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CONTINUOUS DEPENDENCE ESTIMATES FOR THE ERGODIC PROBLEM
OF BELLMAN-ISAACS OPERATORS VIA THE PARABOLIC

CAUCHY PROBLEM ∗

Claudio Marchi1

Abstract. This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs
operators. We establish such an estimate for the parabolic Cauchy problem in the whole space [0, +∞)×
R

n and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar
estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result
will be the local uniform convergence for some classes of singular perturbation problems.
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1. Introduction

This paper is devoted to continuous dependence estimates for two problems for Hamilton-Jacobi-Bellman-
Isaacs (briefly, HJBI) operators: the parabolic Cauchy problem for any time and, mainly, the associated ergodic
constant. For the former issue, we consider the Cauchy problem{

∂tu+H(x,Du,D2u) = 0 in (0,+∞) × R
n

u(0, x) = 0 on R
n (1.1)

for the HJBI operator

H(x, p,X) = min
β∈B

max
α∈A

{− tr (a(x, α, β)X) + f(x, α, β) · p+ �(x, α, β)} (1.2)

where ∂t ≡ ∂/∂t, Du and D2u stand respectively for the gradient and for the Hessian matrix of the real-valued
function u = u(t, x).

For instance, problems of this kind naturally arise in zero-sum two-persons stochastic differential games:
consider the control system for s > 0

dxs = f(xs, αs, βs)ds+
√

2σ(xs, αs, βs)dWs, x0 = x (1.3)
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problems, differential games, singular perturbations.

∗ Work partially supported by the INDAM-GNAMPA project “Fenomeni di propagazione di fronti e problemi di omogeneiz-
zazione” and by the Fondazione CaRiPaRo Project “Nonlinear Partial Differential Equations: models, analysis, and control-
theoretic problems”.
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where (Ω,F ,P) is a probability space endowed with a right continuous filtration (Ft)0≤t<+∞ and a p-
dimensional Brownian motion Wt. The control law α (respectively, β) belongs to the set A (resp., B) of
progressively measurable processes which take value in the compact set A (resp., B). The controls α and β
are chosen respectively by the first and the second player whose purposes are opposite: the former wants to
minimize the cost functional

P (t, x, α, β) := Ex

∫ t

0

�(xs, αs, βs) ds (1.4)

(here, Ex denotes the expectation) while the latter wants to maximize it. It is well known (see [22]) that the
lower value function

u(t, x) := inf
α∈Γ

sup
β∈B

P (t, x, α[β], β)

is a viscosity solution to problem (1.1)–(1.2) with a = σσT where Γ stands for the set of admissible strategies
of the first player (namely, nonanticipating maps α : B → A; see [22]).

For the latter issue (namely, the ergodic problem for H), we seek a pair (v, U), with v ∈ C(Rn) and U ∈ R

(called the ergodic constant) which, in viscosity sense, satisfies

H(x,Dv,D2v) = U in R
n. (1.5)

Let us recall ([2, 3]) that, in terms of stochastic differential games, the constant U is characterized by the
following limits (uniform in x)

U = lim
t→+∞ inf

α∈Γ
sup
β∈B

t−1
Ex

∫ t

0

�(xs, α[β]s, βs) ds = lim
δ→0+

inf
α∈Γ

sup
β∈B

Exδ

∫ +∞

0

�(xs, α[β]s, βs)e−δs ds.

In other words, by standard theory (see [22]), U fulfills

U = lim
t→+∞u(t, x)/t = lim

δ→0+
δwδ(x) uniformly in x

where u and wδ are respectively the solution to problem (1.1) and to equation

δwδ +H
(
x,Dwδ, D

2wδ
)

= 0 in R
n.

The continuous dependence estimates for fully nonlinear equations have been widely studied in literature,
starting from the paper by Souganidis [34] for first-order equations. In fact, such estimates play a crucial role
in many contexts as error estimates for approximation schemes (see [7, 19] and references therein), regularity
results (for instance, see [8,13,27]) and rate of convergence for vanishing viscosity methods (see [15,23,27,28] and
references therein). In particular, let us recall that Cockburn et al. [15] tackled up the continuous dependence
estimate for quasi-linear second-order equations with Neumann boundary conditions, while Grinpenberg [23]
addressed the case of the Dirichlet boundary data for the same equations. Afterwards, Jakobsen and Karlsen [27]
extended their results to more general classes of equations (see also [28] for elliptic problems; we refer the reader
to the papers [12,29] for integro-differential HJB equations). Furthermore, Jakobsen and Georgelin [26] extended
the previous results to problems with more general boundary conditions and domains.

On the other hand, the ergodic problem has been widely studied in connection with homogenization or
singular perturbation problems (see [1, 2, 6, 11, 14, 21, 30, 32] and references therein), with long-time behavior of
solutions to parabolic equations (for instance, see [3,5,9]) and with dynamical systems in a torus (see [4,16,33]).
It is well known (see [2, 3]) that, under some periodicity and either ellipticity or controllability assumptions,
there exists exactly one value U ∈ R such that equation (1.5) admits at least one bounded solution. For the
elliptic case, Evans [21] obtained a continuous dependence estimate for the ergodic constant for operators which
are Lipschitz continuous in the variable x uniformly with respect to (p,X). Afterwards, Alvarez and Bardi [2],
Theorem 4.5, extended his result to operators which are elliptic, convex in X and with a Hölder continuous
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running cost � (see also [2], Cor. 4.3 and Thm. 2.10, for other generalizations in different directions). For the
controllable case, Alvarez and Bardi [2], Corollary 6.9, established a continuous dependence estimate for the
ergodic constant provided that the dispersion matrix σ is left unchanged. Let us observe that, in all these papers,
the regularity of the ergodic constant is ensured by a straightforward application of the comparison principle.

