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Abstract. We consider algebraic entropy defined using a general discrete length function
L and will consider the resulting entropy in the setting of RŒX�-modules. Then entropy
will be viewed as a function hL on modules over the polynomial ring RŒX� extending
L. In this framework we obtain the main results of this paper, namely that under some
mild conditions the induced entropy is additive, thus entropy becomes an operator from
the length functions on R-modules to length functions on RŒX�-modules. Furthermore, if
one requires that the induced length function hL satisfies two very natural conditions, then
this process is uniquely determined. When R is Noetherian, we will deduce that, in this
setting, entropy coincides with the multiplicity symbol as conjectured by the second named
author. As an application we show that if R is also commutative, the L-entropy of the right
Bernoulli shift on the infinite direct product of a module of finite positive length has value
1, generalizing a result proved for Abelian groups by A. Giordano Bruno.

Keywords. Length functions, endomorphisms of modules, algebraic entropy, multiplicity.

2010 Mathematics Subject Classification. 16S50, 16D10, 16P40.

1 Introduction

In module theory one encounters a host of functions that measure some sort of
finiteness, the most useful ones have values in the non-negative reals and infinity
and are additive in some sense. The first axiomatic approach to these functions
was given by D. G. Northcott and M. Reufel in their 1965 paper [14] where they
called them length functions. An interesting feature in this paper is the appearance
of a non-discrete length function induced by a non-Archimedean real valuation
on a valuation domain. Recently, further results on length functions for valuation
domains have been obtained by Zanardo in [24]. A more systematic study of these
length functions were undertaken by the second author in [18] and [19]. In particular,
all the upper continuous additive functions on a category with Krull dimension
(in the sense of Gabriel–Rentschler) were classified in [19]. In this situation,
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2 L. Salce, P. Vámos and S. Virili

which includes the case of all Noetherian rings, the length functions arising are
essentially discrete in a sense to be defined below.

In 1965, a new invariant from a topological setting appeared in algebra when
Adler, Konheim and McAndrew defined the (algebraic) entropy of an endomor-
phism of an Abelian group in [1]. In 1974, Weiss [23] studied some basic properties
of this entropy. After Weiss’s paper no further study of the algebraic entropy has
been performed until 2009, when the first named author jointly with Dikranjan,
Goldsmith and Zanardo in [6] and [15] investigated the main properties of the
algebraic entropy for abelian groups proving, in particular, the additivity property
and a uniqueness theorem for the entropy function.

The algebraic entropy defined in [1] has the intrinsic limitation to be trivial on
the torsion-free groups. To overcome this problem, in [16] the entropy based on
the (torsion-free) rank was defined and investigated in detail. Importantly, in the
same paper, a general notion of algebraic entropy related to invariants satisfying the
subadditive property (which is weaker than the property of being a length function)
was given. The advantage of this definition is that it applies to endomorphisms of
modules over arbitrary rings. In this paper we introduce new tools to investigate
entropy based on a general length function, inspired by the techniques used in both
[6] and [16].

In what follows Mod.R/ will denote the category of right R-modules and �
(resp. �) will denote strict inclusion. We will often say R-module to mean right
R-module. Let us start with the following

Definition 1.1 ([16]). Given a ring R, an invariant of the category Mod.R/ is a
map i W Mod.R/! R�0 [ ¹1º such that i.0/ D 0 and i.M/ D i.M 0/ whenever
M ŠM 0.

To be able to deal with the invariants of Mod.R/, without any assumption on the
structure of the ring R, we will impose three strong hypotheses considered in [14],
[18] and [16], on an invariant i of Mod.R/. More precisely we will always suppose
that:

(i) for every exact sequence 0 ! A ! B ! C ! 0, the equality i.B/ D
i.A/C i.C / holds true. In such a case i is said to be additive;

(ii) for every M 2 Mod.R/, i.M/ D supF 2F .M/ i.F /, where F .M/ denotes
the set of the finitely generated submodules of M . In such a case i is said to
be upper continuous;

(iii) the set of finite values of i is order-isomorphic to N. In such a case i is said
to be discrete.
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Length functions, multiplicities and algebraic entropy 3

Definition 1.2 ([14]). An additive upper continuous invariant is said to be a length
function.

In the sequel, we will denote by the symbol L a length function on Mod.R/;
furthermore, we will use the fact that, if A and B are two submodules of an
R-module, then L.A C B/ C L.A \ B/ D L.A/ C L.B/, which immediately
follows from the additivity of L considering the exact sequence 0 ! A \ B !

A˚ B ! AC B ! 0.
The most ubiquitous examples of discrete length functions are the ‘classical’

composition length l.M/ of an R-module M , for R an arbitrary ring; the (torsion-
free) rank rk.M/ of an arbitrary R-module M over an integral domain R; and
log jM j whenM is an Abelian group. It is understood that the value of these length
functions is infinity whenever it is not finite.

We now define the L-entropy following [16]. Let L be a length function on the
category Mod.R/, M 2 Mod.R/ and � 2 EndR.M/. Let us consider the class
FinL D ¹F 2 Mod.R/ j L.F / <1º of the L-finite modules and set

FinL.M/ D ¹N �M j L.N/ <1º:

Since L is additive, FinL is a Serre class. For every submodule F 2 FinL.M/ and
every n 2 NC (N denotes the set of natural numbers and NC the set of positive
integers),

Tn.�; F / D F C � � � C �
n�1F

is called the n-th partial �-trajectory of F , and

T .�; F / D
[
n2NC

Tn.�; F / D
X
n2N

�nF (1.1)

is called the �-trajectory of F . Since FinL is a Serre class, Tn.�; F / 2 FinL.M/

for every n 2 NC. We can now give the following

Definition 1.3. The L-entropy of � with respect to F 2 FinL.M/ is

entL.�; F / D lim
n!1

L.Tn.�; F //

n

and the L-entropy of � is entL.�/ D sup¹entL.�; F / j F 2 FinL.M/º:

We now put entropy into a different setting where many of the notions relative to
an endomorphism will become ‘absolute’ as proposed in [20]. More importantly,
this is the setting where entropy will become just another length function and will
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4 L. Salce, P. Vámos and S. Virili

meet multiplicity. Let R be a ring. We can define a category whose objects are the
pairs .�;M/ with M 2 Mod.R/ and � 2 EndR.M/. In this category a morphism
˛ W .�;M/! . ;N / is a commutative square of the form

M
�
//

˛
��

M

˛
��

N
 
// N

(1.2)

where ˛ is an R-homomorphism from M to N . But this category, in turn, is just
equivalent to the category Mod.RŒX�/ of modules over the polynomial ring overR;
the equivalence functor is given by .�;M/ 7! M� 2 Mod.RŒX�/, where M� ,
as an R-module, is just M and X acts on M� via �. Also the homomorphism ˛

in (1.2) becomes an RŒX�-homomorphism, as it commutes with X . In this way,
a �-invariant submodule of M is just an RŒX�-submodule of M� ; furthermore M�

and N are isomorphic as RŒX�-modules if and only if there exists an R-isomor-
phism ˛ W M ! N such that  D ˛ ı � ı ˛�1, that is, � and  are conjugated
(see [11, Chapter 12] and [22, 659–674]). Every RŒX�-module can be viewed as an
R-module M with the multiplication by X acting as an R-endomorphism. So, in
the following, when dealing with RŒX�-modules, we will always consider objects
written in the form M� ; we will sometimes abuse notation, denoting a �-invariant
submodule N of M with the structure of RŒX�-module induced by the restriction
of � to N simply by N� . Notice also that the �-trajectory T .�; F / of F in (1.1) is
nothing but the RŒX�-submodule of M� generated by F . Furthermore, any finitely
generated RŒX�-submodule of M� is of the form T .�; F / with F 2 F .M/.

