > 0
depending only on ū, T , C and on the constants in (3.1) and (3.4).

Proof. Let (t, p, z) ∈ [0, T ] × R2, h > 0, and u ∈ At. By estimate (D.8) in [13, Appendix
D] we have

|J̃(t, p + h, z;u) − J̃(t, p, z;u)|

≤ Etpz

[∫ T

t
|P t,p+h(s)− P t,p(s)| |u(s)|ds + C|P t,p+h(T )− P t,p(T )| (1 + |Zt,z;u(T )|)

]
≤ T ūEtpz[‖P t,p+h(·)− P t,p(·)‖∞] + CEtpz[‖P t,p+h(·)− P t,p(·)‖∞](1 + |z|+ ūT )

≤M1(1 + |z|)h,(2.7)

where M1 > 0 is a constant. Since (2.7) holds for each u ∈ At, we get

(2.8) |Ṽ (t, p + h, z) − Ṽ (t, p, z)| ≤M1(1 + |z|)h.

The function Ṽ (t, ·, z) is therefore Lipschitz continuous, uniformly in t, and then a.e. differen-
tiable by the Rademacher theorem (see [14]). By standard arguments (see [14]) it is possible
to prove that the set of points where Ṽp(t, p, z) does not exist is measurable in [0, T ] × R2;

then by Fubini’s theorem it follows that Ṽp(t, p, z) exists for a.e. (t, p, z) ∈ [0, T ] × R2. The
estimate on the derivative immediately follows by (2.8).

In the following proposition we collect some results about smoothness and monotonicity
of the function Ṽ with respect to z.

Proposition 2.3. Under assumptions (2.2) and (2.3), for each (t, p) ∈ [0, T ]×R the function
Ṽ (t, p, ·) has the following characteristics:

– It is Lipschitz continuous, uniformly in t. Moreover, the derivative Ṽz(t, p, z) exists
for a.e. (t, p, z) ∈ [0, T ]×R2, and we have |Ṽz(t, p, z)| ≤M2(1+ |p|) for some constant
M2 > 0 depending only on ū, T , C and on the constants in (3.1) and (3.4).

– It is concave and a.e. twice differentiable.
– It is nondecreasing in ]−∞,M−(T−t)ū] and nonincreasing in [m,+∞[. In particular,

if M − (T − t)ū ≥ m, then the function Ṽ (t, p, ·) is constant in [m,M − (T − t)ū] (they
all are maximum points).
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Proof. Item 1. Let (t, p, z) ∈ [0, T ]×R2, h > 0, and u ∈ At. Recall the following estimate
from [13, Appendix D]: for each k ≥ 0 there exists a constant Bk ≥ 0, depending only on ū,
T , C and on the constants in (3.1) and (3.4), such that

(2.9) Etpz

[‖P t,p;u(·)‖k∞
] ≤ Bk(1 + |p|k).

By this and the Lipschitzianity of Φ̃(P t,p(T ), ·) we have

|J̃(t, p, z + h;u) − J̃(t, p, z;u)| ≤ CEtpz[(1 + |P t,p(T )|) |Zt,z+h;u(T )− Zt,z;u(T )|]
≤ Ch(1 + Etpz[|P t,p(T )|]) ≤M2(1 + |p|)h,

where M2 > 0 is a constant. Then argue as in Proposition 2.2.
Item 2. Let (t, p) ∈ [0, T ] × R, z1, z2 ∈ R, and u1, u2 ∈ At. Notice that (u1 + u2)/2 ∈ At

and that

(2.10) Zt,
z1+z2

2
;
u1+u2

2 (T ) =
Zt,z1;u1(T ) + Zt,z2;u2(T )

2
.

By the concavity of the function Φ̃(P t,p(T ), ·) and by (2.10) we have

(2.11)
J̃(t, p, z1;u1) + J̃(t, p, z2;u2)

2
≤ J̃

(
t, p,

z1 + z2
2

;
u1 + u2

2

)
≤ V

(
t, p,

z1 + z2
2

)
.

Since (2.11) holds for each u1, u2 ∈ At, we get

Ṽ (t, p, z1) + Ṽ (t, p, z2)

2
≤ Ṽ

(
t, p,

z1 + z2
2

)
and then the concavity of the function Ṽ (t, p, ·). The a.e. existence of the second derivative
follows from the Alexandrov theorem.

Item 3. Let (t, p) ∈ [0, T ] × R, z1 ≤ z2 ≤M − (T − t)ū (the case m ≤ z1 ≤ z2 is similar),
and u ∈ At. Since

Zt,z1;u(T ) ≤ Zt,z2;u(T ) = z2 +

∫ T

t
u(s)ds ≤ z2 + (T − t)ū ≤M

and since the function Φ̃(P t,p(T ), ·) is nondecreasing in ]−∞,M ] (as it is concave and null in
[m,M ]), we have that

(2.12) J̃(t, p, z1;u) ≤ J̃(t, p, z2;u).

As inequality (2.12) holds for each u ∈ At, we get

Ṽ (t, p, z1) ≤ Ṽ (t, p, z2).

The second part immediately follows, since ]−∞,M − (T − t)ū] ∩ [m,+∞[ = [m,M −
(T − t)ū].
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M

m

T

z

t0
M - ūT

     non-increasing
             V(t, p, ∙) 

non-decreasing
V(t, p, ∙)

 const.
V(t, p, ∙)
 

Figure 1. Monotonicity of ˜V (t, p, ·).

The monotonicity result in Proposition 2.3 is described in Figure 1.
The third part of Proposition 2.3 implies in particular that for suitable t and for all p, the

function V (t, p, ·) is constant in an interval. As a matter of fact, this was foreseeable: it is
easy to check that if M − (T − t)ū ≥ m and z ∈ [m,M − (T − t)ū], then Zt,z;u(T ) ∈ [m,M ]
for each u ∈ At, so that the penalization term in the objective functional vanishes and the
initial value z does not influence the value function.

Remark 1. As observed in [3, equation (3.9)], by (2.5) a candidate optimal control policy
is

(2.13) u(t, p, z) =

{
ū if Ṽz(t, p, z) ≥ p−K,

0 if Ṽz(t, p, z) < p−K.

Notice that by Proposition 2.3 the candidate in (2.13) is a.e. well defined. Moreover, since Ṽ is
concave in z, for each fixed (t, p) there exists z̄(t, p) ∈ [−∞,+∞] such that Ṽz(t, p, z) < p−K
if and only if z > z̄(t, p): for t fixed, the function z̄(t, ·) (which in [3] is called exercise curve)
can be used to write u as

(2.14) u(t, p, z) =

{
ū if z ≤ z̄(t, p),

0 if z > z̄(t, p).

3. Integral constrained stochastic optimal control. Let us now consider the problem,
outlined in the introduction, of optimally exercising swing contracts with strict constraints.
Due to the presence of the constraint, in this case it is not possible to argue as in section 2
and use classical results in control theory. This motivates us to study a more general class of
stochastic optimal control problems with integral constraints, of which swing contracts with
strict constraints will be a particular case.

3.1. Formulation of the problem. Let d, l, n ∈ N, r ≥ 0, T > 0, and m,M ∈ R, with
m < M . Let U ⊆ Rl be nonempty and f, σ, g, L,Φ be functions satisfying the following
assumption.