This paper is devoted to two purposes. The former is to establish a continuous dependence estimate for
problem (1.1)–(1.2) (namely, an estimate of ‖u − v‖∞, where u and v are solutions to two equations (1.1)
with different coefficients) with the following three features: the dependence on the L

∞-distance between the
coefficients is explicit, the constants can be explicitly characterized and, above all, the estimate holds in the
whole space [0,+∞) × R

n and grows at most linearly in t. As far as we known, these features (especially the
last one) have never been tackled up in literature.

The latter purpose (which we consider the main one) is to establish a continuous dependence estimate for the
ergodic constant associated to HJBI operators as in (1.2) only under periodicity and ellipticity/controllability
assumptions. An interesting byproduct will be the local uniform convergence for some classes of singular per-
turbation problems (see Sect. 3.1 for the precise definition). The most important contributions on this matter
are: our approach is completely different from the ones in literature and we deal with HJBI operators in full
generality (both for the dependence of the ergodic constant and for the convergence of singular perturbation
problems).

This paper is organized as follows: in the rest of this section, we provide some notations and list the standing
assumptions. Section 2 contains the continuous dependence estimate for the parabolic Cauchy problem (1.1)
and its application to some degenerate problems as well. Section 3 concerns the continuous dependence estimate
for the ergodic constant in (1.5); Section 3.1 is devoted to illustrate how to derive the local uniform convergence
for singular perturbation problems.

1.1. Notations and standing assumptions

Notations: We define M
n,p and S

n respectively as the set of n × p real matrices and the set of n × n
symmetric matrices. The latter is endowed with the Euclidean norm and with the usual order, namely: for
X = (Xij)i,j=1,...,n ∈ S

n, ‖X‖ := (
∑n

i,j=1X
2
ij)

1/2 ≡ tr(XXT )1/2 and, for X,Y ∈ S
n, we shall write X ≥ Y , if

X−Y is a semi-definite positive matrix. We denote by In the identity matrix in S
n; we shall simply use I when

there is no ambiguity.
For every positive t, we set Qt := [0, t) × R

n and Q∞ := [0,+∞) × R
n.

For every real-valued function h, we set ‖h‖∞ := ess sup |h(y)|; for γ ∈ (0, 1], we use the γ-Hölder norm:
|h|γ := supy �=x

|h(y)−h(x)|
|y−x|γ . Moreover, J2,+h(ξ) and J2,−h(ξ) stand respectively for the second-order superjet

and subjet of h at the point ξ (see [17], Sect. 2, for the precise definition and main properties). For each
function h defined on Qt, P2,+h(τ, ξ) and P2,−h(τ, ξ) denote respectively the parabolic super- and subjects at
the point (τ, ξ) (see [17], Sect. 8). A real function ω is said a modulus of continuity whenever it is a nonnegative
continuous non-decreasing function on [0,+∞) with ω(0) = 0.

Standing assumptions: for the operatorH in (1.2), the following assumptions will hold throughout this paper

(A1) A and B are two compact metric spaces.
(A2) a = σσT . The functions σ, f and � are bounded continuous functions in R

n×A×B with value respectively
in M

n,p, R
n, and R; namely, for some C > 0, there holds: ‖σ‖∞, ‖f‖∞, ‖�‖∞ ≤ C.

(A3) The drift vectors f and the dispersion matrix σ are Lipschitz continuous in x uniformly in (α, β), namely:
for some positive constant Cφ, every φ = σ, f satisfies

|φ(x, α, β) − φ(y, α, β)| ≤ Cφ|x− y| ∀x, y ∈ R
n, ∀(α, β) ∈ A×B.

The running cost � is uniformly continuous in x uniformly in (α, β), namely: there exists a modulus of
continuity ω such that

|�(x, α, β) − �(y, α, β)| ≤ ω(|x− y|) ∀x, y ∈ R
n, ∀(α, β) ∈ A×B.



CONTINUOUS DEPENDENCE ESTIMATES FOR ERGODIC PROBLEM 957

2. Estimate for the parabolic Cauchy problem

For i = 1, 2, consider the parabolic Cauchy problems{
∂tu

i + min
β∈B

max
α∈A

{− tr
(
ai(x, α, β)D2ui

)
+ fi(x, α, β) ·Dui + �i(x, α, β)

}
= 0 in Q∞

ui(0, x) = 0 on R
n,

(Pi)

where the coefficients fulfill our standing assumptions (A1)–(A3). The main purpose of this section is to provide
an estimate of ‖u1(t, ·)−u2(t, ·)‖∞ for every t ∈ [0,+∞). Such an estimate could be obtained as a straightforward
application of the comparison principle provided that some bound on the C2-norm of the solution is available.
Unfortunately, this is not the case for operators (1.2). In fact, our approach is based on the comparison principle
techniques for viscosity solutions (see [17]): doubling the variables and adding a penalization term. Let us observe
that this approach does not require the non-degeneracy of the operator H ; actually, in Section 2.1, we shall also
apply our result to some degenerate problems.

Remark 2.1. By standard viscosity theory (for instance, see [17]), assumptions (A1)–(A3) guarantee that the
comparison principle applies to problem (Pi); whence, by the Perron method, one can easily deduce that (Pi)
admits exactly one solution ui ∈ C(Q∞) with

|ui(t, x)| ≤ tC, ∀(t, x) ∈ Q∞ (2.1)

where C is the constant introduced in assumption (A2).

Theorem 2.2. Let ui be the unique solution to problem (Pi) which satisfies the bound (2.1) (i = 1, 2). Further-
more, let us assume that, for some γ ∈ (0, 1], ui(t, ·) is γ-Hölder continuous uniformly in t, namely: for some
CH > 0, there holds

|ui(t, ·)|γ ≤ CH , ∀t ∈ [0,+∞), i = 1, 2. (2.2)

Then, there exist a positive constant M such that, for every (x, t) ∈ Q∞, there holds

∣∣u1(t, x) − u2(t, x)
∣∣ ≤ tM

[
max
x,α,β

‖σ1 − σ2‖γ + max
x,α,β

|f1 − f2|γ + max
x,α,β

|�1 − �2|

+ ω

(
max
x,α,β

‖σ1 − σ2‖ + max
x,α,β

|f1 − f2|
)]

.