Now we can modify our point of view on the L-entropy as indicated above.
Instead of looking at entL as a function from the endomorphism ring of an arbi-
trary R-moduleM , we consider it as a function entL W Mod.RŒX�/! R�0 [ ¹1º
sending the RŒX�-module M� to entL.�/. Thanks to [16, Proposition 1.8 and Pro-
perty (1)] (see Section 2.2 for the precise statements) we have that the function
entL W Mod.RŒX�/! R�0[¹1º is an invariant, and [16, Proposition 1.10] implies
that entL is discrete. For example, when R D Z and L D rk, from Definition 1.3
we obtain the definition of rank-entropy entrk which was studied in [16]. For
example, in the above setting it follows from Theorem 3.10 (c) of that paper that

entrk.�/ D rkZŒX�.M�/ (1.3)

for any endomorphism of Abelian groups � WM !M . It is not difficult to see that
the above equality holds not only for Abelian groups, but also for modules over
arbitrary domains.
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Length functions, multiplicities and algebraic entropy 5

The goal of this paper is to show how equality (1.3) can be transferred to the
more general setting of modules over an arbitrary ring R, replacing the rank of
Abelian groups by an arbitrary discrete length function L of Mod.R/, the rank-en-
tropy by the L-entropy, and rkZŒX� by the induced length function of Mod.RŒX�/.
The main results are collected in two theorems, named Addition Theorem and
Uniqueness Theorem, respectively.

We describe now in more detail the two main theorems. Let R be a ring and L be
a discrete length function of Mod.R/. Let us consider the subclass lFinL consisting
of the locally L-finite modules (i.e., their cyclic submodules are L-finite, see
Definition 2.2). Obviously FinL is contained in lFinL. The unavoidable restriction
to lFinL, needed in the forthcoming Addition Theorem, allows us to make use of
the full force of the upper continuity of L, that replaces other assumptions on the
invariants made in [16], namely smallness and liftability. Section 2 will be entirely
devoted to developing the techniques needed to prove the following very general

Addition Theorem. Let R be a ring and L W Mod.R/! R�0[¹1º be a discrete
length function. Let M be an R-module and � WM !M be an endomorphism. If
M is locally L-finite and N is a �-invariant submodule of M , then

entL.�/ D entL.��N /C entL. N�/

where N� W M=N ! M=N denotes the map induced by � on the quotient module
M=N .

We emphasize that our proof of the Addition Theorem strongly depends on the
discreteness of L since it makes use of inductive arguments on the values of L.

Next Corollary 2.16 will show that entL is also upper continuous. Now denote
by lFinLŒX� the class of theRŒX�-modules that are locallyL-finite when considered
as R-modules. The Addition Theorem shows that entL is also additive once
restricted to the class lFinLŒX�. Thus we can say that entL is a discrete length func-
tion on lFinLŒX� (this restriction is unavoidable because, outside of lFinLŒX�, entL
is not even monotone under taking quotients, as [6, Example 1.11] shows).

Therefore, one can look at the L-entropy essentially as a tool that allows one to
‘extend’ a discrete length function L on Mod.R/ to a length function on a the sub-
class of Mod.RŒX�/ consisting of the locallyL-finiteR-modules. We recall that the
idea of extending a length function from Mod.R/ to Mod.RŒX�/ was already con-
sidered by Irite in [10], but in the much simpler context of commutative Noetherian
rings, using the Euler characteristic of Koszul complexes as in [7, p. 408].

Section 3 will be devoted to the proof of the uniqueness of the L-entropy
function, provided two natural conditions are satisfied. In such a way we will obtain
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6 L. Salce, P. Vámos and S. Virili

an axiomatic characterization of the L-entropy similar to that given by Stojanov
in [17] of the topological entropy for compact groups and to that of the algebraic
entropy and of the rank entropy given respectively in [6] and [16].

Before stating the Uniqueness Theorem, we need to define the Bernoulli functor

ˇ W Mod.R/! Mod.RŒX�/; ˇ.M/ D .M .N//ˇM

where ˇM is the Bernoulli shift on the direct sum M .N/ defined in Example 2.14.
If � W M ! N is an R-morphism, then ˇ.�/.xn/n�0 D .�.xn//n�0 for every
.xn/n�0 2M

.N/. It is not difficult to see that the Bernoulli functor ˇ is isomorphic
to the tensor product byRŒX�, that is, for eachR-moduleM , ˇ.M/ is naturally iso-
morphic asRŒX�-module toM ˝RRŒX� (this fact has the remarkable consequence
that ˇ has as right adjoint the forgetful functor).

We can now give the precise statement of the following:

Uniqueness Theorem. Let R be a ring, L W Mod.R/! R�0 [ ¹1º be a discrete
length function and ˇ W Mod.R/ ! Mod.RŒX�/ be the Bernoulli functor. Then
there exists a unique length function hL W lFinLŒX�! R�0 [ ¹1º such that, for
every L-finite module M 2 FinL:

(i) hL.M�/ D 0 for every � 2 EndR.M/;

(ii) hL.ˇ.M// D L.M/.

Moreover, hL is discrete and hL.M�/ D entL.�/ for every M� 2 lFinLŒX�.

Note that condition (ii) in the Uniqueness Theorem, written in the equivalent
form hL.M ˝R RŒX�/ D L.M/, is exactly the condition required in Theorem 1.2
of [10].

In Section 4 we apply the results described above to modules over a Noetherian
ring R. First we compare the multiplicity (as defined in [19]) associated to a length
function LX of Mod.RŒX�/, derived by a length function L of Mod.R/ ‘forgetting’
the action of X , with the L-entropy. Then, assuming R to be also commutative,
we compute the L-entropy of the right Bernoulli shift on the direct product MN ,
where M is an R-module of finite positive length, thus extending a result proved
recently by Giordano Bruno in the setting of Abelian groups in [8].

2 The Addition Theorem

This section is devoted to the proof of the Addition Theorem. Notice that analogous
results were proved in [6] and [16] respectively for the invariant log j � j and rk
of Mod.Z/. The techniques introduced in Section 2.1 and Section 2.4, namely the

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Length functions, multiplicities and algebraic entropy 7

L-purifications and the L-minimal elements, generalize to modules over arbitrary
rings techniques belonging to Abelian group theory. This will allow us to adapt
proofs of [6] and [16] to our, more general, setting.

Throughout this section R will denote a fixed ring and L W Mod.R/! R�0 [
¹1º a discrete length function of Mod.R/.

2.1 L-Purifications

The proof of the following lemma is an immediate consequence of the upper
continuity and of the discreteness of L; so it is left to the reader.

Lemma 2.1. If M 2 FinL, then there exists F 2 F .M/ such that L.F / D L.M/.

Definition 2.2. Let L be a length function on Mod.R/ andM be an R-module. For
any element x 2M we will use the notation L.x/ for L.xR/. Then define

(i) zL.M/ D ¹x 2M j L.x/ D 0º the L-singular submodule of M ;

(ii) fL.M/ D ¹x 2M j L.x/ <1º the locally L-finite submodule of M .

If zL.M/ D M (resp. fL.M/ D M ), we will say that M is L-singular (resp. lo-
cally L-finite).

It is not difficult to prove that both fL.M/ and zL.M/ are fully invariant R-sub-
modules of M . In the next example we will consider the most often used and well-
known length functions.

Example 2.3. (a) Let R be any ring and L D l be the ‘classical’ composition
length. AnR-moduleM is locally l-finite if all its cyclic submodules have finite
length, whereas no non-trivial R-module is l-singular.

(b) Let R be a domain and L D rk be the rank. Every R-module M is locally
rk-finite, whereas M is rk-singular if and only if it is a torsion module.

(c) Let R D Z and L D log j � j. If M is an Abelian group, then M is locally
log j � j-finite if and only if it is torsion, whereas no non-trivial Abelian group
is log j � j-singular.