Assumption 1.
(i) U is a compact subset of Rl;
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(ii) f ∈ C([0, T ]×Rn×U ;Rn), σ ∈ C([0, T ]×Rn×U ;Mnd(R)), and there exists a constant
C > 0 such that

|f(t, p, v)− f(t, q, v)| ≤ C|p− q| ∀p, q ∈ Rn, ∀(t, v) ∈ [0, T ] × U,

|σ(t, p, v) − σ(t, q, v)| ≤ C|p− q| ∀p, q ∈ Rn, ∀(t, v) ∈ [0, T ]× U ;
(3.1)

(iii) g ∈ C([0, T ]× U ;R);
(iv) L ∈ C([0, T ]× Rn × R× U ;R), Φ ∈ C(Rn × R;R), and there exist constants C̃, k > 1

such that

|L(t, p, z, v)| ≤ C̃(1 + |p|k + |z|k) ∀(t, p, z, v) ∈ [0, T ]× Rn × R× U,

|Φ(p, z)| ≤ C̃(1 + |p|k + |z|k) ∀(p, z) ∈ Rn × R.
(3.2)

Moreover, for each compact subset A ⊆ Rn+1 there exists a modulus of continuity ωA

such that

(3.3) |L(t, p, z, v) − L(t, q, y, v)| ≤ ωR(|p− q|+ |z − y|)

for all (t, v) ∈ [0, T ] × U and for all (p, z), (q, y) ∈ A.
Notice that conditions (3.1) imply that

|f(t, p, v)| ≤ Ĉ(1 + |p|) ∀(t, p, v) ∈ [0, T ]× Rn × U,

|σ(t, p, v)| ≤ Ĉ(1 + |p|) ∀(t, p, v) ∈ [0, T ] × Rn × U,
(3.4)

where Ĉ > 0 is a constant.
Let (Ω,FT , {Fs}s∈[0,T ],P,W ) be a fixed filtered probability space where a d-dimensional

{Fs}s-adapted Brownian motion W = {W (s)}s∈[0,T ] is defined. If t ∈ [0, T ], let At denote the
set of all U -valued progressively measurable processes u = {u(s)}s∈[t,T ] (controls) such that
for each p ∈ Rn the n-dimensional SDE

(3.5) dP t,p;u(s) = f(s, P t,p;u(s), u(s))ds + σ(s, P t,p;u(s), u(s))dW (s), s ∈ [t, T ],

with initial condition

(3.6) P t,p;u(t) = p,

has a pathwise unique strong solution.
Let t ∈ [0, T ], z ∈ R, u ∈ At, and let

(3.7) Zt,z;u(s) = z +

∫ s

t
g(τ, u(τ))dτ, s ∈ [t, T ].

A control u ∈ At is called admissible if the process Zt,z;u a.s. reaches the interval [m,M ] at
the final time T :

Aadm
tz =

{
u ∈ At : Z

t,z;u(T ) ∈ [m,M ] Ptpz-a.s.
}
.

We will often write P u and Zu, in order to shorten the notation.
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Given (t, z) ∈ [0, T ]×R and A ⊆ R, we say that A is reachable from (t, z) if there exists a
Borel measurable function u from [t, T ] to U (notice that then u ∈ At) such that Zt,z;u(T ) ∈ A.
Let D, D̃,Dρ (for 0 < ρ < (M −m)/2) denote the subsets of [0, T ] ×Rn × R defined by

D = {(t, p, z) ∈ [0, T ] × Rn × R : [m,M ] is reachable from (t, z)} ,
D̃ = {(t, p, z) ∈ [0, T ] × Rn × R : ]m,M [ is reachable from (t, z)} ,

Dρ = {(t, p, z) ∈ [0, T ] × Rn × R : [m+ ρ,M − ρ] is reachable from (t, z)} .

Notice that
⋃

ρDρ = D̃ ⊆ D. It is easy to prove that these sets are nonempty.

Lemma 3.1. The sets D, D̃,Dρ are nonempty.
Proof. Let 0 < ρ < (M −m)/2. As Dρ ⊆ D̃ ⊆ D, it suffices to show that Dρ �= ∅. Since

g([0, T ] × U) = [ξ1, ξ2], for suitable (t̃, z̃) ∈ [0, T ] × R we have that Z t̃,z̃,u(T ) ∈ [z̃ + ξ1(T −
t̃), z̃ + ξ2(T − t̃)] ⊆ [m+ ρ,M − ρ] for each Borel measurable function u from [t̃, T ] to U , and
thus (t̃, p̃, z̃) ∈ Dρ (arbitrary p̃ ∈ R).

If (t, p, z) ∈ D, by Etpz we denote the mean value with respect to the probability Ptpz = P

(subscripts recall initial data). We can now define the value function.
Definition 3.2. We set

(3.8) V (t, p, z) = sup
u∈Aadm

tz

J(t, p, z;u)

for each (t, p, z) ∈ D, where

J(t, p, z;u) = Etpz

[∫ T

t
e−r(s−t)L(s, P t,p;u(s), Zt,z;u(s), u(s))ds

+ e−r(T−t)Φ(P t,p;u(T ), Zt,z;u(T ))

]
.

Let us prove that the value function (3.8) is well defined.
Lemma 3.3. The expectations in (3.8) are well posed, V (t, p, z) <∞, and

(3.9) |V (t, p, z)| ≤ Γ(1 + |p|k + |z|k)
for each (t, p, z) ∈ D, where k is as in (3.2) and Γ ≥ 0 is a constant depending only on U , T ,
C, C̃, Ĉ, and max g. Moreover, D is the maximal set in which expression (3.8) makes sense.

Proof. First of all, notice that Aadm
tz �= ∅ if and only if (t, p, z) ∈ D for each p ∈ Rn. Recall

estimate (2.9): it can be shown that Bk depends only on the set U and on constants T , C, Ĉ
(see [13, Appendix D]. By (3.2) and (2.9) we have

Etpz

[ ∣∣∣∣ ∫ T

t
e−r(s−t)L(s, P t,p;u(s), Zt,z;u(s), u(s))ds + e−r(T−t)Φ(P t,p;u(T ), Zt,z;u(T ))

∣∣∣∣ ]
≤ C̃Etpz

[ ∫ T

t
(1 + |P t,p;u(s)|k + |Zt,z;u(s)|k)ds + (1 + |P t,p;u(T )|k + |Zt,z;u(T )|k)

]
≤ C1Etpz[1 + ‖P t,p;u(·)‖k + ‖Zt,z;u(·)‖k]
≤ C2(1 + |p|k + |z|k)(3.10)
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for suitable constants C1, C2 > 0.
We also require the following assumption to hold.
Assumption 2. Given 0 < ρ < (M − m)/2 and a compact subset A ⊆ Dρ, there exist

ε̄ > 0 and a function 0 < η ≤ (M −m)/2, both depending only on ρ, A, T , and U , with the
following property: for each 0 < ε < ε̄, (t, p, z) ∈ A, u ∈ Aadm

tz there exists ũ ∈ At such that
|J(t, p, z;u) − J(t, p, z; ũ)| ≤ ε and such that a.s. Zt,z;ũ(T ) ∈ [m+ η(ε),M − η(ε)].

In section 3.4 we will give two examples of wide classes of problems satisfying Assump-
tion 2.

3.2. Approximating problems. We would like to obtain for the problems of section 3.1
the standard results in unconstrained control theory: continuity of the value function and
characterization of the value function by the HJB equation. A straightforward approach is
not possible, since condition u ∈ Aadm

tz prevents us from simply adapting classical proofs.
The idea is then the following: to define suitable unconstrained problems which approx-

imate our constrained problem and then to obtain the properties of the value function (3.8)
through a limiting procedure. The construction of the approximating problems is based on
the idea of penalizing the case Zt,z;u(T ) /∈ [m,M ] by adding a suitable term in the objective
functional.

Given c > 0, let Φc be the function from R to R defined by

(3.11) Φc(z) = −c
[(

z −
(
M − 1√

c

))+

+

((
m+

1√
c

)
− z

)+
]

for each z ∈ R. This particular function has been chosen since we will need, as a key point in
the proof of Theorem 3.5, that limc→+∞Φc(m) = limc→+∞Φc(M) = −∞ and that definitely
Φc(z) = 0 for each z ∈ ]m,M [.