Proof of Theorem 2.2. We shall argue using some techniques introduced in [15, 27]. Fix t > 0 and set Et :=
[0, t) × R

n × R
n. For every η ∈ (0,+∞) and ε ∈ (0, 1), we introduce

st := sup
Et

{
u1(τ, x) − u2(τ, y) −

(
η

2
|x− y|2 +

ε

2
(|x|2 + |y|2) +

ε

t− τ

)}
· (2.3)

Our first purpose is to establish an upper bound for st. To this end, without any loss of generality, we can
assume st > 0. For δ ∈ (0, 1), define

ψ(τ, x, y) := u1(τ, x) − u2(τ, y) − δstτ

t
−
(
η

2
|x− y|2 +

ε

2
(|x|2 + |y|2) +

ε

t− τ

)
· (2.4)

Let us observe that definition (2.3) entails

sup
Et

ψ ≥ sup
Et

{
u1(τ, x) − u2(τ, y) −

(
η

2
|x− y|2 +

ε

2
(|x|2 + |y|2) +

ε

t− τ

)}

− sup
τ∈[0,t)

{
δstτ

t

}

≥ (1 − δ)st > 0. (2.5)
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Since the functions u1 and u2 are bounded in Qt and since the function ψ tends to −∞ both as τ → t− and
as |x| + |y| → +∞, we deduce that there exists a point (τ0, x0, y0) ∈ Et where the function ψ attains its global
maximum, namely

ψ(τ0, x0, y0) = sup
Et

ψ ≥ 0 (2.6)

where the inequality is due to relation (2.5).
Let us now claim that, for C := (2CH)1/(2−γ), there holds

|x0 − y0| ≤ Cη−1/(2−γ), ε
(|x0|2 + |y0|2

) ≤ 4Ct (2.7)

where CH , γ and C are the constants introduced respectively in assumption (2.2) and (A2); in particular, let us
emphasize that C is independent of t. Actually, in order to prove the former estimate, we observe that inequality
ψ(τ0, x0, x0) + ψ(τ0, y0, y0) ≤ 2ψ(τ0, x0, y0) and assumption (2.2) give

η|x0 − y0|2 ≤ [u1(τ0, x0) − u1(τ0, y0)] + [u2(τ0, x0) − u2(τ0, y0)]
≤ 2CH |x0 − y0|γ .

Let us now prove the latter estimate in (2.7): by estimates (2.1) and (2.6), we infer

ε
(|x0|2 + |y0|2

) ≤ 2u1(τ0, x0) − 2u2(τ0, y0) ≤ 4Ct.

Hence, the proof of estimates (2.7) is accomplished.
We introduce the test function

φ(τ, x, y) :=
δstτ

t
+
η

2
|x− y|2 +

ε

2
(|x|2 + |y|2) +

ε

t− τ
(2.8)

and we invoke [17], Theorem 8.3: for every ν > 0, there exist values a, b ∈ R and matrices X,Y ∈ S
n such that

(a,Dxφ(τ0, x0, y0), X) ∈ P2,+u1(τ0, x0), (b,Dyφ(τ0, x0, y0), Y ) ∈ P2,−u2(τ0, y0), (2.9)

a− b = ∂τφ(τ0, x0, y0) ≡ δst
t

+
ε

(t− τ0)2
(2.10)(

X 0
0 −Y

)
≤ Θ + νΘ2, (2.11)

where Θ := η

(
I −I
−I I

)
+ ε

(
I 0
0 I

)
. From the last inequality, one can deduce that, for every (α, β) ∈ A × B,

there holds

tr (a1(x0, α, β)X) − tr (a2(y0, α, β)Y ) ≤ η ‖σ1(x0, α, β) − σ2(y0, α, β)‖2 + 2εC2 + ν tr
(
ΣΘ2

)
(2.12)

with

Σ :=

(
σ1(x0, α, β)σ1(x0, α, β)T σ2(y0, α, β)σ1(x0, α, β)T

σ1(x0, α, β)σ2(y0, α, β)T σ2(y0, α, β)σ2(y0, α, β)T

)
.

In order to prove this inequality, we shall use the arguments by Ishii [24]. Multiplying relation (2.11) by matrix Σ
(which is symmetric and nonnegative definite) and evaluating the trace, we obtain

tr
(
σ1(x0, α, β)σ1(x0, α, β)TX − σ2(y0, α, β)σ2(y0, α, β)TY

)
≤ η tr

[
(σ1(x0, α, β) − σ2(y0, α, β)) (σ1(x0, α, β) − σ2(y0, α, β))T

]
+ ε tr

(
σ1(x0, α, β)σ1(x0, α, β)T

)
+ ε tr

(
σ2(y0, α, β)σ2(y0, α, β)T

)
+ ν tr

(
ΣΘ2

)
;
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therefore, by assumption (A2), relation (2.12) easily follows.
Since u1 is a subsolution to problem (Pi) with i = 1, the former relation in (2.9) yields

0 ≥ a+ min
β∈B

max
α∈A

{− tr (a1(x0, α, β)X) + f1(x0, α, β) ·Dxφ(τ0, x0, y0) + �1(x0, α, β)}
≥ b+ min

β∈B
max
α∈A

{− tr (a2(y0, α, β)Y ) + f1(x0, α, β) · (η(x0 − y0) + εx0) + �1(x0, α, β)}

− ηmax
α,β

‖σ1(x0, α, β) − σ2(y0, α, β)‖2 − 2εC2 − νmax
α,β

tr
(
ΣΘ2

)
+
δst
t

+
ε

(t− τ0)2

where the last inequality is due to the definition of φ (2.8) and to relations (2.10) and (2.12). Since u2 is a
supersolution to equation (Pi) with i = 2, by assumption (A2), last inequality entails the following upper bound
for st:

δst
t

+
ε

(t− τ0)2
≤ ηmax

α,β
‖σ1(x0, α, β) − σ2(y0, α, β)‖2 + 2εC2 + νmax

α,β
tr
(
ΣΘ2

)
+ εC (|x0| + |y0|) + η|x0 − y0|max

α,β
|f1(x0, α, β) − f2(y0, α, β)|

+ max
α,β

|�1(x0, α, β) − �2(y0, α, β)| .