The following examples are more particular.

Example 2.4 ([14, Example 2]). Given a commutative ring R and a non-zero
idempotent ideal I D I 2, for every R-module M we set

L.M/ D 0 if IM D 0; L.M/ D1 otherwise.

Then zL.M/ D fL.M/ D ¹x 2M j AnnR.x/ � I º.
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8 L. Salce, P. Vámos and S. Virili

Example 2.5. Let K be a field and V be an infinite dimensional K-vector space.
Let R D K.C/V be the idealization of V (see for example [12] and [9]). Further,
let J D ¹0º.C/V be the unique maximal ideal of R, which satisfies J 2 D 0. Let
L be the classical composition length. Thus L is a discrete length function on
Mod.R/ with L.R/ D 1. It is easily seen that L.R=J / D 1 and, if I � J , then
I D ¹0º.C/W where W � V is a K-subspace, and

L.R=I / D 1C rkK.V=W / D rkK.R=J /C rkK.J=I /:

Furthermore, given an R-module M , zL.M/ D 0 and fL.M/ D MŒJ �. Conse-
quently fL.R/ D J and fL.R=J / D R=J .

The previous example shows that fL is not in general a radical, while it is easy
to see that fL is a radical provided R is Noetherian.

The next lemma is an easy observation. Recall that L denotes a length function.

Lemma 2.6. Let M be an R-module. Then L.M/ D 0 if and only if L.x/ D 0 for
every x 2M . In particular, L.zL.N // D 0 for every N 2 Mod.R/.

In the next definition we introduce three notions that are crucial for the rest of
the section.

Definition 2.7. Let L be a length function on the category Mod.R/, N �M and
� WM !M=N be the natural projection. Define

NL� D �
�1.zL.M=N//

to be the L-purification of N in M . A submodule N �M is said to be L-pure in
M if NL� D N and N is said to be L-dense in M if L.M=N/ D 0, that is, if
NL� DM .

The reason for calling NL� the L-purification of N is that, if R D Z, L D rk
and M is a torsion-free abelian group, then NL� is the classical purification of N
in M and N is L-dense in M exactly if M=N is torsion. Note that, if H � G are
Abelian groups and L D log j � j, then H is always L-pure in G and H is L-dense
in G if and only if H D G.

The following proposition summarizes some basic properties of the L-purifi-
cations. Notice that the class of modules of zero length is in fact a torsion class
and zL.�/ the associated ‘torsion’ part, cf. part (ii) in Proposition 2.8 below. The
proofs of the following propositions could be deduced from this observation and
are straightforward, but we include them for the sake of completeness.
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Length functions, multiplicities and algebraic entropy 9

Proposition 2.8. Let N �M 2 Mod.R/. Then

(i) L.NL�=N/ D 0;

(ii) zL.M=NL�/ D 0;

(iii) N � N 0L� whenever N 0 is an L-dense submodule of N ;

(iv) .NL�/L� D NL�;

(v) ..N CN 0/=N /L� D .N CN
0/L�=N with N 0 �M .

Proof. (i) Follows from Lemma 2.6 since NL�=N D zL.M=N/.
(ii) Let x 2 zL.M=NL�/ and consider the following exact sequence:

0!
.xRCN/ \NL�

N
!

xRCN

N
!

xRCNL�

NL�
! 0:

By item (i), L...xRCN/\NL�/=N / D 0 and so L.xCN/ D L.xCNL�/ D 0.
Since x C N 2 zL.M=N/, the definition of L-purification gives x 2 NL�. This
means that x CNL� D 0.

(iii) Since L.N=N 0/ D 0, we have that N=N 0 � zL.M=N 0/. Thus (iii) follows
immediately.

(iv) It is not difficult to see that N � NL� � .NL�/L�. Applying twice item (i),
we get that N is L-dense in .NL�/L�. Now we can apply item (iii) to obtain that
.NL�/L� � NL�.

(v) Consider the following commutative diagram:

M
�1

{{

�2

&&
M=N

�3 //M=.N CN 0/

where �1, �2 and �3 denote the natural projections. Let x 2 M ; then x C N 2
.N CN 0=N/L� if and only if L.�3.x CN// D L.�3.�1.x/// D L.�2.x// D 0.
This happens if and only if x 2 .N CN 0/L�.

In the following proposition we collect all the results we will need on the L-pu-
rifications related to the action of an endomorphism.

Proposition 2.9. Let M be an R-module, N � M and � W M ! M be an endo-
morphism. Then

(i) �.NL�/ � .�N /L�;

(ii) L..�N/L�=�.NL�// D 0;
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10 L. Salce, P. Vámos and S. Virili

(iii) whenever N 0 � N is L-dense, �N 0 is L-dense in �N ;

(iv) N 0 � N , L.N/ D L.�N/ <1 imply L.N 0/ D L.�N 0/.

Proof. (i) Consider the following commutative diagram:

M

�1
��

�
//M

�2
��

M=N
N�
//M=�N

where �1 and �2 denote the natural projections. Let x 2 NL�, that is to say
L.�1.x// D 0. Then L. N�.�1.x/// D L.�2.�.x/// D 0 and so �.x/ 2 .�N /L�.

(ii) By item (i), we get �N � �.NL�/ � .�N /L�. By Proposition 2.8 (i), �N is
L-dense in .�N /L� and so the claim follows easily.

(iii) By Proposition 2.8 (iii), N � N 0L� and this gives �N 0 � �N � �N 0L� �
.�N 0/L� (where the last inclusion is given by item (i)). By Proposition 2.8 (i), we
get L..�N 0/L�=�N 0/ D 0 so our claim follows.

(iv) By the additivity of L, we obtain L.Ker.�/ \N/ D L.N/ � L.�N/ D 0.
As Ker.�/\N � Ker.�/\N 0, we get 0 D L.Ker.�/ \N/ � L.Ker.�/ \N 0/ D
L.N 0/ � L.�N 0/.

From part (i) in the previous proposition it follows immediately that if N is a
�-invariant submodule of M , then NL� is also �-invariant.

In the following proposition we study the behaviour of the L-purifications with
respect to the sum of two submodules.

Proposition 2.10. Let M be an R-module and A;B �M . Then

(i) AL� C BL� � .AC B/L�;

(ii) AC B is L-dense in AL� C BL�;

(iii) A0 C B 0 is L-dense in AC B whenever A0 � A, B 0 � B are L-dense in A
and B respectively;

(iv) .AL� C B/L� D .AC B/L�.

Proof. (i) Let a 2 AL� and b 2 BL�. Then we have L..a C b/ C .A C B// �
L.aC .AC B//C L.b C .AC B// � L.aC A/C L.b C B/ D 0.

(ii) By part (i), ACB � AL�CBL� � .ACB/L�. Now statement (ii) follows
from Proposition 2.8 (i).

(iii) We have A � A0L� and B � B 0L� by Proposition 2.8 (iii) whence A0CB 0 �
AC B � A0L� C B

0
L� shows that A0 C B 0 is L-dense in AC B by part (ii) above.
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Length functions, multiplicities and algebraic entropy 11

(iv) The inclusion .AL� C B/L� � .A C B/L� is clear. Next, L..AL� C
B/=.AC B// � L.AL�=A/ D 0. Making use of Proposition 2.8 (iii), we obtain
AL� C B � .AC B/L�, from which the result follows.

2.2 Background on L-entropy

In this paragraph we collect some useful facts from [16], adapted to our context in
which L is a discrete length function. Notice that most of these facts hold also for
invariants satisfying weaker hypotheses.

Let M be an R-module and � WM !M be an R-endomorphism.

(i) [16, Proposition 1.8] If L.M/ is finite, then entL.�/ D 0.