Now let the assumptions of section 3.1 hold and consider the following unconstrained
problem:

(3.12) V c(t, p, z) = sup
u∈At

Jc(t, p, z;u),

where (t, p, z) ∈ [0, T ]× Rn × R,

Jc(t, p, z;u) = Etpz

[∫ T

t
e−r(s−t)L(s, P t,p;u(s), Zt,z;u(s), u(s))ds

+ e−r(T−t)Φ(P t,p;u(T ), Zt,z;u(T )) + e−r(T−t)Φc(Zt,z;u(T ))

]
,

and this time the maximization is performed over the set At of all controls.
Problem (3.12) is a classical unconstrained stochastic control problem; therefore, by classi-

cal results, the function V c is characterized by the HJB equation. Here is the precise statement.
Theorem 3.4. Let the assumptions of section 3.1 hold, and let c > 0 and k as in (3.2).
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Then V c is the unique continuous viscosity solution of

(3.13) − V c
t (t, p, z) + rV c(t, p, z) + min

v∈U

[
−f(t, p, v) ·DpV

c(t, p, z)− g(t, v)V c
z (t, p, z)

− 1

2
tr
(
σ(t, p, v)σt(t, p, v)D2

pV
c(t, p, z)

) − L(t, p, z, v)

]
= 0 ∀(t, p, z) ∈ [0, T [ × Rn × R,

with final condition

(3.14) V c(T, p, z) = Φ(p, z) + Φc(z) ∀(p, z) ∈ Rn+1,

and such that

|V c(t, p, z)| ≤ Č(1 + |p|k + |z|k) ∀(t, p, z) ∈ [0, T ]× Rn × R

for some constant Č > 0.
Proof. The value function is a viscosity solution of (3.13) by a standard result in uncon-

strained control theory (the proof, for instance, can be achieved by slightly modifying the
arguments in [13, Chapter IV]). As for uniqueness, see [9, Theorem 3.1].

3.3. Properties of the value function. We now prove the central result of this paper:
the value functions V c in (3.12) converge, uniformly on the compact subsets of each Dρ, to
the value function V in (3.8). On the one hand, this result provides an approximation of V
(recall the characterization of the functions V c in Theorem 3.4); on the other hand, in such a
way V inherits continuity from the functions V c.

Theorem 3.5. Let the assumptions of section 3.1 hold. Then, as c → +∞, the functions
V c converge to V uniformly on compact subsets of Dρ for each 0 < ρ < (M −m)/2.

Proof. Let 0 < ρ < (M −m)/2, A be a compact subset of Dρ, and let R > 0 be such that
B(0, R) ⊇ A. For each ε > 0, we have to prove that there exists δ > 0 such that

(3.15)

∣∣∣∣ sup
u∈At

Jc(t, p, z;u) − sup
u∈Aadm

tz

J(t, p, z;u)

∣∣∣∣ ≤ ε

for each c ≥ δ and (t, p, z) ∈ A.
Step 1: Lower bound for V c in A. By definition of Dρ, for each (t, p, z) ∈ A let utpz be

a Borel measurable function from [t, T ] to U such that Zutpz(T ) ∈ [m + ρ,M − ρ]. Since

[m + ρ,M − ρ] ⊆ [m + c−
1
2 ,M − c−

1
2 ] for c ≥ ρ−2, notice that Jc(t, p, z;utpz) ≡ Ktpz for a

suitable constant Ktpz for all c ≥ ρ−2. By estimates as in (3.10), it is easy to show that, for a
constant C1 > 0 and for k ≥ 0 as in (3.2), we have |Ktpz| ≤ C1(1 + |p|k + |z|k) ≤ C1(1 + 2Rk)
for each (t, p, z) ∈ A, so that K := inf(t,p,z)∈AKtpz ∈ R. Therefore,

(3.16) V c(t, p, z) ≥ Jc(t, p, z;utpz) = Ktpz ≥ K

for each (t, p, z) ∈ A and c ≥ ρ−2.
Step 2: New formulation of (3.15). Let (t, p, z) ∈ A. For each n ∈ N we set

Btpz
n =

{
u ∈ At :

1

n+ 1
< Ptpz(Z

u(T ) /∈ [m,M ]) ≤ 1

n

}
.
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Let c ≥ ρ−2, n ∈ N, and u ∈ Btpz
n . By noting that Φc ≤ 0 and that Φc(x) ≤ −√

c for
x /∈ [m,M ] and by estimates as in (3.10), we have

Jc(t, p, z;u) = J(t, p, z;u) + Etpz

[
e−r(T−t)Φc(Zu(T ))

]
≤ J(t, p, z;u) + Etpz

[
e−r(T−t)Φc(Zu(T ))1{Zu(T )/∈[m,M ]}

]
≤ C2(1 + |p|k + |z|k)− e−rT√c Ptpz(Z

u(T ) /∈ [m,M ])

< C2(1 + 2Rk)− e−rT

√
c

n+ 1
(3.17)

for a suitable constant C2 > 0. By (3.17) it follows that for each n ∈ N there exists c(n) ≥ ρ−2

such that

Jc(t, p, z;u) < K

for each c ≥ c(n) and u ∈ Btpz
n , with K as in Step 1. By (3.16) we thus get

(3.18) sup
u∈At

Jc(t, p, z;u) = sup
u∈At\⋃{i∈N:c(i)≤c} B

tpz
i

Jc(t, p, z;u)

for each c ≥ ρ−2. The sequence {c(n)}n is obviously increasing; hence, there exists a function
m from [ρ−2,+∞[ to N such that {i ∈ N : c(i) ≤ c} = {1, . . . ,m(c)} for each c ≥ ρ−2. As a
consequence, we can rewrite (3.18) as follows:

(3.19) sup
u∈At

Jc(t, p, z;u) = sup
u∈At\

⋃m(c)
i=1 Btpz

i

Jc(t, p, z;u).

Notice that m(·) is increasing and that m(c) → +∞.
Let ε > 0. By (3.19), for c ≥ ρ−2 inequality (3.15) is equivalent to

(3.20) −ε ≤ sup
u∈At\

⋃m(c)
i=1 Btpz

i

Jc(t, p, z;u) − sup
u∈Aadm

tz

J(t, p, z;u) ≤ ε.

Therefore, we have to prove that there exists δ ≥ ρ−2 such that (3.20) holds for each c ≥ δ
and for each (t, p, z) ∈ A. In Step 3 we will prove the right inequality in (3.20), while in Step
4 the left inequality will be proved, thus concluding the proof.

Step 3: Right inequality in (3.20). Let us show that there exists δ1 ≥ ρ−2 independent of
(t, p, z) ∈ A such that

(3.21) sup
u∈At\

⋃m(c)
i=1 Btpz

i

J(t, p, z;u) ≤ sup
u∈Aadm

tz

J(t, p, z;u) + ε

for each c ≥ δ1. Since J
c ≤ J , by (3.21) we get the right inequality in (3.20).

Let c ≥ ρ−2, (t, p, z) ∈ A, u ∈ At \
⋃m(c)

i=1 Btpz
i . We set

Πu = {Zu(T ) /∈ [m,M ]};
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notice that 0 ≤ Ptpz(Π
u) ≤ 1/(m(c) + 1). Let ũ be the process defined in the following way:

ũ coincides in Πu with the process which ensures the reachability of [m + ρ,M − ρ] (see the
definition of Dρ), and ũ ≡ u in Ω \ Πu. A simple check shows that ũ ∈ At and that

(3.22) Z ũ(T ) ∈ [m,M ] Ptpz-a.s.

By recalling that ũ ≡ u in Ω \ Πu, by the Hölder inequality (twice), and by estimates as in
(3.10), we obtain that

(3.23)
∣∣J(t, p, z;u) − J(t, p, z; ũ)

∣∣ ≤ C3(1 + |p|k + |z|k)Ptpz(Π
u)

1
2 ≤ C3(1 + 2Rk)

(m(c) + 1)
1
2

for some constant C3 > 0. Then, by (3.23) and (3.22) it follows that

J(t, p, z;u) ≤ J(t, p, z; ũ) +
C3(1 + 2Rk)

(m(c) + 1)
1
2

≤ sup
u∈Aadm

tz

J(t, p, z;u) +
C3(1 + 2Rk)

(m(c) + 1)
1
2

.