Owing to the definition of st in (2.3), we have

u1(τ, x) − u2(τ, y) − η

2
|x− y|2 − ε

2
(|x|2 + |y|2) ≤ st +

ε

t− τ
∀(τ, x, y) ∈ Et.

Taking into account the last two inequalities, for every (τ, x) ∈ Qt, we infer

u1(τ, x) − u2(τ, x) ≤ t

δ

[
ηmax
α,β

‖σ1(x0, α, β) − σ2(y0, α, β)‖2 + 2εC2 + νmax
α,β

tr
(
ΣΘ2

)
+ η|x0 − y0|max

α,β
|f1(x0, α, β) − f2(y0, α, β)| + εC (|x0| + |y0|)

+ max
α,β

|�1(x0, α, β) − �2(y0, α, β)|
]

+
ε

t− τ
+ ε|x|2.

By the regularity of the coefficients (see assumption (A3)) and estimate (2.7), for C̃ := 2C2
σC

2
+2+CfC

2
+C,

we get

u1(τ, x) − u2(τ, x) ≤ t

δ

[
2η
(
C2
σ|x0 − y0|2 + max

x,α,β
‖σ1 − σ2‖2

)
+ ηCf |x0 − y0|2 + η|x0 − y0|max

x,α,β
|f1 − f2|

+ ω(|x0 − y0|) + max
x,α,β

|�1 − �2|
]

+ ε

[
1

t− τ
+
Ct

δ
(|x0| + |y0| + 2C) + |x|2

]
+ νtδ−1 max

α,β
tr
(
ΣΘ2

)
≤ t

δ
C̃

[
η−γ/(2−γ) + ηmax

x,α,β
‖σ1 − σ2‖2 + η(1−γ)/(2−γ) max

x,α,β
|f1 − f2|

]

+
t

δ

[
max
x,α,β

|�1 − �2| + ω(Cη−1/(2−γ))
]

+ ε

[
1

t− τ
+
Ct

δ
(|x0| + |y0| + 2C) + |x|2

]
+ νtδ−1 max

α,β
tr
(
ΣΘ2

)
.
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Letting ν → 0+ and afterwards ε→ 0+, by estimate (2.7), we infer

u1(τ, x) − u2(τ, x) ≤ t

δ
C̃

[
η−γ/(2−γ) + η max

x,α,β
‖σ1 − σ2‖2 + η(1−γ)/(2−γ) max

x,α,β
|f1 − f2|

]

+
t

δ

[
max
x,α,β

|�1 − �2| + ω(Cη−1/(2−γ))
]
.

Letting δ → 1− and afterwards τ → t−, by the continuity of the functions u1 and u2, for every x ∈ R
n, we

deduce

u1(t, x) − u2(t, x) ≤ tC̃

[
η−γ/(2−γ) + ηmax

x,α,β
‖σ1 − σ2‖2 + η(1−γ)/(2−γ) max

x,α,β
|f1 − f2|

]

+ t

[
max
x,α,β

|�1 − �2| + ω(Cη−1/(2−γ))
]
. (2.13)

We shall consider separately four cases; C will be a constant depending only on C and γ. (i) For γ = 1 and
σ1 = σ2, as η → +∞, relation (2.13) becomes

u1(t, x) − u2(t, x) ≤ tC̃ max
x,α,β

|f1 − f2| + tmax
x,α,β

|�1 − �2|;

(ii) for γ = 1 and σ1 �= σ2, we choose η = C max
x,α,β

‖σ1 − σ2‖−1 and we get

u1(t, x) − u2(t, x) ≤ tC̃C

[
max
x,α,β

‖σ1 − σ2‖ + max
x,α,β

|f1 − f2|
]

+ t

[
max
x,α,β

|�1 − �2| + ω(max
x,α,β

‖σ1 − σ2‖)
]

;

(iii) for γ ∈ (0, 1), σ1 = σ1 and f1 = f2, as η → +∞, relation (2.13) becomes

u1(t, x) − u2(t, x) ≤ tmax
x,α,β

|�1 − �2|;

(iv) for γ ∈ (0, 1) and m := max{max
x,α,β

‖σ1 − σ2‖ , max
x,α,β

|f1 − f2|} > 0, we choose η = (C
−1
m)γ−2 and we obtain

u1(t, x) − u2(t, x) ≤ tC̃Cmγ + t

[
max
x,α,β

|�1 − �2| + ω(m)
]
.

Owing to the arbitrariness of the value t, one side of the inequality in our statement is completely proved. Being
similar, the proof of the other one is omitted. �

Remark 2.3. Actually, by the calculations of the proof above, for γ = 1, we established

∣∣u1(t, x) − u2(t, x)
∣∣ ≤ tM

[
max
x,α,β

‖σ1 − σ2‖ + max
x,α,β

|f1 − f2|
]

+ t

[
max
x,α,β

|�1 − �2| + ω

(
max
x,α,β

‖σ1 − σ2‖
)]

for every (t, x) ∈ Q∞.

