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Abstract

In this paper we focus on non-cooperative two-player linear-state
differential games. In the standard definition this family is introduced
assuming that there is no multiplicative interaction among state and
control variables. In this paper we show that a multiplicative interaction
between the state and the control of one player does not destroy the
analytical features of the linear-state differential games if it appears in
the objective functional of the other player. We prove that this slightly
new definition preserves not only the solvability of the differential game,
but also the subgame perfectness of an Open Loop Nash Equilibrium.
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1 Introduction

In non-cooperative differential games the definition of an Open Loop Nash
Equilibrium (OLNE for short) presents two drawbacks. First, it is not simple
to find an OLNE in an explicit form; second, an OLNE is not a stable equilib-
rium. The analytical issue is connected with the necessary conditions: in order
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to characterize an OLNE in closed form we have to solve a couple of interde-
pendent optimal control problems and it is not an easy task. The stability
issue is connected with the idea of subgame perfectness; roughly speaking, if
the players use an OLNE and the state of the system deviates from the op-
timal trajectory (for example because of a mistake in the estimation in some
parameters of the motion equation), then they cannot adjust their strategies
and they get a non-optimal output. Therefore, in applications, special struc-
tures for the differential games are frequently used in order to find explicit and
stable equilibria. A class of differential games which solves both the previous
drawbacks is the linear-state one. A complete approach about the analyti-
cally tractable differential games can be found in [4]; while a very clear and
beautiful paper about the importance of the linear-state assumption for the
subgame perfectness is [8]. Moreover, the reader may be interested in some
recent weaker definitions of subgame perfectness which can be found in [2].

In this paper we consider the class of linear-state differential games as
defined in [5, Chapter 7, page 188], in [7] or in [6, Chapter 7, page 262]. The
authors in [5, Chaper 7, page 188, line 27] describe this set of problems in
the following way: “Condition (7.36) implies that there is no multiplicative
interaction at all between state and control variables in the game.” In this
paper we show that a multiplicative interaction between the state and the
control of the first player is allowed if it appears in the objective functional of
the second player. This new formulation does not destroy the features of the
linear-state differential games and it slightly extends this family of analytically
tractable problems. This approach is not new in literature (see [4]), however
in the following we take into account not only the solvability of the differential
game, but also the propriety of the subgame perfectness of the OLNE.

The paper is organized as follows: in Section 2 the definition of two-player
non-cooperative differential games, the definition of OLNE, and the analytical
form of the necessary conditions for an OLNE are revised. In Section 3 we
introduce a slightly new form for the linear-state differential games, we compare
this definition with the previous ones, and we prove the main results of this
paper: a particular multiplicative interaction between the state and the control
does not destroy the attractive features of this family of differential games.
Finally, in Section 4 we perform all the computations in a simple practical
example.

2 Differential games

In the rest of the paper we deal with a two-player, non-cooperative differential
game which is described by the definition:

Definition 2.1 A two-player, non-cooperative differential game is defined
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as follows

max
ui(·)

Ji [ui (·) , uj (·)] = max
ui(·)

∫ T
0
Li (t, x (t) , ui (t) , uj (t)) dt+ `i (x (T ))

ẋ (t) = f (t, x (t) , u1 (t) , u2 (t))
x (0) = x0 ∈ R

(1)

with i, j ∈ {1, 2} and i 6= j.

We assume that all the functions Li, `i, f with i ∈ {1, 2} are regular enough
to guarantee the existence and the uniqueness of the solution of the motion
equation for all choices of the feasible control functions ui (·). Moreover, we
require that for all the choices of the control functions the objective integrals
converge (for a very complete and detailed book about the analytical conditions
to correctly define an optimal control problem and a differential game we
suggest [3]). A standard equilibrium concept in differential games is the OLNE
(see [5, Chapter 4, page 86]).

Definition 2.2 A couple of feasible controls
(
uN1 (·) , uN2 (·)

)
is an OLNE if

and only if for all feasible controls ui (·)

Ji
[
uNi (·) , uNj (·)

]
≥ Ji

[
ui (·) , uNj (·)

]
(2)

holds with i, j ∈ {1, 2} and i 6= j.