This inequality holds for each (t, p, z) ∈ A and u ∈ At \
⋃m(c)

i=1 Btpz
i . Since m(c) → +∞, for

sufficiently large c (and this choice is independent of (t, p, z) and u), we have that C3(1 +

2Rk)/(m(c) + 1)
1
2 ≤ ε, thus obtaining (3.21).

Step 4: Left inequality in (3.20). We still have to prove the left inequality in (3.20), i.e.,

(3.24) sup
u∈Aadm

tz

J(t, p, z;u) ≤ sup
u∈At\

⋃m(c)
i=1 Btpz

i

Jc(t, p, z;u) + ε

for c ≥ δ2, with δ2 ≥ ρ−2 independent of (t, p, z) ∈ A.
Let c ≥ ρ−2, (t, p, z) ∈ A, u ∈ Aadm

tz . By Assumption 2, let ũ ∈ At be such that

(3.25) |J(t, p, z;u) − J(t, p, z; ũ)| ≤ ε

and with the property

(3.26) Z ũ(T ) ∈ [m+ η(ε),M − η(ε)] Ptpz-a.s.

First of all, notice that

(3.27) ũ ∈ Aadm
tz ⊆ At \

⋃m(c)
i=1 Btpz

i .

By (3.25) we obtain that∣∣J(t, p, z;u) − Jc(t, p, z; ũ)
∣∣

=
∣∣J(t, p, z;u) − J(t, p, z; ũ)− Etpz

[
e−r(T−t)Φc(Z ũ(T ))

]∣∣ ≤ ε+ Etpz

[|Φc(Z ũ(T ))|].
Notice that by (3.26) the second term equals zero for c ≥ η(ε)−2 (in fact, Φc ≡ 0 in [m +

c−
1
2 ,M − c−

1
2 ]); by recalling (3.27), we therefore have that

J(t, p, z;u) ≤ Jc(t, p, z; ũ) + ε ≤ sup
u∈At\⋃m(c)

i=1 Btpz
i

Jc(t, p, z;u) + ε
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for each c ≥ max{η(ε)−2, ρ−2}. Since this inequality holds for each (t, p, z) ∈ A and u ∈ Aadm
tz ,

we get (3.24).
Corollary 3.6. Let the assumptions of section 3.1 hold. Then the functions V c converge

pointwise to V in D̃, and V is continuous on D̃.
Proof. It follows immediately from Theorem 3.5 (recall that

⋃
ρDρ = D̃).

Corollary 3.7. Let the assumptions of section 3.1 hold. Then the function V is a viscosity
solution of (3.13) in D̃.

Proof. Due to Theorem 3.4, the functions V c are viscosity solutions of the same equation,
that is,

(3.28) − V c
t (t, p, z) + rV c(t, p, z) + min

v∈U

[
−f(t, p, v) ·DpV

c(t, p, z)− g(t, v)V c
z (t, p, z)

− 1

2
tr
(
σ(t, p, v)σt(t, p, v)D2

pV
c(t, p, z)

) − L(t, p, z, v)

]
= 0 ∀(t, p, z) ∈ [0, T [ × Rn × R.

Moreover, by Theorem 3.5 for each 0 < ρ < (M − m)/2 the functions V c locally uniformly
converge in Dρ to the function V . So the conclusion follows by the stability property of
viscosity solutions with respect to the uniform convergence and the fact that D̃ =

⋃
ρDρ.

Remark 2. We have proved that the value function in the set D̃ is the locally uniform
limit of the functions V c. In some particular cases, stronger conclusions can be achieved: the
value function is characterized in its whole domain D by the HJB equation. See section 4.

We now face the problem of the regularity of the function V . In control theory, regularity
results are usually achieved by passing to the supremum in estimates on quantities such as
|J(t, p′, z;u)− J(t, p′′, z;u)| or |J(t, p, z′;u)− J(t, p, z′′;u)|, so as to obtain the corresponding
inequality for V . In the case of constrained problems, this approach cannot be applied to
V (t, p, ·). In fact, consider |J(t, p, z′;u) − J(t, p, z′′;u)|: on the one hand, such a quantity is
defined only for u ∈ Aadm

tz′ ∩ Aadm
tz′′ ; on the other hand, the supremum should be with respect

to different sets (precisely, Aadm
tz′ and Aadm

tz′′ ). Of course, in particular cases some regularity
results can also be achieved for V (t, p, ·); see section 4. The only case when that approach still
works regards estimates on V (t, ·, z), given that, t and z fixed, the set of admissible controls
does not depend on p. Hence, as for V (t, ·, z) we can follow this approach.

Proposition 3.8. Let the assumptions of section 3.1 hold. Assume that there exists a con-
stant C̄ > 0 such that

(3.29) |L(t, p, z, v) − L(t, q, z, v)| ≤ C̄|p− q|, |Φ(p, z) − Φ(q, z)| ≤ C̄|p − q|

for each p, q ∈ Rn, t ∈ [0, T ], v ∈ U , z ∈ R. Then the function V (t, ·, z) is Lipschitz
continuous, uniformly in (t, z). Moreover, the gradient DpV (t, p, z) exists for a.e. (t, p, z) ∈ D,
and we have |DpV (t, p, z)| ≤ M1 for some constant M1 > 0 depending only on U , T , C̄ and
on the constants in (3.1) and (3.4).

Proof. Let (t, p, z) ∈ D, h > 0, ξ ∈ Rn, with |ξ| = 1, and u ∈ At. In order to avoid
ambiguity, we will omit the subscripts in the notation of the mean value (initial data are
different, but the probability is obviously the same). By (3.29) and estimates (D.8) in [13,
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Appendix D] we have

|J(t, p, z;u) − J(t, p + hξ, z;u)|

≤ C̄E

[∫ T

t

∣∣P t,p;u(s)− P t,p+hξ;u(s)
∣∣ds+ ∣∣P t,p;u(T )− P t,p+hξ;u(T )

∣∣]
≤ C̄(T − t+ 1)E[‖P t,p;u(·)− P t,p+hξ;u(·)‖∞]

≤ C1C̄(T + 1)|p − (p+ hξ)|
= C1C̄(T + 1)h(3.30)

for some constant C1 > 0. Estimate (3.30) holds for each u ∈ At; thus, it follows that

(3.31) |V (t, p, z) − V (t, p+ hξ, z)| ≤M0h,

where M0 := C1C̄(T + 1). The function V (t, ·, z) is therefore Lipschitz continuous, uniformly
in (t, z), and then a.e. differentiable by the Rademacher theorem. By classical results it follows
that DpV (t, p, z) exists for a.e. (t, p, z) ∈ D. Finally, if the gradient exists and ei ∈ Rn is a
vector of the canonical basis (i = 1, . . . , n), by (3.31) we get

|(DpV (t, p, z))i| = lim
h→0+

|V (t, p, z)− V (t, p + hei, z)|
h

≤M0,

and then the estimate on the gradient immediately follows.
Proposition 3.9. Let the assumptions of section 3.1 hold. Assume that Φ ∈ C2(Rn+1), that

the functions f(t, ·, v), σ(t, ·, v), L(t, ·, ·, v) are of class C2 for each (t, v) ∈ [0, T ]×U , and that
there exist constants C̄ ≥ 0, j ∈ N such that

|Dpf(t, p, v)|+ |D2
pf(t, p, v)|+ |Dpσ(t, p, v)| + |D2

pσ(t, p, v)| ≤ C̄,

|D(p,z)L(t, p, z, v)| + |D2
(p,z)L(t, p, z, v)| ≤ C̄(1 + |p|j + |z|j),

|D(p,z)Φ(p, z)|+ |D2
(p,z)Φ(p, z)| ≤ C̄(1 + |p|j + |z|j)

for each p ∈ Rn, t ∈ [0, T ], v ∈ U , z ∈ R. The function V (t, ·, z) is then locally semiconvex,
uniformly in t, and a.e. twice differentiable.