Remark 2.4. In Theorem 2.2, the absence of zero-order term in (Pi) is crucial. Actually, if ui solves

∂tu
i + min

β∈B
max
α∈A

{− tr
(
aiD

2ui
)

+ fi ·Dui + hiu
i + �i

}
= 0 in Q∞, ui(0, x) = 0 on R

n

for some bounded function hi = hi(x, α, β), then the right-hand side in the statement of Theorem 2.2 may
increase exponentially in t. Let us also observe that in this case, in general, estimate (2.1) fails and it should be
replaced by: |ui(t, x)| ≤ Cect for some constant c depending on supx,α,β |hi(x, α, β)|.
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2.1. Example: degenerate parabolic problems

This Section is devoted to illustrate an application of Theorem 2.2 to some classes of parabolic Cauchy
problems for degenerate HJBI operators.

Corollary 2.5. Besides our standing conditions, assume that, for some positive constants ν and C1, there holds

min
β∈B

max
α∈A

{−tr (ai(x, α, β)X) + fi(x, α, β) · p+ �i(x, α, β)} ≥ ν|p| − C1 (2.14)

for every (x, p,X) ∈ R
n × R

n × S
n (i = 1, 2). Then, there exists M > 0 such that, for every (t, x) ∈ Q∞, there

holds

∣∣u1(t, x) − u2(t, x)
∣∣ ≤ tM

[
max
x,α,β

‖σ1 − σ2‖ + max
x,α,β

|f1 − f2|
]

+ t

[
max
x,α,β

|�1 − �2| + ω

(
max
x,α,β

‖σ1 − σ2‖
)]

,

where u1 and u2 are respectively the solution to (Pi) with i = 1 and i = 2.

Remark 2.6. Relation (2.14) is fulfilled provided that there exists A′
i ⊂ A such that

σi(x, α, β) = 0 ∀α ∈ A′
i, B(0, ν) ⊂ conv{fi(x, α, β) | α ∈ A′

i}

for every x ∈ R
n, β ∈ B (here, B(0, ν) stands for the ball centered in 0 with radius ν while convF is the convex

hull of F ⊂ R
n).

Proof of Corollary 2.5. A straightforward application of Theorem 2.2 and Remark 2.3 yields the statement
provided that the functions u1 and u2 satisfy condition (2.2) with γ = 1. Let us prove this property by using
some arguments of [3], Theorem II.1. Assume that there holds

|ui(t, x) − ui(t+ h, x)| ≤ Ch, ∀(t, x) ∈ Q∞, h > 0, i = 1, 2. (2.15)

In this case, relations (2.14) and (2.15) guarantee in viscosity sense

C ≥ H(x,Dui(·, t), D2ui(·, t)) ≥ ν|Dui(·, t)| − C, in R
n

for all t ∈ [0,+∞), i = 1, 2. In particular, we have: |Dui| ≤ 2Cν−1, which amounts to (2.2) with γ = 1.
In conclusion, let us prove inequality (2.15). By estimate (2.1), we infer that the functions ui(t+ h, x) ± Ch

are respectively a super and a subsolution to (Pi). Applying the comparison principle, we accomplish the proof
of estimate (2.15). �

3. Estimate for the ergodic problem

This section is devoted to provide a continuous dependence estimate for the ergodic constant associated to
the HJBI operator (1.2) (which we consider the main result of this paper). Let us recall that, in the ergodic
problem, we seek a constant U such that the equation

H(x,Dv,D2v) = U in R
n (3.1)

admits at least one solution v. To this purpose, it is expedient to introduce the approximated equation

δwδ +H
(
x,Dwδ, D

2wδ
)

= 0 in R
n (δ > 0). (3.2)

Besides our standing assumptions, throughout this section, the operator H also fulfills

(A4) Periodicity: the functions σ, f and � are Z
n-periodic in x.
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We also introduce the following alternative conditions:

(A5) Ellipticity: there exists a positive constant ν such that:

a(x, α, β) ≥ νI, ∀(x, α, β) ∈ R
n ×A×B.

(A6) Controllability: for some positive constants ν and C1, there holds

H(x, p,X) ≥ ν|p| − C1 ∀(x, p,X) ∈ R
n × R

n × S
n.

For later use, in the following Proposition, we shall collect several known properties of the ergodic problem.

Proposition 3.1. Under assumptions (A1)–(A4) and either (A5) or (A6), the following properties hold:

(i) there exists exactly one constant U such that equation (3.1) admits a bounded continuous (and periodic)
solution v. Moreover, v is unique up to an additive constant provided that (A5) holds;

(ii) let u be the solution to the Cauchy problem (1.1); then, as t → +∞, u(t, x)/t converges to the ergodic
constant U of equation (3.1) uniformly in x;

(iii) the approximated equation (3.2) admits exactly one bounded continuous solution wδ: δ‖wδ‖∞ ≤ maxx,α,β |�|.
Moreover, as δ → 0+, δwδ and (wδ−wδ(0)) converge respectively to the ergodic constant U and to a solution v
of (3.1) with v(0) = 0;

(iv) there exist a positive constant K̃, depending only on the parameters of our assumptions (that is, independent
of δ) such that

|Dwδ| ≤ K̃ for a.e. x ∈ R
n.

Proof of Proposition 3.1. Under assumption (A6), the detailed proofs are given in [2], Proposition 6.4, (see
also [3], Theorem II.1, for operators of Bellman type). Under assumption (A5), the proof of points (i), (ii)
and (iii) can be found in [2], Theorem 4.1, (see also [3], Thm. II.2, for Bellman operators); moreover, the proof
of point (iv) can be easily obtained adapting to HJBI equations the arguments introduced in [3], Theorem II.2,
(see also [2], Thm. 4.1, for a similar result). �

Remark 3.2. In fact, by the arguments above, one can prove that there exist κ ∈ (0, 1] and K > 0 (both
depending only on the parameters of our assumptions) such that

‖wδ − wδ(0)‖C1,κ ≤ K

(
1 + max

x,α,β
|�|
)

(see [2], proof of Theorem 4.1, for the special form of the right-hand side) provided that assumption (A5) holds
and that there holds

|Dwδ| ≤ ν−1

(
C1 + max

x,α,β
|�|
)

provided that assumption (A6) holds.