If we want to characterize an OLNE, we have to solve a couple of interde-
pendent optimal control problems. Given the player i’s Hamiltonian function

Hi (t, x, ui, λi;uj) = Li (t, x, ui, uj) + λi f (t, x, u1, u2) (3)

we have to carry out the following four steps. In the rest of the paper we will
refer to this method as the “solution scheme.” Even if it is a standard way to
solve an optimal control and a differential game, in my very personal opinion
this approach is masterly described in [1].

Solution scheme

Step 1 for all i, j ∈ {1, 2}

u#i (t, x, λi;uj) = arg max
ui

Hi (t, x, ui, λi;uj) (4)

and this maximization introduces a well-defined function u#i
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Step 2 the system {
ui = u#i (t, x, λi;uj)

uj = u#j (t, x, λj;ui)
(5)

in the two unknowns ui, uj has a unique solution(
uOLi (t, x, λi, λj) , u

OL
j (t, x, λi, λj)

)
(6)

Step 3 the two-point boundary value problem (with i, j ∈ {1, 2} and i 6= j)
ẋ = f

(
t, x, uOL1 (t, x, λi, λj) , u

OL
2 (t, x, λi, λj)

)
x (0) = x0
λ̇i = −∂xHi

(
t, x, uOLi (t, x, λi, λj) , λi;u

OL
j (t, x, λi, λj)

)
λi (T ) = ∂x`i (x (T ))

(7)

has a unique solution (x∗ (t) , λ∗1 (t) , λ∗2 (t)) (to simplify the notation in
the previous ODEs we have neglected the time dependence in the func-
tions: x, λ1, λ2)

Step 4 the functionHi

(
t, x, ui, λ

∗
i (t) ;uOLj

(
t, λ∗i (t) , λ∗j (t)

))
is concave in (x, ui)

for all t ∈ [0, T ] and for all i, j ∈ {1, 2} with i 6= j

If all the previous steps can be performed, then

uNi (t) = uOLi
(
t, x∗ (t) , λ∗i (t) , λ∗j (t)

)
(8)

with i, j ∈ {1, 2} and i 6= j is an OLNE for (1).

Step 1, 2, 3 represent the necessary conditions for an OLNE, while Step 4
represents the sufficient conditions [5, Chapter 4, page 93]. We notice that it is
very difficult to carry out all these steps, hence some further assumptions are
generally introduced in order to obtain a closed form solution for an OLNE.
In the next Section we will see what this solution scheme will be like when we
introduce the linear-state assumption.

In the definition of an OLNE the information structure of the differential
game is implicitly taken into account. Using this definition we assume that
both players know all the data of problem (1). Hence, they know x0 (the
value of the state at the initial time t = 0), but they cannot observe the state
after this time. The drawback of an OLNE is the instability of this kind of
equilibrium: if the state of the system deviates from the optimal trajectory,
then the players cannot adjust their strategies. This difficulty becomes clear
when we introduce the definition of subgame perfectness.

Definition 2.3 We denote as Γ (0, x0) the two-player non-cooperative dif-
ferential game (1). An OLNE

(
uN1 , u

N
2

)
is called subgame perfect if and only if

for all τ ∈ (0, T ) and for any reachable state xτ ∈ R at the time τ , the couple

of feasible controls
(
uN1
∣∣
[τ,T ]

, uN2
∣∣
[τ,T ]

)
is an OLNE for Γ (τ, xτ ).
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Roughly speaking, an OLNE is subgame perfect if its restriction on the
subinterval [τ, T ] remains an OLNE even if the original game is played in [τ, T ]
choosing any reachable state xτ as initial condition. In the following example
we show that an OLNE is generally not subgame perfect.

Example 2.4 Given the differential game

max
ui(·)

Ji [ui (·) , uj (·)] = max
ui(·)

∫ 1

0
x (t)ui (t)− u2i (t) /2dt

ẋ (t) = u1 (t) + u2 (t)
x (0) = 0

(9)

the Hamiltonian function of player i is

Hi (t, x, ui, λi;uj) = xui − u2i /2 + λi (u1 + u2) (10)

and then
u#i (t, x, λi;uj) = (x+ λi) . (11)

In this example u#i does not depend on uj, hence

uOLi (t, x, λi, λj) = (x+ λi) . (12)

The two-point boundary value problem becomes{
ẋ = 2x+ λ1 + λ2, x (0) = 0

λ̇i = −x− λi, λi (1) = 0
(13)

and its solution is {
x∗ (t) = 0
λ∗i (t) = 0.