Proof. Since Φ ∈ C2
p(R

n+1), it is possible to rewrite the problem so that Φ ≡ 0 (see [13,
Remark IV.6.1]). By arguing as in the proof of [13, Lemma IV.9.1] (with minor modifications:
the assumptions are slightly different), we get

V (t, p+ hξ, z) + V (t, p− hξ, z) − 2V (t, p, z) ≥ −M2(1 + |p|j)h2

for each (t, p, z) ∈ D, h > 0, ξ ∈ Rn, with |ξ| = 1, where M2 > 0 is a constant. The function
V (t, ·, z) is therefore locally semiconvex, uniformly in (t, z), and then a.e. twice differentiable
by the Alexandrov theorem.

3.4. Examples. We now show two wide classes of problems satisfying Assumption 2. We
first consider problems where U is a compact interval of R and g(s, v) = v, so that the

constraint is z +
∫ T
t u(s) ∈ [m,M ].
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Proposition 3.10. Let a, b ∈ R, with a < b. Let the assumptions of section 3.1 hold, with
U = [a, b] and g(s, v) = v. Moreover, assume that there exist Γ, l > 0 such that for ξ = f, σ
the following condition holds:

(3.32) |ξ(s, p, v′)− ξ(s, p, v′′)| ≤ Γ(1 + |p|)|v′ − v′′|l ∀(s, p) ∈ [0, T ]× Rn, ∀v′, v′′ ∈ U.

Then Assumption 2 is satisfied.
Proof. For the sake of simplicity, in this proof we assume l = 1 (for the general case, in

the definition of ũ it suffices to substitute δ2 by δi, where i > 1/l).
Let 0 < ρ < (M −m)/2, let A be a compact subset of Dρ, and let R > 0 be such that

B(0, R) ⊇ A, ε > 0. Fix (t, p, z) ∈ A and u ∈ Aadm
tz .

Let γ > 0 (it will afterwards be precisely defined). Since the functions L and Φ are
continuous, there exists δ = δ(ε, γ) > 0 such that

(3.33) |L(s, p′, z′, v′)− L(s, p′′, z′′, v′′)| ≤ ε

4T
and |Φ(p′, z′)− Φ(p′′, z′′)| ≤ ε

4

for each s ∈ [0, T ], for each p′, p′′ ∈ B(0, γ), with |p′ − p′′| ≤ δ, for each z′, z′′ ∈ [m,M ], with
|z′ − z′′| ≤ Tδ, and for each v′, v′′ ∈ U , with |v′ − v′′| ≤ δ.

We now define, starting from u, a suitable process ũ. Let ΠM = {ω ∈ Ω : Zu(T ) ∈
]M − ρ/2,M ]}, and in ΠM let ũ be defined in the following way:

ũ(s) =

{
u(s)− δ2 if s ∈ E,

u(s) if s ∈ [t, T ] \ E,

where E = E(ω) = {s ∈ [t, T ] : u(s) − δ2 ∈ ]a, b[} = {s ∈ [t, T ] : u(s) > a + δ2}. Let
Πm = {ω ∈ Ω : Zu(T ) ∈ [m,m+ ρ/2[}, and in Πm let ũ be defined in the following way:

ũ(s) =

{
u(s) + δ2 if s ∈ F,

u(s) if s ∈ [t, T ] \ F,

where F = F (ω) = {s ∈ [t, T ] : u(s) + δ2 ∈ ]a, b[} = {s ∈ [t, T ] : u(s) < b − δ2}. Finally, in
Ω \ (ΠM ∪Πm) let

ũ ≡ u.

We will show that such a process ũ satisfies the required properties.
Step 1. We prove that

(3.34) Zt,z;ũ(T ) ∈ [m+ η(ε),M − η(ε)] Ptpz-a.s.

for a suitable function 0 < η ≤ (M −m)/2 depending only on ρ, T,R, a, b.
Consider the case ω ∈ ΠM , i.e.,

(3.35) Zu(T ) ∈ ]M − ρ/2,M ].

Let us first of all notice that

(3.36) Z ũ(T ) = z +

∫ T

t
ũ(s)ds = z +

∫ T

t
u(s)ds − δ2μ(E) = Zu(T )− δ2μ(E),
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where μ denotes the Lebesgue measure in R. We now look for an estimate for μ(E). By
definition of E, we have∫ T

t
u(s)ds =

∫
E
u(s)ds+

∫
[t,T ]\E

u(s)ds ≤ bμ(E) + (a+ δ2)(T − t− μ(E))

and then

(3.37) μ(E) ∈
[∫ T

t u(s)ds− (a+ δ2)(T − t)

b− a− δ2
, T − t

]
⊆

[
ρ/2− δT

b− a
, T

]
,

where the inclusion follows by z+
∫ T
t u(s)ds ≥M−ρ/2 (since ω ∈ ΠM ) and z ≤M−ρ−a(T−t)

(since (t, p, z) ∈ Dρ). By possibly decreasing δ (and the choice depends only on a, b, ρ, T ), we
can assume that the lower bound in (3.37) is positive. Recall (3.36): by (3.35) and (3.37) we
get

Z ũ(T ) ∈
]
M − ρ

2
− δ2T,M − δ2ρ/2− δ3T

b− a

]
⊆

]
m+

ρ

2
,M − δ2ρ/2− δ3T

b− a

]
,

where the inclusion follows by M − ρ/2 > m+ ρ/2 and by assuming δ sufficiently small. This
estimate holds for each ω ∈ ΠM ; by arguing in the same way, for each ω ∈ Πm we get

Z ũ(T ) ∈
[
m+

δ2ρ/2 − δ3 T

b− a
,M − ρ

2

[
.

Finally, in Ω \ (ΠM ∪Πm) we have Z ũ ∈ [m+ ρ/2,M − ρ/2]. To summarize, condition (3.34)
is verified with

η(ε) = min

{
ρ

2
,
δ(ε, γ)2ρ/2− δ(ε, γ)3 T

b− a

}
.

Step 2. We still have to prove that

(3.38) |J(t, p, z;u) − J(t, p, z; ũ)| ≤ ε.

Let Π ⊆ Ω be defined by

Π = {‖P u(·)‖ ≤ γ, ‖P ũ(·)‖ ≤ γ, ‖P u(·)− P ũ(·)‖ ≤ δ};

first of all, we set for brevity

Γ(t, p, z;u, ũ) =

∫ T

t
|L(s, P u(s), Zu(s), u(s))− L(s, P ũ(s), Z ũ(s), ũ(s))|ds

+ |Φ(P u(T ), Zu(T )) −Φ(P ũ(T ), Z ũ(T ))|,

and notice that

(3.39) |J(t, p, z;u) − J(t, p, z; ũ)| ≤ Etpz[Γ(t, p, z;u, ũ)1Π] + Etpz[Γ(t, p, z;u, ũ)1Πc ].
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As for the first term in (3.39), for s ∈ [t, T ] we have

|Zu(s)− Z ũ(s)| ≤ (s − t)δ2 ≤ Tδ and |u(s)− ũ(s)| ≤ δ2 ≤ δ

so that by (3.33) it follows that

(3.40) Etpz[Γ(t, p, z;u, ũ)1Π] ≤
(∫ T

0

ε

4T
ds+

ε

4

)
Ptpz(Π) =

ε

2
Ptpz(Π) ≤ ε

2
.