Assume conditions (A1)–(A4) and either (A5) or (A6); for i = 1, 2, consider the ergodic problems

min
β∈B

max
α∈A

{− tr
(
ai(x, α, β)D2vi

)
+ fi(x, α, β) ·Dvi + �i(x, α, β)

}
= U i in R

n. (Ei)

Theorem 3.3. Let U i be the unique ergodic constant for problem (Ei) (i = 1, 2). Then, there holds

∣∣U1 − U2
∣∣ ≤ M̃

(
max
x,α,β

‖σ1 − σ2‖ + max
x,α,β

|f1 − f2|
)

+ ω(max
x,α,β

‖σ1 − σ2‖) + max
x,α,β

|�1 − �2|

with M̃ := 2K̃(2C2
σ + 2 +Cf ), where K̃ is the constant introduced in Proposition 3.1-(iv) while Cσ and Cf are

the Lipschitz constants of σ and f respectively (see assumption (A3)).
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Remark 3.4. This result is a twofold extension of [2], Theorem 4.5; here, the matrix σ depends on the control
of both players (hence, the operator H may be not convex in X) and the running cost � is uniformly continuous
(instead of being Hölder continuous). In particular, let us stress that, taking advantage of the convexity of H
and of the regularity of �, in [2] an estimate of the C2-norm is provided both for the solution of the ergodic
problem and for the solution of the approximated equation while, under our assumptions, in general, these
functions only belong to C1.

This result also extends [2], Corollary 6.9, to the case of different dispersion matrices (i.e., σ1 �= σ2).

Proof of Theorem 3.3. The statement is an immediate consequence of Corollary 2.5 and Proposition 3.1-(ii)
provided that assumption (A6) is fulfilled.

Consider now that condition (A5) holds. Let ui be the solution to problem (Pi) (i = 1, 2). By Proposition 3.1-
(ii), the statement follows from Theorem 2.2 and Remark 2.3 provided that the solutions u1 and u2 fulfill
condition (2.2) with γ = 1. In order to prove this fact, we denote by vi the unique bounded solution to
equation (Ei) with vi(0) = 0 and we introduce the function wi(t, x) := ui(t, x) + U it, which is the unique
solution to the Cauchy problem{

∂tw
i + min

β∈B
max
α∈A

{− tr
(
aiD

2wi
)

+ fi ·Dwi + �i
}

= U i in Q∞

wi(0, x) = 0 on R
n.

(3.3)

Let us prove that wi is bounded in Q∞ arguing as in [3], Theorem II.1. For k := ‖vi‖∞, the functions vi(x) −
U it±k are respectively a super- and a subsolution to the Cauchy problem (Pi); hence, the comparison principle
ensures

vi(x) − k ≤ wi(t, x) ≤ vi(x) + k ∀(t, x) ∈ Q∞,

and, in particular: ‖wi‖∞ ≤ 2k. Furthermore, we observe that, as δ → 0+, Proposition 3.1-(iii) ensures:
|U i| ≤ maxx,α,β |�i|. In conclusion, by standard regularity theory for parabolic equations (see [18, 35, 36]),
the functions wi fulfill hypothesis (2.2) with γ = 1 and, consequently, also ui fulfill hypothesis (2.2)
with γ = 1. �

Proof of Theorem 3.3: alternative version. We shall follow the arguments for the comparison principle (see [17]
and also [28] for continuous dependence estimates). For every positive η, define

ψ(x, y) := w1
δ (x) − w2

δ (y) −
η

2
|x− y|2

where wiδ (i = 1, 2) is the unique bounded (and periodic) solution to

δwiδ + min
β∈B

max
α∈A

{− tr
(
aiD

2wiδ
)

+ fi ·Dwiδ + �i
}

= 0 in R
n. (3.4)

(Here, taking advantage of the periodicity of wiδ, the penalization term is simpler than the one in the proof of
Theorem 2.2.) Owing to these properties of wiδ, we deduce that there exists a point (x0, y0) ∈ R

n × R
n where

the function ψ attains its global maximum.
Let us now claim that, for C := 2K̃ (where K̃ is the constant introduced in Proposition 3.1-(iv)), there holds

η|x0 − y0| ≤ C. (3.5)

Actually, we observe that the inequality ψ(x0, x0) + ψ(y0, y0) ≤ 2ψ(x0, y0) gives

η|x0 − y0|2 ≤ [w1
δ (x0) − w1

δ (y0)] + [w2
δ (x0) − w2

δ (y0)] ≤ C|x0 − y0|

where the latter inequality is due to Proposition 3.1-(iv) and to the definition of C; whence, estimate (3.5)
easily follows.
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By [17], Theorem 3.2, for every ν > 0, there exist matrices X,Y ∈ S
n such that

(η(x0 − y0), X) ∈ J2,+w1
δ (x0), (η(x0 − y0), Y ) ∈ J2,−w2

δ (y0) (3.6)(
X 0
0 −Y

)
≤ η(1 + 2νη)

(
I −I
−I I

)
.

Moreover, arguing as in the proof of Theorem 2.2, from last inequality we deduce

tr (a1(x0, α, β)X) − tr (a2(y0, α, β)Y ) ≤ η(1 + 2νη) ‖σ1(x0, α, β) − σ2(y0, α, β)‖2

for every (α, β) ∈ A× B. Since w1
δ (respectively, w2

δ ) is a subsolution (resp., a supersolution) to equation (3.4)
with i = 1 (resp., i = 2), by relations (3.6), we infer

δw1
δ (x0) + min

β∈B
max
α∈A

{− tr (a1(x0, α, β)X) + ηf1(x0, α, β) · (x0 − y0) + �1(x0, α, β)} ≤ 0

δw2
δ (y0) + min

β∈B
max
α∈A

{− tr (a2(y0, α, β)Y ) + ηf2(y0, α, β) · (x0 − y0) + �2(y0, α, β)} ≥ 0.