(ii) [16, Proposition 1.10] If F 2 FinL.M/, then entL.�; F / D a 2 R where
a D L.TnC1.�; F //�L.Tn.�; F // for any sufficiently large n. In particular,
entL.�; F / D 0 if and only if L.T .�; F // D L.Tn.�; F // for some n 2NC.

A consequence of this fact and the equality Tn.�; Tm.�; F //D TnCm�1.�; F //
(n;m � 1) is that entL.�; F / D entL.�; Tn.�; F // for every n 2 NC and every
F 2 FinL.M/.

(iii) [16, Lemma 1.13] If N �M is �-invariant and F 2 FinL.M/, then

entL.�; F / � entL. N�; .F CN/=N/C entL.��N ; F \N/

where N� WM=N !M=N denotes the map induced by � on the quotient.

(iv) [16, Property (1)] If ˛ WM !M 0 is an isomorphism, then

entL.�/ D entL.˛�˛�1/:

In particular, this fact, together with Fact (i), shows that entL is an invariant of
Mod.RŒX�/.

(v) [16, Property (3)] entL.�/ � entL.��N / for every �-invariant submodule N
of M .

(vi) [16, Property (5)] Let �j W Mj ! Mj be endomorphisms (j D 1; 2); then
entL.�1 ˚ �2/ D entL.�1/C entL.�2/.

2.3 First properties

In this section we fix an R-module M and an R-endomorphism � WM !M .

Lemma 2.11. Let N 2 FinL.M/ and F � N be an L-dense submodule. Then we
have entL.�;N / D entL.�; F /.
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12 L. Salce, P. Vámos and S. Virili

Proof. Using Proposition 2.9 (iii), we obtain that L.�nN=�nF / D 0, for every
n 2 N. Now we can use Proposition 2.10 (iii) to obtain that, for every n 2 NC,
L.Tn.�;N /=Tn.�; F // D 0, therefore L.Tn.�;N // D L.Tn.�; F //. This easily
gives entL.�;N / D entL.�; F /.

The next proposition is the first step that will enable us to say that entL is an
upper continuous invariant (see Corollary 2.16). This is the main reason to suppose
L to be upper continuous.

Proposition 2.12. If M is locally L-finite, � 2 End.M/, then

entL.�/ D sup
F 2F .M/

entL.�; F /:

Proof. Since M D fL.M/, for every F 2 F .M/ we have that L.F / < 1. So
we have that supF 2F .M/ entL.�; F / � entL.�/ by definition. On the other hand,
consider N 2 FinL.M/. By Lemma 2.1, there exists F 2 F .N / which is L-dense
in N and thanks to Lemma 2.11 entL.�; F / D entL.�;N /. Hence we obtain that
entL.�/ D supN2FinL.M/ entL.�;N / � supF 2F .M/ entL.�; F /.

The following corollary deals with the case when M� is the RŒX�-module
generated by an R-submodule N 2 FinL.M/.

Corollary 2.13. If M D T .�;N / for some submodule N with L.N/ < 1, then
entL.�/ D entL.�;N /.

Proof. We first prove that M D fL.M/. Pick x 2M D
S
n2NC

Tn.�;N /. Then
there exists n 2 NC such that x 2 Tn.�;N /. In particular, we have that L.x/ �
L.Tn.�;N // <1. Consider now F 2 F .M/; there exists n 2 NC such that F �
Tn.�;N /. This shows that entL.�; F / � entL.�; Tn.�;N //. The consequence of
Fact (ii) in Section 2.2 and Proposition 2.12 imply that entL.�/ � entL.�;N /. The
converse inequality trivially holds, so we are done.

Example 2.14. Let M 2 FinL and N D
L
n2N Mn where Mn Š M for every

n 2N. The right Bernoulli shift on N is the endomorphism ˇM WM
.N/ !M .N/,

defined by

ˇM .x0; x1; x2; : : : / D .0; x0; x1; : : : /:

Clearly, N D T .ˇM ;M0/, so, by Corollary 2.13, we obtain that entL.ˇM / D
entL.ˇM ;M0/. Since TnC1.ˇM ;M0/=Tn.ˇM ;M0/ Š M for every n 2 NC, we
can apply Fact (ii) in Section 2.2 to obtain entL.ˇM / D L.M/.
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Length functions, multiplicities and algebraic entropy 13

It is worthwhile remarking that a result similar to that of Example 2.14 was
proved in [16, Property (7), Section 2] under the assumption that the considered
invariant was ‘small’. In Example 2.14 we could avoid this assumption since the
upper continuity of L allows us to reach the same conclusion.

The next two lemmata show that, to evaluate the L-entropy of an endomor-
phism �, we can always assume M D fL.M/ and zL.M/ D 0.

Lemma 2.15. For all M and � 2 End.M/, entL.�/ D entL.��fL.M//.

Proof. Since fL.M/ is a fully invariant submodule ofM , the inequality entL.�/�
entL.��fL.M// derives from Fact (v) in Section 2.2. For the converse inequality,
consider N 2 FinL.M/. Then obviously N � fL.M/ holds, therefore FinL.M/D

FinL.fL.M//. Thus entL.�;N /D entL.��fL.M/; N /� entL.��fL.M//, and we
are done.

An immediate consequence of Lemma 2.15 is the announced result that entL is
an upper continuous invariant. Recall that the finitely generated RŒX�-submodules
of M� are of the form T .�; F / for some F 2 F .M/.

Corollary 2.16. entL.�/ D supF 2F .M/ entL.��T.�;F //.

Proof. Since T .�; F / is a �-invariant submodule of M for every F 2 F .M/,
from Fact (v) in Section 2.2 we get entL.�/ � supF 2F .M/ entL.��T.�;F //. For
the converse inequality, from Lemma 2.15 we get entL.�/ D entL.��fL.M// and,
since fL.M/ is a locally L-finite module, we can apply to it Proposition 2.12,
deriving that entL.�/ D supF 2F .fL.M// entL.��fL.M/; F /. If F 2 F .fL.M//,
then L.F / <1, therefore from Corollary 2.13 we deduce entL.��fL.M/; F / D

entL.��T.�;F //. It follows that entL.�/ D supF 2F .fL.M// entL.��T.�;F // �
supF 2F .M/ entL.��T.�;F //, as desired.

Lemma 2.17. For all M and � 2 End.M/ the following hold:

(i) entL.�/ D entL. N�/ where N� WM=zL.M/!M=zL.M/ is the map induced
by � on the quotient;

(ii) entL.�/ D 0 provided M D zL.M/;

(iii) entL.�/ D entL.��N /, provided N is an L-dense �-invariant submodule
of M .

Proof. (i) Looking at the exact sequence for any H �M ,

0! zL.M/ \H ! H ! .H C zL.M//=zL.M/! 0;
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14 L. Salce, P. Vámos and S. Virili

we see that L.H/ D L..H C zL.M//=zL.M//, by Lemma 2.6. This shows that
N 2 FinL.M/ if and only if .N C zL.M//=zL.M/ 2 FinL.M=zL.M// and that,
for every n 2 NC,

L.Tn.�;N // D L.Tn. N�; .N C zL.M//=zL.M///:

Dividing by n and passing to the limit, we obtain that

entL.�;N / D entL. N�; .N C zL.M//=zL.M//;

from which the conclusion follows.
(ii) Follows from (i).
(iii) Let F 2 FinL.M/ and consider the following exact sequence:

0! F \N ! F ! .F CN/=F ! 0:

Since .F CN/=N �M=N , L..F CN/=N/ D 0 and then F \N isL-dense in F .
Using Lemma 2.11, we obtain entL.�; F / D entL.��N ; F \N/. This proves the
inequality entL.��N / � entL.�/; the converse inequality follows from Fact (v) in
Section 2.2.

As a consequence of the last lemma, we can see how the entropy works with
respect to L-purifications.