We now consider the second term in (3.39). By (D.8) in [13, Appendix D], (3.32), and (2.9),
we get

(3.41) Etpz[‖P u(·)− P ũ(·)‖] ≤ C1(1 + |p|)δ2

for a suitable constant C1 > 0. By the Markov inequality, (3.41), and (2.9), we then get

(3.42) Ptpz(Π
c) ≤ Etpz[‖P u(·)‖∞]γ−1 + Etpz[‖P ũ(·)‖∞]γ−1 + Etpz[‖P u(·)− P ũ(·)‖∞]δ−1

≤ C2(1 + |p|)(γ−1 + δ),

where C2 > 0 is a constant. By the Hölder inequality (twice), estimates as in (3.10), and
(3.42), we obtain that

Etpz[Γ(t, p, z;u, ũ)1Πc ]2 ≤ Etpz[Γ(t, p, z;u, ũ)
2]Ptpz(Π

c)

≤ C3(1 + |p|2k + |z|2k)(1 + |p|)(γ−1 + δ(ε, γ))

≤ C4(1 +R2k+1)γ−1 + C4(1 +R2k+1)δ(ε, γ),

with C3, C4 > 0. First by choosing a suitable γ and then by possibly taking a lesser δ (and
these choices depends only on R and ε), we get

(3.43) Etpz [Γ(t, p, z;u, ũ)1Πc ] ≤ ε

2
.

Estimates (3.39), (3.40), and (3.43) imply (3.38), thus ending the proof.
Let us now consider problems where U is a closed ball of Rl and g(s, v) = |v|p, so that the

constraint is z +
∫ T
t |u(s)|p ∈ [m,M ], with p ≥ 1.

Proposition 3.11. Let p ≥ 1 and b > 0. Let the assumptions of section 3.1 and (3.32) hold,
with U = B(0, b) ⊆ Rl and g(s, v) = |v|p. Assumption 2 is then satisfied.

Proof. The proof is similar to that of Proposition 3.10, with the following modifications:
– In the definitions of E and F replace u(s) by |u(s)|. Process ũ in E is now

ũ(s) = u(s)− δ2
u(s)

|u(s)| .

Notice that |ũ(s)| = |u(s)| − δ2. The modification is analogous in F .



600 M. BASEI, A. CESARONI, AND T. VARGIOLU

– It is easy to check that

(ζ − δ2)p ≤ ζp − δ2p for ζ ≥ δ2,

(ζ + δ2)p ≥ ζp + δ2p for ζ ≥ 0.

By the first estimate, in ΠM we have that

Z ũ(T ) = z +

∫ T

t
|ũ(s)|pds

= z +

∫
E
(|u(s)| − δ2)pds +

∫
[t,T ]\E

|u(s)|pds

≤ z +

∫ T

t
|u(s)|pds − δ2pμ(E),

and then we can argue as in the proof of Proposition 3.10. As for Πm, use the second
estimate and the same argument.

4. Swing contracts with strict constraints. We now use the results of section 3 to study
the problem of optimally exercising swing contracts with strict constraints (see the introduc-
tion). In this case we will obtain results stronger than the general ones proved in section 3.3.

4.1. Formulation of the problem. Let T > 0, and let (Ω, FT , {Fs}s∈[0,T ], P), U , At, P
t,p,

and Zt,z;u be as in section 2. If (t, p, z) ∈ [0, T ] × R2 and s ∈ [t, T ], recall, in particular, that
P t,p(s) models the price of energy at time s and that Zt,z;u(s) represents the energy bought
up to time s, where u ∈ At is the usage strategy from time t on.

Given m,M ≥ 0, with m < M , here we ask the following constraint to hold:

Zt,z;u(T ) ∈ [m,M ] Ptpz-a.s.

The problem of the optimal exercise of this contract (i.e., to find a process u satisfying all the
conditions and providing the maximal expected earning) is clearly a constrained stochastic
optimal control problem as described in section 3.1 (here P does not depend on u), whose
value function is

V (t, p, z) = sup
u∈Aadm

tz

Etpz

[∫ T

t
e−r(s−t)(P t,p(s)−K)u(s)ds

]
.

In this problem the sets D, D̃,Dρ are formed by all points (t, p, z) ∈ [0, T ]× R2 such that
(t, z) belongs, respectively, to the marked surfaces in Figure 2.

In more detail, we have

D = {(t, p, z) ∈ [0, T ]× R2 : m− ū(T − t) ≤ z ≤M},
D̃ = {(t, p, z) ∈ [0, T ]× R2 : m− ū(T − t) < z < M},

Dρ = {(t, p, z) ∈ [0, T ]× R2 : m+ ρ− ū(T − t) ≤ z ≤M − ρ}.
Notice that these sets include initial data that are inconsistent with the practical problem: in
fact, our mathematical formulation admits negative starting values for p and z.
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m - ūT
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m - ūT
m - ūT + ρ

M - ρ

m + ρ

Figure 2. The sets D, ˜D,Dρ.

The functions V c are here defined by

V c(t, p, z) = sup
u∈At

Etpz

[∫ T

t
e−r(s−t)(P t,p(s)−K)u(s)ds + e−r(T−t)Φc(Zt,z;u(T ))

]
for each c > 0 and (t, p, z) ∈ [0, T ] × R2, where Φc is defined in (3.11). This also has a nice
economical interpretation: in fact, here we are approximating a swing contract with the strict
constraint Z(T ) ∈ [m,M ] with a sequence of suitable contracts with increasing penalties for
Z(T ) /∈ [

m+ 1√
c
,M − 1√

c

]
.

The HJB equation for the function V c is

(4.1) − V c
t (t, p, z) + rV c(t, p, z)− f(t, p)V c

p (t, p, z)−
1

2
σ2(t, p)V c

pp(t, p, z)

+ min
v∈[0,ū]

[−v(V c
z (t, p, z) + p−K)] = 0 ∀(t, p, z) ∈ [0, T [× R2,

with final condition
V c(T, p, z) = Φc(z) ∀(p, z) ∈ R2.

4.2. Properties of the value function. The problem described in section 4.1 belongs to
the class treated in Proposition 3.10. Therefore, Theorem 3.5 and Corollaries 3.6 and 3.7 hold,
but it turns out that in this case we can strengthen such results.

We set for brevity

α = {(t, p, z) ∈ D : z =M}, β = {(t, p, z) ∈ D : z + ū(T − t) = m}, γ = {T} × R× [m,M ]

so that D \ D̃ = α ∪ β.
Let us first consider Theorem 3.5 and adapt it to our problem, as here something about

D \ D̃ can also be said.
Proposition 4.1. Let the assumptions of section 4.1 hold. The functions V c converge to V

uniformly on compact subsets of D̃. Moreover, if (t, p, z) ∈ α, we have V (t, p, z) = 0. Finally,
if (t, p, z) ∈ β, we have

(4.2) V (t, p, z) = ūEtpz

[∫ T

t
e−r(s−t)(P t,p(s)−K)ds

]
=: ξ(t, p).
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Proof. As for the first part, notice that each compact subset of D̃ is contained in some Dρ

and use Theorem 3.5. For the second and third items, in α∪β there exists a unique admissible
control, respectively, u ≡ 0 and u ≡ ū.

Notice that the boundary condition ξ in (4.2) is continuous and can be computed in many
models used in practice (see [3]).

Corollary 3.6 ensures continuity of V on D̃. We now prove that in this case a stronger
result holds, i.e., the value function is continuous on the whole domain D. For this, we first
need a technical lemma (see [13, Appendix D] or [16]), where we give a bound for the mean
distance between solutions of (2.1) starting from different data.

Lemma 4.2. Let the assumptions of section 4.1 hold. Let t1, t2 ∈ [0, T ], with t1 < t2, and
p1, p2 ∈ Rn. Then

E
[∣∣P t1,p1(s)− P t2,p2(s)

∣∣] ≤M
[|p2 − p1|+ (t2 − t1)

1
2 (1 + |p1|)

]
for each s ∈ [t2, T ], where E denotes the mean value with respect to the probability P and
M > 0 is a constant depending only on T,U and on the constants in (3.1) and (3.4).

Proposition 4.3. Let the assumptions of section 4.1 hold. Then V is continuous on D.
Proof. As Corollary 3.6 holds, we have to prove that V is continuous on D \ D̃ = α ∪ β.
Step 1: Continuity on α. Let (t̃, p̃, z̃) ∈ α. Since in this case the only admissible control

is u ≡ 0, we have to prove that

(4.3) lim
(t,p,z)→(t̃,p̃,z̃)

(t,p,z)∈D

V (t, p, z) = V (t̃, p̃, z̃) = 0.