Taking into account the last three inequalities and arguing as before, we obtain

δ
(
w1
δ (x0) − w2

δ (y0)
) ≤ η(1 + 2νη)max

α,β
‖σ1(x0, α, β) − σ2(y0, α, β)‖2 + η|x0 − y0|max

α,β
|f1(x0, α, β)

−f2(y0, α, β)| + max
α,β

|�1(x0, α, β) − �2(y0, α, β)| .

Letting ν → 0+, by the regularity of the coefficients (see assumption (A3)) and by estimate (3.5), we have

δ
(
w1
δ (x0) − w2

δ (y0)
) ≤ 2η

(
C2
σ|x0 − y0|2 + max

x,α,β
‖σ1 − σ2‖2

)
+ ηCf |x0 − y0|2 + η|x0 − y0|max

x,α,β
|f1 − f2|

+ ω(|x0 − y0|) + max
x,α,β

|�1 − �2|

≤ C
2
(2C2

σ + Cf )η−1 + 2ηmax
x,α,β

‖σ1 − σ2‖2 + C max
x,α,β

|f1 − f2| + ω(Cη−1) + max
x,α,β

|�1 − �2|.

As δ → 0+, we infer

U1 − U2 ≤ C
2
(2C2

σ + Cf )η−1 + 2ηmax
x,α,β

‖σ1 − σ2‖2 + C max
x,α,β

|f1 − f2| + ω(Cη−1) + max
x,α,β

|�1 − �2|.

Arguing as in the proof of Theorem 2.2 (with γ = 1), we ascertain one side of our statement. Reversing the role
of w1

δ and w2
δ , one can easily obtain the other side; therefore, we shall omit its proof. �

3.1. Singular perturbation problems

We consider the following singular perturbation problems{
∂tu

ε + H
(
x, y,Dxu

ε,
Dyu

ε

ε , D2
xxu

ε,
D2

yyu
ε

ε ,
D2

xyu
ε

√
ε

)
= 0 in (0, T ) × R

n × R
m

uε(0, x, y) = h(x) on R
n × R

m
(3.7)

where uε = uε(t, x, y) is a real function, ε ∈ (0, 1) and

H(x, y, p, q,X, Y, Z) := min
β∈B

max
α∈A

{− tr(MX) − tr(NY ) − 2 tr(EZ) + F · q +G · p+ L}

with φ = φ(x, y, α, β) for every φ = M,N,E, F,G,L. The aim of this section is to study the asymptotic behavior
of uε as ε→ 0+. For the wide literature on this matter, we refer the reader to the monographs by Bensoussan [10],
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Dontchev and Zolezzi [20], Kokotović et al. [31], Alvarez and Bardi [2] and references therein. Let us only recall
that these problems arise in zero-sum two-persons stochastic differential games (1.3)–(1.4) where the state
variable “splits” in the slow one x and in the fast one y. For the control system

dxs = G(xs, ys, αs, βs)ds+
√

2Ξ(xs, ys, αs, βs)dWs, x0 = x

dys = ε−1F (xs, ys, αs, βs)ds+
√

2ε−1Σ(xs, ys, αs, βs)dWs, y0 = y

and the cost functional

P (t, x, y, α, β) := E(x,y)

[∫ t

0

L(xs, ys, αs, βs) ds+ h(xt)
]
,

the lower value function uε is a viscosity solution to problem (3.7) with M = ΞΞT , N = ΣΣT and E = ΣΞT .
Throughout this section, for some positive constants C and ν, we shall assume:

(S1) A and B are two compact metric spaces.
(S2) M = ΞΞT , N = ΣΣT , E = ΣΞT . The functions Ξ, Σ, F , G, L and h are bounded continuous functions

in R
n × R

m × A × B with values respectively in M
n,p, M

m,p, R
m, R

n, R and R, namely there holds:
‖φ‖∞ ≤ C for φ = M,N,E, F,G,L.
All these functions are Z

m-periodic in y.
(S3) The functions Ξ, Σ, F and G (respectively, L and h) are Lipschitz (resp., uniformly) continuous in (x, y)

uniformly in (α, β) that is: there exists a positive constant Cφ and a modulus of continuity ωψ such that

|φ(x1, y1, α, β) − φ(x2, y2, α, β)| ≤ Cφ(|x1 − x2| + |y1 − y2|)
|ψ(x1, y1, α, β) − ψ(x2, y2, α, β)| ≤ ωψ(|x1 − x2| + |y1 − y2|)

for every (xi, yi) ∈ R
n × R

m (i = 1, 2) and (α, β) ∈ A×B, with φ = Ξ,Σ, F,G and ψ = L, h.
(S4) For every (x, y, α, β) ∈ R

n × R
m ×A× B, there holds: M(x, y, α, β) ≥ νIn.

and either

(S5) For every (x, y, α, β) ∈ R
n × R

m ×A× B, there holds: N(x, y, α, β) ≥ νIm.

or

(S6) For every (x, y, p, q,X, Y ) ∈ R
n × R

m × R
n × R

m × S
n × S

m, there holds

H(x, y, p, q,X, Y, 0) ≥ ν|q| − C(1 + |p| + ‖X‖).
Remark 3.5. Under assumptions (S1) and (S2), condition (S6) is fulfilled provided that there exists A′ ⊂ A
such that

Σ(x, y, α, β) = 0 ∀α ∈ A′, B(0, ν) ⊂ conv{F (x, y, α, β) | α ∈ A′}
for every (x, y, β) ∈ R

n × R
m ×B.