Corollary 2.18. Let N be a �-invariant submodule of M . Denote by

N� WM=N !M=N and N�� WM=NL� !M=NL�

the maps induced by � on the quotients. Then

(i) entL.��NL�/ D entL.��N /;

(ii) entL. N�/ D entL. N��/:

Proof. (i) Follows from Lemma 2.17 (iii) since L.NL�=N/ D 0.
(ii) Follows from Lemma 2.17 (i) since M=NL� Š .M=N/=zL.M=N/.

We are now ready to prove one part of the Addition Theorem. A similar result
was proved in [16, Proposition 2.1] with the assumption of upper continuity of L
replaced by the assumption that L is ‘liftable’.

Proposition 2.19. Suppose that M D fL.M/ and zL.M/ D 0. Let N �M be a
�-invariant submodule and denote by N� WM=N !M=N the map induced on the
quotient. Then entL.�/ � entL.��N /C entL. N�/.
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Length functions, multiplicities and algebraic entropy 15

Proof. First observe that the inequality entL. N�/ � entL.�/ holds. In fact, fix an ar-
bitrary F=N 2 F .M=N/ and let F 0 2 F .M/ be such that .F 0 CN/=N D F=N .
Then clearly entL.�; F 0/ � entL. N�; F=N/. The inequality follows from Proposi-
tion 2.12. Now, if entL.��N / D 1 or entL. N�/ D 1 the inequality follows
respectively by Fact (v) in Section 2.2 and the preceding observation. Thus suppose
both entL.��N / and entL. N�/ to be finite. Since L is discrete, we can find sub-
modules F1 2 F .N / and F2 2 F .M/ such that entL.��N / D entL.�; F1/ and
entL. N�/ D entL. N�; .F2 CN/=N/. Let F D F1 C F2; then, according to Fact (iii)
in Section 2.2,

entL.�; F / � entL.��N ; F \N/C entL. N�; .F CN/=N/:

The result follows from the fact that .F CN/=N D .F2 CN/=N and

entL.��N ; F1/ � entL.�; F \N/ � entL.��N ; F1/

where the first inequality holds since entL.��N / D entL.��N ; F1/, while the sec-
ond one follows by the inclusion F1 � F \N .

The next proposition is the starting step of the inductive proof of the Addition
Theorem.

Proposition 2.20. Suppose that M D fL.M/ and zL.M/ D 0. Let N �M be a
�-invariant submodule and denote by N� WM=N !M=N the morphism induced
on the quotient.

(i) If entL. N�/ D 0, then entL.�/ D entL.��N /;
(ii) if L.N/ < 1, then we have entL.�; F / D entL. N�; .F C N/=N/ for every

F 2 FinL.M/. In particular, entL.�/ D entL. N�/.

Proof. (i) By Fact (v) in Section 2.2 and Proposition 2.12, we have to prove that,
for any F 2 F .M/, there is F 0 2 F .N / such that entL.��N ; F 0/ � entL.�; F /.
Fix F 2 F .M/; we will write NF for .F C N/=N . Since entL. N�/ D 0, we get
entL. N�; NF / D 0. Hence there is n 2 NC such that L.T . N�; NF // D L.Tn. N�; NF //.
In particular, L.Tn. N�; NF // D L.TnC1. N�; NF //. By Proposition 2.8 (iii), we get

N�n. NF / � TnC1. N�; NF / � .Tn. N�; NF //L�:

By Proposition 2.8 (v), ..Tn.�; F /CN/=N/L� D .Tn.�; F /CN/L�=N and then
�nF � .Tn.�; F /CN/L�. Since F is finitely generated, so is �nF and then there
exists F 0 2 F .N / with �nF � .Tn.�; F /C F 0/L�. For every k 2 NC,

�kCnF � �k..Tn.�; F /C F
0/L�/ � .�

kTn.�; F /C �
kF 0/L� (2.1)

where the last inclusion follows by Proposition 2.9 (i). We will prove, using in-
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16 L. Salce, P. Vámos and S. Virili

duction on k, that TnCk.�; F / � .Tn.�; F / C Tk.�; F 0//L� for every k 2 NC.
We already have the case k D 1. Suppose now k > 1; then

TnCk.�; F / D TnCk�1.�; F /C �
nCk�1F

� .Tn.�; F /C Tk�1.�; F
0//L� C .�

k�1Tn.�; F /C �
k�1F 0/L�

� .Tn.�; F /C Tk�1.�; F
0/C �k�1Tn.�; F /C �

k�1F 0/L�

D .Tn.�; F /C Tk.�; F
0//L�

where the first inclusion follows by the inductive hypothesis and equation (2.1),
the second inclusion follows by Proposition 2.10 (i), and the last equality holds
since �k�1Tn.�; F / � TnCk�1.�; F / � .Tn.�; F /C Tk�1.�; F 0//L� again by
the inductive hypothesis. So we have proved that

entL.�; F / � lim
k!1

L.Tn.�; F /C Tk.�; F
0//

nC k

� lim
k!1

L.Tn.�; F //

nC k
C lim
k!1

L.Tk.�; F
0//

nC k
D entL.��N ; F 0/:

(ii) Fix F 2 F .M/; then

L.Tn. N�; .F CN/=N// D L.Tn.�; F // � L.Tn.�; F / \N/

� L.Tn.�; F // � L.N/:

Using Proposition 2.12, we get entL.�; F / � entL. N�; .F CN/=N/ after dividing
by n and passing to the limit. Since the other inequality is trivial, we get the desired
equality.

2.4 L-minimal elements

All along this paragraph M will denote a fixed R-module such that M D fL.M/

and zL.M/ D 0; � WM !M will denote a fixed endomorphism. The following
definition is a key-point in the proof of the Addition Theorem.

Definition 2.21. Let M be an R-module such that M D fL.M/ and zL.M/ D 0.
An element 0 ¤ x 2M is said to be L-minimal if L.x/ D L.xr/ for every r 2 R
such that xr ¤ 0.

Notice that, if R D Z and L D log j � j, then an element of a torsion group is
L-minimal if and only if its order is a prime number. In particular this shows that,
if x is L-minimal, the value L.x/ is not necessarily minimal in the set Im.L/ n ¹0º.
In fact, for the invariant log j � j we can find minimal elements of arbitrarily large
order. On the other hand, if R D Z and M is a torsion-free Abelian group, then
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Length functions, multiplicities and algebraic entropy 17

every non-zero element is L-minimal. Furthermore, if R is an arbitrary ring and L
is the ‘classical’ length, then a non-zero element x of anR-moduleM isL-minimal
if and only if xR is simple.

The reader should be warned that the notion of L-minimality given above can be
developed, albeit in a more complicated way, to prove the results in this subsection
without supposing that M is locally L-finite and zL.M/ D 0 (see [21]).

The following lemma gives another characterization of the L-minimal elements.

Lemma 2.22. Let M be an R-module such that M D fL.M/ and zL.M/ D 0.
An element x 2M is L-minimal if and only if, for every non-zero submodule H of
xR, L.H/ D L.xR/.

Proof. The fact that 0 � H means that there exists 0 ¤ y 2 H . Hence L.x/ �
L.H/� L.y/D L.x/ where the last equality holds by the L-minimality of x.

Clearly, if x 2M is L-minimal, then all the generators of xR are also L-mini-
mal.

Proposition 2.23. Let M be a locally L-finite R-module such that zL.M/ D 0.
If x 2M is L-minimal and �.x/ ¤ 0, then xR Š �.xR/, so L.�x/ D L.x/ and
�.x/ is L-minimal.

Proof. Let �0 W xR! �.xR/ be the restriction of �. Then �0 is clearly surjective.
Furthermore, Ker.�0/ � xR and so either Ker.�0/ D 0 or it is L-dense in xR, by
Lemma 2.22. From zL.M/ D 0 and �.x/ ¤ 0 we get that L.�.x// > 0, so we
derive that Ker.�0/ cannot be L-dense in xR and thus Ker.�0/ D 0. This proves
that �0 is an isomorphism between xR and �.xR/.