(14)

We notice that Hi

(
t, x, ui, λ

∗
i (t) ;uOLj

(
t, λ∗i (t) , λ∗j (t)

))
is concave in (x, ui)

because its Hessian is constant and equal to(
0 0
0 −1

)
. (15)

Therefore
uNi (t) = 0 (16)

is really an OLNE for (9). Now, let us consider the subgame starting at the
time τ = ln (2) from the state xτ = 1. Steps 1, 2, and 4 of the previous solution
scheme do not change, whereas the two-point boundary value problem (13) in
step 3 becomes {

ẋ = 2x+ λ1 + λ2, x (ln (2)) = 1

λ̇i = −x− λi, λi (1) = 0.
(17)
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The new solution is {
x∗ (t) = (2et − e) / (4− e)
λ∗i (t) = − (et − e) / (4− e) (18)

therefore

uNi (t) = et/ (4− e) (19)

is the new OLNE which is different from the previous one (16).

3 Linear-state differential games

In the example of Section 2 we have shown a well-known result: an OLNE
is generally not subgame perfect [2]. However, for the linear-state differential
games everything works well: we can find an OLNE in a closed form and it
turns out to be subgame perfect.

Definition 3.1 A two-player, non-cooperative differential game is defined
as linear-state if and only if it has the following analytical form

max
ui(·)

Ji [ui, uj] = max
ui(·)

∫ T
0
αi (t, uj (t))x (t) + βi (t, ui (t) , uj (t)) dt+ γix (T )

ẋ (t) = δ (t)x (t) + ε (t, ui (t) , uj (t))
x (0) = x0

(20)
with i, j ∈ {1, 2} and i 6= j.

We notice that this definition is quite different from the other ones (see e.g. the
book [5, Chaper 7, page 187], the book [6, Chaper 7, page 262], or the paper
[7]): in the objective functional of player i a multiplicative interaction between
the state and the control player j is allowed. We assume that all the functions
αi, βi, δ, ε are regular enough to guarantee the existence and the uniqueness
of the solution of the motion equation for all choices of the control functions
ui (·) , uj (·). Moreover, we require that for all the choices of the feasible control
functions the objective integrals converge.

In the following theorem we will prove that in a linear-state differential
game an OLNE is subgame perfect. In the proof it will become clear that
linear-state differential games are “analytically tractable” as already shown in
[4].

Theorem 3.2 Let us assume that, using the solution scheme described in
Section 2, it is possible to characterize an OLNE for (20). Therefore this
OLNE is subgame perfect.
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Proof. The Hamiltonian function of player i is

Hi (t, x, ui, λi;uj) = αi (t, uj)x+ βi (t, ui, uj) + λi (δ (t)x+ ε (t, ui, uj)) . (21)

For all i, j ∈ {1, 2}

u#i (t, λi;uj) = arg max
ui

Hi (t, x, ui, λi;uj)

= arg max
ui
{βi (t, ui, uj) + λiε (t, ui, uj)}

is a well-defined function. We notice that u#i does not depend on the state x
because of the analytical form of a linear-state differential game. We are also
assuming that the system {

ui = u#i (t, λi;uj)

uj = u#j (t, λj;ui)
(22)

in the two unknowns ui, uj has a unique solution(
uOLi (t, λi, λj) , u

OL
j (t, λi, λj)

)
(23)

which depends on the adjoint variables only. Moreover, we are assuming that
the two-point boundary value problem (with i, j ∈ {1, 2} and i 6= j)

ẋ = δ (t)x+ ε
(
t, uOLi (t, λi, λj) , u

OL
j (t, λi, λj)

)
x (0) = x0
λ̇i = −αi

(
t, uOLj (t, λi, λj)

)
− λiδ (t)

λi (T ) = γi

(24)

has a unique solution (x∗ (t) , λ∗1 (t) , λ∗2 (t)). We notice that the two adjoint
differential equations are coupled together, but they are decoupled by the
motion equation. Finally, we are assuming that the function

Hi

(
t, x, ui, λ

∗
i (t) ;uOLj

(
t, λ∗i (t) , λ∗j (t)

))
is concave in (x, ui) for all i, j ∈ {1, 2} and i 6= j. Therefore, we have that

uNi (t) = uOLi
(
t, λ∗i (t) , λ∗j (t)

)
i, j ∈ {1, 2} , i 6= j; (25)

is an OLNE for (20).
Now, let us consider the subgame starting at the time τ ∈ (0, T ) from any
feasible state xτ ∈ R. The first two steps of the solution scheme for this
subgame are identical to the previous ones. On the other hand, the new two-
point boundary value problem for the subgame becomes

ẋ = δ (t)x+ ε
(
t, uOLi (t, λi, λj) , u

OL
j (t, λi, λj)

)
x (τ) = xτ
λ̇i = −αi

(
t, uOLj (t, λi, λj)

)
− λiδ (t)

λi (T ) = γi.