As in [1, 2], let us introduce the effective Hamiltonian H in the following manner: for every (x, p,X) ∈
R
n × R

n × S
n fixed, the value −H(x, p,X) is the ergodic constant for H(x, y, p, q,X, Y, 0) with respect to the

variable y. We refer the reader to Proposition 3.1 for several properties of the ergodic problem; in particular,
let us recall that, for δ > 0, the problem

δwδ + H (x, y, p,Dyw,X,D
2
yyw, 0

)
= 0 in R

m, wδ = wδ(y) periodic (3.8)

admits exactly one continuous solution and moreover, as δ → 0+, δwδ uniformly converges to the
value −H(x, p,X). Let us also emphasize (see also [2], Thm. 4.1, and Rem. 3.2) that Proposition 3.1-(iv)
can be stated as follows: there exist K > 0 such that

|Dwδ| ≤ K̃ := K
(
1 + |p| + ‖X‖) for a.e. y ∈ R

m, (3.9)

for every (x, p,X) ∈ R
n × R

n × S
n and δ > 0.
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Corollary 3.6. The solution uε to problem (3.7) converges locally uniformly in [0, T )×R
n×R

m to the unique
solution u = u(t, x) to the effective problem{

∂tu+H(x,Dxu,D
2
xxu) = 0 in (0, T )× R

n

u(0, x) = h(x) on R
n.

(3.10)

Remark 3.7. This result is a twofold extension of [2], Theorem 4.5: here, the running cost L is only uniformly
continuous (namely, its Hölder continuity is not required) and the matrix Σ depends on the controls of both
players (thus, the Hamiltonian in (3.8) may be not convex in Y ).

This result also extends [2], Corollary 6.9, to the case where the matrix Σ depends on x as well.

Proof of Corollary 3.6. We shall argue using several results established by Alvarez and Bardi [1,2]. Invoking [2],
Theorem 2.9, it suffices to prove that the comparison principle applies to the effective problem (3.10). To this
end, by virtue of the results by Ishii and Lions [25], it suffices to establish the following two properties: (i) H
is uniformly elliptic, (ii) for some constant K and for some modulus of continuity ω̄, there holds∣∣H(x1, p1, X1) −H(x2, p2, X2)

∣∣ ≤ C‖X1 −X2‖ + C|p1 − p2| + ω̄(|x1 − x2|)
+K|x1 − x2|(1 + |p1| ∨ |p2| + ‖X1‖ ∨ ‖X2‖) (3.11)

for every (xi, pi, Xi) ∈ R
n×R

n×S
n (i = 1, 2). We observe that the uniform ellipticity is well known so we shall

omit its proof and we refer the reader to [2], Theorem 4.4, for the detailed proof. In order to prove (3.11), let
us recall that, for i = 1, 2, the value −H(xi, pi, Xi) is the ergodic constant for the problem

min
β∈B

max
α∈A

{− tr(N(xi, y, α, β)D2
yyw

i) +Dyw
i · F (xi, y, α, β) − tr(M(xi, y, α, β)Xi)

+pi ·G(xi, y, α, β) + L(xi, y, α, β)} = −H(xi, pi, Xi).

Applying Theorem 3.3 with the variable x replaced by y and

σi(·, α, β) = Σ(xi, ·, α, β), fi(·, α, β) = F (xi, ·, α, β)

�i(·, α, β) = − tr(M(xi, ·, α, β)Xi) + pi ·G(xi, ·, α, β) + L(xi, ·, α, β)
ω(r) = [CM (‖X1‖ ∨ ‖X2‖) + CG(|p1| ∨ |p2|)] r + ωL(r)

for some constant M̃ (see below for its dependence on (xi, pi, Xi)), we infer

∣∣H(x1, p1, X1)−H(x2, p2, X2)
∣∣ ≤ M̃

(
max
y,α,β

‖Σ(x1, y, α, β)−Σ(x2, y, α, β)‖+max
y,α,β

|F (x1, y, α, β)−F (x2, y, α, β)|
)

+ [CM (‖X1‖ ∨ ‖X2‖) + CG(|p1| ∨ |p2|)] max
y,α,β

‖Σ(x1, y, α, β) −Σ(x2, y, α, β)‖

+ ωL

(
max
y,α,β

‖Σ(x1, y, α, β) −Σ(x2, y, α, β)‖
)

+ max
y,α,β

|tr [M(x1, y, α, β)X1

−M(x2, y, α, β)X2]| + max
y,α,β

|p1 ·G(x1, y, α, β) − p2 ·G(x2, y, α, β)|
+ max
y,α,β

|L(x1, y, α, β) − L(x2, y, α, β)| .

Taking into account the regularity of the coefficients (see assumption (S3)), we deduce∣∣H(x1, p1, X1) −H(x2, p2, X2)
∣∣ ≤ C‖X1 −X2‖ + C|p1 − p2| + ωL(CΣ |x1 − x2|) + ωL (|x1 − x2|)

+ |x1 − x2|M̃(CΣ + CF ) + |x1 − x2| [CM (‖X1‖ ∨ ‖X2‖) + CG(|p1| ∨ |p2|)]CΣ
+ CM |x1 − x2| (‖X1‖ ∧ ‖X2‖) + CG|x1 − x2| (|p1| ∧ |p2|) .
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Since there holds maxx,α,β,i |�i| ≤ C (1 + |p1| ∨ |p2| + ‖X1‖ ∨ ‖X2‖), by our definition of M̃ (see Thm. 3.3) and
estimate (3.9), we have

M̃ ≤ 2K(C + 1)(2C2
Σ + 2 + CF ) (1 + |p1| ∨ |p2| + ‖X1‖ ∨ ‖X2‖) .

Hence, the previous inequality becomes∣∣H(x1, p1, X1) −H(x2, p2, X2)
∣∣ ≤ C‖X1 −X2‖ + C|p1 − p2| + ωL(CΣ |x1 − x2|)

+ ωL(|x1 − x2|) +K|x1 − x2|(1 + |p1| ∨ |p2| + ‖X1‖ ∨ ‖X2‖)

for some constant K independent of (xi, pi, Xi). Finally, setting ω̄(r) := ωL(CΣr) + ωL(r), our claim (3.11) is
completely proved. �
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