From now on, to simplify the notation, we will write T .�; x/ (resp. Tn.�; x/
and entL.�; x/) for the �-trajectory (resp. n-th partial �-trajectory and L-entropy)
of the cyclic module generated by x.

Proposition 2.24. Let M be a locally L-finite R-module such that zL.M/ D 0.
Let x 2 M be an L-minimal element. If entL.�; x/ > 0, then

P
n2N �

nxR DL
n2N �

nxR and entL.�; x/ D L.x/.

Proof. We prove that �nxR \
Pn�1
jD0.�

jxR/ D 0 for all n 2 NC. Since, by as-
sumption, entL.�; x/ > 0, it follows that �nx ¤ 0 for every n 2 N and so �nx is
L-minimal. Hence

L.TnC1.�; x// D L.Tn.�; x//C L.�
nx/ � L.Tn.�; x/ \ �

nxR/

D L.Tn.�; x//C L.x/ � L.Tn.�; x/ \ �
nxR/

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



18 L. Salce, P. Vámos and S. Virili

and L.Tn.�; x/\ �nxR/ equals L.x/ or 0. If L.Tn.�; x/\ �nxR/ D L.x/, then
L.Tn.�; x// D L.TnC1.�; x//, but this contradicts the fact that entL.�; x/ > 0.
So L.Tn.�; x/ \ �nxR/ D 0 and this is to say that Tn.�; x/ \ �nxR D 0 since
zL.M/ D 0. To prove the last assertion just look at Example 2.14.

Suppose that R D Z (in particular M is an Abelian group) and L D log j � j.
In [6] it is proved that entL.�/ > 0 if and only if there exists an element x 2MŒp�,
for some prime p, such that entL.�; x/ > 0. We do not know whether it is true
that entL.�/ > 0 implies the existence of an L-minimal element x in M such that
entL.�; x/ > 0. Even if we cannot answer the above question, the next lemma
shows that we can find such elements in a suitable quotient of M .

Lemma 2.25. LetM be anR-module such thatM D fL.M/ and zL.M/ D 0. Let
N be an L-pure �-invariant submodule of M and denote by N� W M=N ! M=N

the map induced by � on the quotient. If entL. N�/ > 0, then there exists an
L-pure �-invariant submodule N 0 ofM containing N and an element x 2M such
that

(i) L.N 0=N/ <1;

(ii) x CN 0 is L-minimal in M=N 0;

(iii) entL. N�0; x CN 0/ > 0 where N�0 WM=N 0 !M=N 0 is the map induced by �.

Proof. Since entL. N�/ > 0, there exists an element Ny D y CN 2M=N such that
entL. N�; NyR/ > 0 by the additivity of L and Proposition 2.12.

If there exists r 2 R such that yr CN is L-minimal and entL. N�; yr CN/ > 0,
then we can conclude setting x D yr and N 0 D N .

Otherwise, choose any r1 2 R such that yr1 CN is L-minimal; for such an r1
we have that L.T . N�; yr1 C N/ < 1. Call y1 D yr1, N1 D .N C T .�; y1//L�
and N�1 WM=N1 !M=N1 the map induced by �. By Proposition 2.20 (ii), we have
that

entL. N�; y CN/ D entL. N�1; y CN1/I

in fact, since L.T . N�; yr1 CN// <1, hence L.N1=N/ <1. Consider now the
following exact sequence,

0!
N1 \ .yRCN/

N
!

yRCN

N
!

yRCN1

N1
! 0;

that shows (since 0 ¤ y1CN 2 .N1\.yRCN//=N ) thatL.yCN/ > L.yCN1/.
If there is an r 2 R such that yrCN1 is L-minimal and entL. N�1; yrCN1/ > 0,

then we can conclude setting x D yr and N 0 D N1.
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Otherwise, arguing as above, we can find an L-pure �-invariant submodule
N2 � N1 such that

entL. N�1; y CN1/ D entL. N�2; y CN2/

and L.y CN/ > L.y CN1/ > L.y CN2/.
Going on in this way, we will find the desired x D yn and N 0 D Nn for some n

in a finite number of steps. In fact, otherwise we will obtain an infinite sequence of
submodules of M

N � N1 � � � � � Nk � � � �

such that 0 < entL. N�; y CN/ D � � � D entL. N�k; y CNk/ D � � � and

L.y CN/ > � � � > L.y CNk/ > � � � :

This is impossible, because L.y CN/ is finite, and L is discrete.

2.5 Proof of the Addition Theorem

The next proposition is a particular case of the Addition Theorem and a crucial step
in proving it. The proof is technical, but the idea is simple. The key point is to prove
that entL.��T.�;x/\N / D entL.�; xR\N/ (even if T .�; xR\N/ � T .�; x/\N
in general). Steps 1, 2 and 3 are devoted to proving this equality.

Proposition 2.26. Let M be a locally L-finite R-module such that zL.M/ D 0.
Furthermore, let � 2 EndR.M/, N �M be a �-invariant L-pure submodule and
x C N be an L-minimal element of M=N . If N� W M=N ! M=N is the induced
map and entL. N�; x CN/ > 0, then

entL
�
��T.�;x/

�
D entL

�
��T.�;x/\N

�
C entL

�
N��T. N�;xCN/

�
:

Proof. Since L is discrete, entL.�; x/ > 0 and L.x/ <1, it follows that the se-
quence ¹L.�nx/ºn2N stabilizes, i.e., there exists Qn 2N such that, for every m� Qn,
L.�mx/ D L.� Qnx/. Without loss of generality, we can suppose Qn D 0. In the re-
maining part of the proof we will write Tn for Tn.�; x/ and T n for Tn. N�; x CN/.

Step 1. Let An D .xR\N/C � � � C .�n�1xR\N/; then An D Tn \N for every
n 2 NC.

The inclusion An � Tn \N is obvious. For the converse, let us assume that y DPn�1
iD0 �

ixri 2 Tn.�; x/ \N . Passing modulo N , we get Ny D
Pn�1
iD0
N�i Nxri D N0

which implies, in view of Proposition 2.24, N�i Nxri D N0 for every i . This clearly
implies that y 2 An.
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Step 2. L.Tn \N/ D L.Tn.�; xR \N// for every n 2 NC.

Since, for every n 2 N, L.�nx/ D L.x/ and L. N�n.x C N// D L.x C N/, it
follows that L.�nxR \ N/ D L.x/ � L.x C N/. Furthermore, using Proposi-
tion 2.9 (iv), we get L.�n.xR \ N// D L.xR \ N/ D L.x/ � L.x C N/. This
shows that L.�nxR \ N/ D L.�n.xR \ N//. Using now Proposition 2.10 (iii),
we get L.Tn.�; xR \N// D L.An/. The result now follows from Step 1.

Step 3. entL.��T.�;x/\N / D entL.�; xR \N/.

From Step 2 we easily deduce the equality entL.�; Tn \N/ D entL.�; xR \N/.
Let F 2 F .T .�; x/ \N/. Since T .�; x/ \N D

S
n2NC

.Tn \N/, there exists
n 2 NC such that F 2 Tn \N . Then

entL.�; F / � entL.�; Tn \N/ D entL.�; xR \N/:

Step 4. Consider the following exact sequence,

0! Tn \N ! Tn ! T n ! 0;

that gives L.Tn/ D L.Tn \N/C L.T n/; but L.T n/ D n � L.x CN/ in view of
Proposition 2.24, so we obtain L.Tn/ D L.Tn.�; xR\N//Cn �L.xCN/, using
Step 2. Hence, dividing by n and passing to the limit, we get with T D T .�; x/:

entL.��T / D entL.�; xR \N/C L.x CN/ D entL.��T\N /C L.x CN/:

Note that entL.��T / D entL.�; x/ holds. This is indeed the desired equality since
L.x CN/ is nothing but entL. N��T. N�;xCN// in view of Proposition 2.24.