(26)
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The adjoint functions are solved backward and they are decoupled from the mo-
tion equation; hence, the previous functions λ∗i (t) , λ∗j (t) still solve the adjoint

equations. Using λ∗i (t) , λ∗j (t) we can characterize uNi (t) = uOLi
(
t, λ∗i (t) , λ∗j (t)

)
which is exactly the previous OLNE restricted to the subinterval [τ, T ] (we are
using again the fact that u#i does not depend on x). Finally, we can solve the
motion equation with the new initial condition x (τ) = xτ and we obtain a
new optimal motion function which we denote as x∗τ (t).
To complete the proof we have to show that the sufficient conditions can be
applied also to this new optimal state function x∗τ (t). The Hessian matrix of
function Hi

(
t, x, ui, λ

∗
i ;u

OL
j

(
t, λ∗i , λ

∗
j

))
with respect to (x, ui) is(

0 0
0 ∂2uiuiβi

(
t, ui, u

OL
j

(
t, λ∗i , λ

∗
j

))
+ λ∗i∂

2
uiui

ε
(
t, ui, u

OL
j

(
t, λ∗i , λ

∗
j

)) ) (27)

where we have neglected the time dependence in the functions λ∗i , λ
∗
j . We can

observe that x∗τ (t) does not enter this matrix; therefore, if we can apply the
sufficient conditions to (20), then we can apply the same sufficient conditions
also to the subgame starting at the time τ ∈ (0, T ) from any feasible state
xτ ∈ R.

We notice that using the original formulation of linear-state differential
games as presented in [5, Chaper 7, page 187], in [6, Chaper 7, page 262], or
in [7] we obtain that αi (t, uj) only depends on t; hence, not only the adjoint
equations are decoupled from the motion equation, but they are also decoupled
from each other. This is useful because it simplifies the computations, but it
is not necessary to obtain the stability of the equilibrium.

4 Practical example

We close the paper with an example where we can perform all the computations
and we can obtain a subgame perfect OLNE even if there exists a particular
multiplicative interaction between the state and the control. The example is
very close to the previous one, but a different multiplicative interaction gives
a new light to the problem.

Example 4.1 Let us consider the differential game

max
ui

Ji [ui, uj] = max
ui

∫ 1

0
x (t)uj (t)− u2i (t) /2dt

ẋ (t) = u1 (t) + u2 (t)
x (0) = 0.

(28)

The Hamiltonian function of player i is

Hi (t, x, ui, λi;uj) = xuj − u2i /2 + λi (u1 + u2) (29)
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then
u#i (t, λi;uj) = λi. (30)

Again u#i does not depend on uj, hence

uOLi (t, λi, λj) = λi. (31)

The two-point boundary value problem is{
ẋ = λ1 + λ2, x (0) = 0

λ̇i = −λj, λi (1) = 0
(32)

and the solution is straightforward{
x∗ (t) = 0
λ∗i (t) = 0

(33)

therefore
uNi (t) = 0. (34)

We notice that Hi

(
t, x, ui, λ

∗
i (t) ;uOLj

(
t, λ∗i (t) , λ∗j (t)

))
is concave in (x, ui)

because its Hessian with respect to these two variables is constant and equal to(
0 0
0 −1

)
. (35)

Hence, (34) is really an OLNE. Now, we already know by Section 3 that this
OLNE is subgame perfect, however it may be useful to see how and why this
occurs. As in the previous example, let us consider the subgame starting at the
time τ = ln (2) from the state xτ = 1. The two-point boundary value problem
(32) in step 3 becomes{

ẋ = λ1 + λ2, x (ln (2)) = 1

λ̇i = −λj, λi (1) = 0
(36)

and we can notice that the adjoint functions do not change. Even if the adjoint
functions are coupled with each other, they are decoupled from the motion equa-
tion and this is sufficient to guarantee that the OLNE (34) is subgame perfect.
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