Let (t, p, z) ∈ D and u ∈ Aadm
tz . Given arbitrary γ > 0, we first of all observe that

Etpz

[(∫ T

t
|P t,p(s)−K|u(s)ds

)
1{‖P (·)‖≤γ}

]
(4.4)

≤ (γ +K)Etpz

[∫ T

t
u(s)ds

]
≤ (γ +K)(M − z),

where in the last passage we have used condition Zu(T ) ≤ M . By the Hölder inequality
(twice), estimates as in (3.10), the Markov inequality, and (2.9), we get

Etpz

[(∫ T

t
|P t,p(s)−K|u(s)ds

)
1{‖P t,p(·)‖>γ}

]
(4.5)

≤ TEtpz

[∫ T

t
(P t,p(s)−K)2u(s)2ds

] 1
2

Ptpz(‖P t,p(·)‖ > γ)
1
2 ≤ C1(1 + |p|) 3

2 γ−
1
2

for some constant C1 > 0. By (4.4) and (4.5), it follows that

(4.6)

∣∣∣∣ sup
u∈Aadm

tz

Etpz

[∫ T

t
e−r(s−t)(P t,p(s)−K)u(s)ds

]∣∣∣∣ ≤ (γ +K)(M − z) + C1(1 + |p|) 3
2 γ−

1
2 .

Inequality (4.6) holds for each γ > 0 and for each (t, p, z) ∈ D. We get (4.3) by passing to the
limit first as (t, p, z) → (t̃, p̃, z̃) (recall that z̃ =M) and then as γ → ∞.
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Step 2: Continuity on β. Let (t̃, p̃, z̃) ∈ β. Since in β function V is as in (4.2), we have to
prove that

(4.7) lim
(t,p,z)→(t̃,p̃,z̃)

(t,p,z)∈D

V (t, p, z) = V (t̃, p̃, z̃) = ūEt̃p̃z̃

[∫ T

t̃
e−r(s−t̃)(P t̃,p̃(s)−K)ds

]
.

From now on, we will omit the subscripts in the notation of the mean value (the initial
data are different, but the probability is clearly the same). Let (t, p, z) ∈ D (notice that
necessarily t ≤ t̃), and fix u ∈ Aadm

tz ; for simplicity we will write P = P t,p and P̃ = P t̃,p̃. Since
for s ∈ [t̃, T ] we have

e−r(s−t)(P (s)−K)u(s)− e−r(s−t̃)(P̃ (s)−K)ū

= e−r(s−t)(P (s)− P̃ (s))u(s) − e−r(s−t)(P̃ (s)−K)(ū− u(s))

− (e−r(s−t̃) − e−r(s−t))(P̃ (s)−K)ū,

let us first of all observe that

E

[∣∣∣∣ ∫ T

t
e−r(s−t)(P (s)−K)u(s)ds− ū

∫ T

t̃
e−r(s−t̃)(P̃ (s)−K)ds

∣∣∣∣]
(4.8)

≤ E

[ ∫ t̃

t
|P (s)−K|u(s)ds

]
+ E

[ ∫ T

t̃

∣∣e−r(s−t)(P (s)−K)u(s)− e−r(s−t̃)(P̃ (s)−K)ū
∣∣ds]

≤ E

[ ∫ t̃

t
|P (s)−K|u(s)ds

]
+ E

[ ∫ T

t̃
|P (s)− P̃ (s)|u(s)ds

]
+ E

[∫ T

t̃
|P̃ (s)−K|(ū− u(s))ds

]
+ E

[ ∫ T

t̃

(
e−r(s−t̃) − e−r(s−t)

)|P̃ (s)−K|ūds
]
.

Consider the first term in (4.8). By estimates as in (3.10), we have that

(4.9) E

[ ∫ t̃

t
|P (s)−K|u(s)ds

]
≤ C2(t̃− t)(1 + |p|)

for some constant C2 > 0. As for the second term in (4.8), by the Fubini–Tonelli theorem and
Lemma 4.2, we get

(4.10) E

[∫ T

t̃
|P (s)− P̃ (s)|u(s)ds

]
≤ C3

[|p − p̃|+ (t̃− t)
1
2 (1 + |p|)],

where C3 > 0 is a constant. Let us now estimate the third term in (4.8). Given arbitrary
γ > 0, we observe that

E

[(∫ T

t̃
|P̃ (s)−K|(ū− u(s))ds

)
1{‖P̃ (·)‖≤γ}

]
≤ (γ +K)E

[∫ T

t̃
(ū− u(s))ds

]
= (γ +K)E

[
ū(T − t)−

∫ T

t
u(s)ds

]
≤ (γ +K)

(
ū(T − t)−m+ z

)
,
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where in the last passage we have used condition Zu(T ) ≥ m. By arguing as in (4.5), we get

(4.11) E

[(∫ T

t̃
|P̃ (s)−K|(ū− u(s))ds

)
1{‖P̃ (·)‖>γ}

]
≤ C4(1 + |p̃|) 3

2 γ−
1
2

for some constant C4 > 0. We finally consider the fourth term in (4.8). By local Lipschitzianity
of the exponential function and by estimates as in (3.10), we obtain

(4.12) E

[ ∫ T

t̃

(
e−r(s−t̃) − e−r(s−t)

)|P̃ (s)−K|ūds
]
≤ C5(t̃− t)(1 + |p̃|),

where C5 > 0 is constant.
By estimates from (4.9) to (4.12), it follows from (4.8) that

(4.13)

∣∣∣∣ sup
u∈Aadm

tz

E

[ ∫ T

t
e−r(s−t)(P (s)−K)u(s)ds

]
− ūE

[ ∫ T

t̃
e−r(s−t̃)(P̃ (s)−K)ds

]∣∣∣∣
≤ C2(t̃− t)(1 + |p|) + C3

[|p− p̃|+ (t̃− t)
1
2 (1 + |p|)]+ C5(t̃− t)(1 + |p̃|)

+ (γ +K)
(
ū(T − t)−m+ z

)
+ C4(1 + |p̃|) 3

2γ−
1
2 .

Estimate (4.13) holds for each γ > 0 and for each (t, p, z) ∈ D. We get (4.7) by passing to the
limit first as (t, p, z) → (t̃, p̃, z̃) (recall that z̃ + ū(T − t̃) = m) and then as γ → ∞.

Let us now consider the HJB equation and prove a result which is stronger than Corollary
3.7: in this case the value function is, in its whole domain D, the unique viscosity solution of
the HJB equation with polynomial growth and the boundary conditions given below. Thus,
we get another characterization of the value function, in addition to that of Proposition 4.1.

Theorem 4.4. Let the assumptions of section 4.1 hold. Then the function V is the unique
continuous viscosity solution of (4.1) in the domain D \ (α∪ β ∪ γ), with boundary conditions

V (t, p, z) = 0 ∀(t, p, z) ∈ α,

V (t, p, z) = ξ(t, z) ∀(t, p, z) ∈ β,(4.14)

V (T, p, z) = 0 ∀(p, z) ∈ R× [m,M ]

such that

(4.15) |V (t, p, z)| ≤ Č(1 + |p|2 + |z|2) ∀(t, p, z) ∈ D

for some constant Č > 0.
Proof. In this problem, k = 2 in (3.9). Thus, by (3.9), Corollary 3.7, and Proposition 4.1,

the function V is a viscosity solution of problem (4.1)–(4.14)–(4.15). Moreover, it satisfies in
the viscosity sense the boundary conditions (see [8]).