The next lemma was used for the proof of the Addition Theorem in [6]. The
proof holds verbatim also in our general case; it makes substantial use of Fact (vi)
in Section 2.2.

Lemma 2.27 ([6, Lemma 3.7]). Suppose thatM is a locallyL-finiteR-module with
zL.M/ D 0 and � 2 EndR.M/. If M D H CK where H;K are �-invariant sub-
modules of M , then

entL.�/C entL.��H\K/ � entL.��H /C entL.��K/:

We can now give the

Proof of the Addition Theorem. By Lemma 2.17, we can assume zL.M/ D 0. In
view of Proposition 2.19, we can assume both entL.��N / and entL. N�/ to be finite.
Furthermore, Corollary 2.18 shows that we may suppose that N is L-pure in M .
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Since L is discrete, the set Im.L/ n ¹1º is order-isomorphic to N and so we can
write Im.L/ n ¹1º D ¹kn j n 2 Nº with k0 D 0 and knC1 > kn. We will prove
our result using induction on n 2 N such that entL. N�/ D kn. The case n D 0 is
Proposition 2.20 (i). So we can suppose n > 0. In this case we can apply Lem-
ma 2.25 to find an L-pure and �-invariant submodule N 0 � N , and x 2 M such
that xCN 0 is L-minimal, entL. N�; xCN 0/ > 0 and L.N 0=N/ <1. Since clearly
entL.��N 0/ D entL.��N / and entL. N�/ D entL. N�0/ where N�0 W M=N 0 ! M=N 0

is the map induced by �, we can suppose N D N 0. Consider the map induced by �

NN� W
M

T.�; x/CN
!

M

T.�; x/CN
:

By Proposition 2.19, entL. N�/ � entL. N��T. N�;xCN//C entL. NN�/. Furthermore, we
have entL. NN�/ < entL. N�/ since entL. N��T. N�;xCN// D L.x CN/ > 0 being xCN
L-minimal. Hence we can use the inductive hypothesis to get

entL. N�/ D entL. N��T. N�;xCN//C entL. NN�/; (2.2)

entL.�/ D entL.��T.�;x/CN /C entL. NN�/: (2.3)

If entL. N�/ > entL. N��T. N�;xCN//, we can use the inductive hypothesis to obtain

entL.��NCT.�;x// D entL.��N /C entL. N��T. N�;xCN//:

Then, using (2.2) and (2.3) completes the proof. So it remains to consider only
the case when entL. N�/ D entL. N��T. N�;xCN//, so entL. NN�/ D 0 by (2.2). Thanks to
Proposition 2.20 (i), entL.�/ D entL.��NCT.�;x//. Now we can use Lemma 2.27
to get (again writing T D T .�; x//:

entL.�/ D entL.��T / � entL.��N /C entL.��T / � entL.��N\T /

D entL.��N /C entL. N�/

where the last equality is given by Proposition 2.26. We have proved the inequality
entL.�/ � entL.��N / C entL. N�/. Since the converse inequality holds by Pro-
position 2.19, we reached the desired conclusion.

An immediate consequence of the Addition Theorem is the following improve-
ment of Lemma 2.27:

Corollary 2.28. Suppose thatM is a locallyL-finiteR-module and � 2 EndR.M/.
If M D H CK where H;K are �-invariant submodules, then

entL.�/C entL.��H\K/ D entL.��H /C entL.��K/:
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Proof. If entL.��H / D 1 or entL.��K\H / D 1, then the claim follows from
the Addition Theorem. So suppose these entropies to be finite. Consider the
following exact sequence:

0! H !M !
K

K \H
! 0:

Using the Addition Theorem, we get that entL.�/ D entL.��H /C entL. N�/ where
N� W K=.K \H/! K=.K \H/ is the morphism induced by ��K on the quotient.
The claim follows from the fact that entL. N�/ D entL.��K/ � entL.��H\K/.

3 Uniqueness of the entropy function

This section is devoted to the proof of the Uniqueness Theorem. Our strategy will
be to prove that, given a length function hL W lFinLŒX�! R�0 [ ¹1º satisfying
the hypotheses of the theorem, hL coincides with entL restricted to lFinLŒX�.

As we noted in the introduction, what we have proved up to now shows that entL
is a discrete length function on lFinLŒX�. So the results proved in Section 2 for the
discrete length function L on Mod.R/ hold true for the discrete length function
entL, but on the subcategory lFinLŒX� of Mod.RŒX�/. In particular, given a locally
L-finite module M and an endomorphism � 2 EndR.M/, denoting by ZL.M�/

the entL-singular RŒX�-submodule of M� (in symbols: ZL.M�/ D zentL.M�/),
entL.�/ D 0 if and only if the restriction of � to any cyclic �-trajectory T .�; x/ has
zero L-entropy (see Lemma 2.6). This submodule ZL.M�/ is called the ‘Pinsker
submodule’ and is investigated in [3, 4].

The RŒX�-module ZL.M�/ is an entL-pure submodule of M� , but it is also an
L-pure R-submodule of M , as is easy to check. It coincides also with the maximal
RŒX�-submodule N �M� such that entL.��N / D 0.

The next proposition is the key point in the proof of the Uniqueness Theorem
and it gives a characterization of the RŒX�-modules having finite L-entropy.

Proposition 3.1. Let M� 2 lFinLŒX�. Then entL.�/ <1 if and only if there exist
a finite chain of L-pure �-invariant submodules of M ,

ZL.M�/ D N0 � N1 � � � � � Nn DM;

and a sequence of L-minimal elements x1 C N0; : : : ; xn C Nn�1 (xk 2 Nk for
1 � k � n) such that

entL.�/ D
nX
kD1

L.xk CNk�1/:
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Proof. The sufficiency is trivial. For the necessity, we construct the Nk inductively.
To this end, let N0 D ZL.M�/. For every k 2 NC, let xk be an element such
that xk … Nk�1 and xk C Nk�1 is L-minimal (if it exists; otherwise set Nk D
Nk�1). Set Ak D Nk�1 C T .�; xk/ and let Nk be the entL-purification of .Ak/�
in M� , that is, Nk=Ak D ZL..M=Ak/�/. Let us denote for every k 2 NC
by �k WM=Nk�1!M=Nk�1 the map induced by �. We have to check two things:

(i) there exists n 2 N such that Nn DM ;

(ii) entL.�/ D
Pn
kD1L.xk CNk�1/.

(i) Assume, looking for a contradiction, that M=Nk ¤ 0 for any k 2N. Choose,
for each k 2N, anL-minimal element x0

k
CNk inM=Nk ; asZL..M=Nk/�k /D 0,

it follows that entL.�k�T.�k ;x0kCNk// > 0. Since L is discrete, we can use the
Addition Theorem to get entL.�/ D1, and this is a contradiction.

(ii) By the Addition Theorem, entL.�/ D
Pn
kD1 entL.�k�Nk=Nk�1/. Since Nk

is the entL-purification of Ak in M , to evaluate the L-entropy of �k�Nk=Nk�1 we
can consider the restriction of �k to Ak=Nk�1 D T .�k; xk C Nk�1/; but this is
the �k-trajectory of the L-minimal element xk CNk�1. So the conclusion follows
from Proposition 2.24.

The second preparatory result in order to prove the Uniqueness Theorem is the
following proposition, which proves the Uniqueness Theorem when the value of
the L-entropy is 0.