We now need a uniqueness result. By the following change of variables,

t′ = t, p′ = p, z′ =
z −M

M −m+ ū(T − t)
+ 1,
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problem (4.1)–(4.14) becomes

− Vt′(t
′, p′, z′)− ū(z′ − 1)

M −m+ ū(T − t′)
Vz′(t

′, p′, z′)

+ rV (t′, p′, z′)− f(t′, p′)Vp′(t′, p′, z′)− 1

2
σ2(t′, p′)Vp′p′(t′, p′, z′)

+ min
v∈[0,ū]

[
−v

(
1

M −m+ ū(T − t′)
Vz′(t

′, p′, z′) + p′ −K

)]
= 0

∀(t′, p′, z′) ∈ [0, T [× R× ]0, 1[ ,

with boundary condition

V (T, p′, z′) = 0 ∀(p′, z′) ∈ R× [0, 1],

V (t′, p′, 1) = 0 ∀(t′, p′) ∈ [0, T ]× R,

V (t′, p′, 0) = ξ(t′, p′) ∀(t′, p′) ∈ [0, T ]× R.

Moreover, the polynomial growth (4.15) is preserved and the domain is [0, T [ × R × ]0, 1[ .
We can adapt to the case of bounded domain the comparison principle stated in [9, Theorem
2.1], which is based on the standard argument of doubling the variables in viscosity solution
theory. This argument is easily extended to deal with boundary conditions in the viscosity
sense. From this we get uniqueness of the solution.

The previous result generalizes an analogous result in [3], valid in the case m = 0. We
now turn to proving some properties of the value function with respect to the variables p and
z. As for V (t, ·, z), Propositions 3.8 and 3.9 hold.

Proposition 4.5. Let the assumptions of section 4.1 hold. Let (t, z) ∈ [0, T ] × R be such
that (t, p, z) ∈ D for each p ∈ R. Then the following hold:

– The function V (t, ·, z) is Lipschitz continuous, uniformly in (t, z). Moreover, the de-
rivative Vp(t, p, z) exists for a.e. (t, p, z) ∈ D, and we have |Vp(t, p, z)| ≤M1 for some
constant M1 > 0 depending only on T , ū and on the constants in (3.1), (3.4), and
(3.29).

– If f(s, ·), σ(s, ·) ∈ C2
b (R), uniformly in s ∈ [0, T ], the function V (t, ·, z) is locally

semiconvex, uniformly in t, and a.e. twice differentiable.
Proof. The first part follows from Proposition 3.8 (notice that function p �→ (p −K)v is

Lipschitz continuous). As for the second item, it suffices to rewrite Proposition 3.9 (notice
that the function p �→ (p −K)v is of class C∞(R), with bounded derivatives).

Let us now consider the function V (t, p, ·). Recall that its domain is [m− ū(T − t),M ].
Proposition 4.6. Let the assumptions of section 4.1 hold. For each (t, p) ∈ [0, T ] × R the

function V (t, p, ·) has the following characteristics:
– It is concave, Lipschitz continuous, and a.e. twice differentiable.
– It is nondecreasing in [m− (T − t)ū,M − (T − t)ū] and nonincreasing in [m,M ]. In

particular, if M − (T − t)ū ≥ m, then the function V (t, p, ·) is constant in [m,M −
(T − t)ū] (they all are maximum points).

Proof. Item 1 (this is an adaptation of [3, Proposition 3.4], which takes into account only
an upper bound on Zt,z;u(T )). Let (t, p) ∈ [0, T ] × R, z1, z2 ∈ [m− ū(T − t),M ], u1 ∈ Aadm

tz1 ,
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and u2 ∈ Aadm
tz2 . By (2.10), the process (u1 + u2)/2 belongs to the set of admissible controls

for initial point (t, (z1 + z2)/2). By the linearity of the function v �→ (P t,p(s)−K)v, we have

(4.16)
J(t, p, z1;u1) + J(t, p, z2;u2)

2
= J

(
t, p,

z1 + z2
2

;
u1 + u2

2

)
≤ V

(
t, p,

z1 + z2
2

)
.

Since (4.16) holds for each u1 ∈ Aadm
tz1 and u2 ∈ Aadm

tz2 , it follows that

V (t, p, z1) + V (t, p, z2)

2
≤ V

(
t, p,

z1 + z2
2

)
,

which implies the concavity of the function V (t, p, ·). Local Lipschitzianity is a well-known
property of concave functions (and here the domain is a compact set), while the a.e. existence
of the second derivative follows from the Alexandrov theorem.

Item 2. Let (t, p) ∈ [0, T ]×R. If m ≤ z1 ≤ z2 ≤M , it is easy to check that Aadm
tz2 ⊆ Aadm

tz1
so that V (t, p, z1) ≥ V (t, p, z2). Similarly, if m− (T − t)ū ≤ z1 ≤ z2 ≤M − (T − t)ū, we have
Aadm

tz1 ⊆ Aadm
tz2 , and then V (t, p, z2) ≤ V (t, p, z1). The second part immediately follows, since

[m− (T − t)ū,M − (T − t)ū] ∩ [m,M ] = [m,M − (T − t)ū].
The monotonicity result in Proposition 4.6 is described in Figure 3.

M

m

T

z

t0

m - ūT

M - ūT

     non-increasing
            V(t, p, ∙) 

    non-decr.
V(t, p, ∙)

 const.
V(t, p, ∙)
 

Figure 3. Monotonicity of V (t, p, ·).

As in section 2, it was foreseeable that the function V (t, p, ·) would be constant in an
interval: if M − (T − t)ū ≥ m and z ∈ [m,M − (T − t)ū], then Aadm

tz = At (i.e., all controls
satisfy the constraint), which implies that the initial value z does not influence the value
function. This generalizes an intuitive result in [3, Lemma 3.2]: for (t, z) such that the
volume constraint is de facto absent, the value function V does not depend on z.

Finally, also in this case Remark 1 holds: by Proposition 4.6, the candidate in (2.13)–(2.14)
is well defined.

5. Conclusions. We characterize the value of swing contracts in continuous time as the
unique viscosity solution of an HJB equation with suitable boundary conditions. In more
detail, swings can be divided into two broad contract classes: those with penalties on the
cumulated quantity of energy Z(T ) at the end T of the contract, and those with strict con-
straints on the same quantity. Usually these constraints and penalties are meant to make
Z(T ) belong to an interval [m,M ], with m > 0 (in real contracts usually m > 0.8M ; see [17]).
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In section 2 we treat the case of contracts with penalties, which results in a straightforward
application of classical optimal control theory, and in that case only a terminal condition is
needed. For swing contracts with penalties, we prove that their value is the unique viscosity
solution of the HJB equation (2.5), and that is Lipschitz both in p (spot price of energy)
and in z (current cumulated quantity), with first weak derivatives with sublinear growth.
We also prove that the value function is also concave with respect to z, nonincreasing for
z ≤ M − (T − t)ū, where t is the current time and ū is the maximum marginal energy that
can be purchased, and nondecreasing for z ≥ m. In this respect, we extend and generalize
previous results of [3], which were proved only for swing contracts with strict penalties. These
results make the candidate optimal exercise policy in (2.13)–(2.14) well defined.

Conversely, the case of contracts with strict constraints gives rise to a stochastic control
problem with a nonstandard state constraint in Z(T ). In section 3 we approach a suitable
generalization of this problem by a penalty method: we consider a general constrained prob-
lem and approximate the value function with a sequence of value functions of appropriate
unconstrained problems with a penalization term in the objective functional, showing that
they converge uniformly on compact sets to the value function of the constrained problem.

In section 4 we come back to the case of swing contracts with strict constraints: in this case
the penalty functions used in section 3 turn out to be penalties of suitable swing contracts,
so that we also have the economic interpretation that a swing contract with strict constraints
can be approximated by swing contracts with suitable penalties. In this context we succeed
in strengthening the results of section 3, by characterizing the value function as the unique
viscosity solution with polynomial growth of the HJB equation (2.5) subject to the boundary
conditions in (4.14). As for the smoothness of the value function with respect to p and z,
we find exactly the same results as in section 2, extending previous results of [3] to the case
m > 0. These results make the candidate optimal exercise policy in (2.13)–(2.14), i.e., the
same as in section 2, again well defined.
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