Proposition 3.2. Let L W Mod.R/! R�0[¹1º be a discrete length function and
hL W lFinLŒX�! R�0[¹1º be a length function satisfying part (i) in the statement
of the Uniqueness Theorem, namely, hL.M�/ D 0 for every M 2 FinL and
� 2 EndR.M/. Then for any M� 2 lFinLŒX�, entL.�/ D 0 implies hL.M�/ D 0.

Proof. Let N0 D 0; for any ordinal � define N�C1 D N� C T .�; x�C1/ where
x�C1 CN� 2M=N� is a non-zero element (if such an element exists). For a limit
ordinal � define N� D

S
�<� N� . Note that all the submodules N� of M are actu-

ally RŒX�-submodules of M� . There exists an ordinal � such that

0 D .N0/� � .N1/� � � � � � .N� /� � � � � � .N�/� DM� :

Then hL.M�/ D sup� hL..N� /�/ since hL.M�/ D supF 2F .M�/
hL.F / and

every F 2 F .M�/ is contained in N� for some � . As noted at the beginning of the
section, L.T .�; x// <1 for every x 2M . This shows that L.N�C1=N� / <1
for every � . By hypothesis (i) in the statement of the Uniqueness Theorem, we have
that hL..N�C1=N� /�/ D 0. Thanks to the additivity and the upper continuity of
hL, this gives hL.M�/ D 0 as desired.
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Proof of the Uniqueness Theorem. First we deal with the case when entL.�/ <1.
If entL.�/ D 0, just apply Proposition 3.2. If entL.�/ > 0, we can apply Proposi-
tion 3.1 to construct a finite chain of submodules of M� :

ZL.M�/ D .N0/� � � � � � .Nn/� DM�

where �k W Nk=Nk�1 ! Nk=Nk�1 (k D 1; : : : ; n) acts as a Bernoulli shift. We
can now finish the proof using additivity and the fact that both the L-entropy and
hL take the same values on the Bernoulli shifts by hypothesis (i) and Example 2.14.
Finally, suppose that entL.�/ D1. Let F �M be a finitely generated submodule;
then we obtain that entL.��F / D entL.�; F / < 1, by Fact (ii) in Section 2.2
and Proposition 2.12. So, using the first part of the proof, we get hL.T .�; F // D
entL.��T.�;F //. Hence we have that1D entL.�/ D supF 2F .M/ entL.�; F / D
supF 2F .M/ hL.T .�; F // � hL.M/.

4 Two applications

The rings R considered in this section are always assumed to be Noetherian.
In order to introduce the first application, we explain the connection between

multiplicity andL-entropy. Multiplicity was firstly defined in terms of the ‘classical’
length function. For further information about this multiplicity see [13, Chapter 7].
The ideas of [13] on multiplicities were extended by the second named author in his
PhD Thesis [19] to obtain a multiplicity function from an arbitrary length function
LX W Mod.RŒX�/ ! R�0 [ ¹1º (actually, he considered an arbitrary ring R0

with a distinguished central element  instead of RŒX� with the indeterminate X
commuting with R; R0 was not necessarily Noetherian, but LX was ‘continuous on
Noetherian modules’, a stronger notion than upper continuity and equivalent to it
when R0 is Noetherian – see [19] for details).

We now give this definition following Vámos [19].

Definition 4.1. Let LX W Mod.RŒX�/! R�0 [ ¹1º be a length function and N
be a finitely generated RŒX�-module. If LX .N=N �X/ <1, set

eŒX�LX .N / D LX .N=N �X/ � LX .AnnN .X//I

otherwise set eŒX�LX .N / D1. For any M 2 Mod.RŒX�/ define

eŒX�LX .M/ D sup eŒX�LX .N /

where N ranges over all the finitely generated RŒX�-submodules of M , and call it
the multiplicity of M associated with LX .
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We recall the following known results on multiplicity:

(i) [19, Chapter 5, Corollary 1] If LX .N=N �X/ <1, the quantity eŒX�LX .N /
is non-negative;

(ii) [19, Chapter 5, Proposition 3] eŒX�LX is additive.

As eŒX�LX is upper continuous by definition, we can say that eŒX�LX is a length
function on Mod.RŒX�/.

If we start now with a length functionL W Mod.R/! R�0[¹1º, we can define
a length function NLX on Mod.RŒX�/ by ‘forgetting’ the action of X . To this end,
we set

NLX W Mod.RŒX�/! R�0 [ ¹1º; NLX .M�/ D L.M/

for every M� 2 Mod.RŒX�/. It is obvious that NLX is additive, and its upper conti-
nuity depends on the fact that a finitely generated RŒX�-submodule of M� is the
�-trajectory of a finitely generated R-submodule of M .

With this notation we will prove the following result, that was conjectured by the
second named author. Notice that the restriction to the class lFinLŒX� is necessary
since, as we said, entL is not even a length function outside of that class.

Multiplicity Theorem. LetR be a Noetherian ring andL WMod.R/!R�0[¹1º
be a discrete length function. Then

entL.�/ D eŒX� NLX .M�/ for every M� 2 lFinLŒX�:

Before proving the Multiplicity Theorem, we need two preparatory lemmata.

Lemma 4.2. Let M� 2 Mod.RŒX�/ and NLX .M�/ D L.M/ <1. Then

eŒX� NLX .M�/ D 0:

Proof. Consider, for any finitely generated RŒX�-submodule N of M� , the follow-
ing exact sequences

0! AnnN .X/! N ! N �X ! 0; 0! N �X ! N ! N=.N �X/! 0:

Using additivity we get that NLX .AnnN .X// D NLX .N=.N �X//. This shows that
eŒX� NLX .M�/ D 0.

It only remains to evaluate the multiplicity when X acts as a Bernoulli shift.

Lemma 4.3. Let M be a locally L-finite R-module such that zL.M/ D 0. Further,
let � W M ! M be an R-endomorphism, x 2 M be an L-minimal element, and
T D T .�; x/. If L.T / D1, then eŒX� NLX .T�/ D L.x/.

Proof. Since T� is a finitely generated RŒX�-module, we have that eŒX� NLX .T�/ D
L.T=T �X/�L.AnnT� .X//. But L.T / D1 implies that �jT is injective, by Pro-
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position 2.24. Thus AnnT� .X/ D 0 and consequently eŒX� NLX .T�/ D L.x/ since,
again by Proposition 2.24, T=T �X D T=�.T / Š xR.

We can now give the

Proof of the Multiplicity Theorem. It is a direct consequence of the Uniqueness
Theorem that states that all the length functions on lFinLŒX� satisfying (i) and (ii)
(in its statement) coincide with entL. Looking at the proof of the Uniqueness
Theorem, we can see that condition (ii) can be weakened in the following form:

(ii’) hL.T .�; x/�/ D L.x/ whenever x is an L-minimal element in an R-mod-
ule M , � WM !M is an endomorphism and L.T .�; x// D1.

Now eŒX� NLX satisfies (i) in view of Lemma 4.2 and (ii’) in view of Lemma 4.3.
This concludes the proof.

We now pass to the second application. In [5], the first named author together
with Dikranjan and Giordano Bruno defined the adjoint entropy ent?, that is an
invariant of the endomorphisms of Abelian groups dual, under the action of the
Pontryagin duality, to the algebraic entropy ent with respect to the length function
log j � j. One of the main results about ent? is the proof of a dichotomy, namely
ent? takes values in ¹0;1º. The proof of the dichotomy is based on the fact that
the algebraic entropy of the right shift on the direct product Z.p/N is infinite.
This result was proved, with some pages of technical combinatorial computations,
by Giordano Bruno in [8]. We give here an alternative proof of that result in the
more general setting of an arbitrary length function on the category of modules
over a commutative Noetherian ring (recall that these length functions have been
characterized in [18]). Recall that the right Bernoulli shift b̌ WMN !MN of the
direct product of N copies of a given module M is the endomorphism defined byb̌.x0; x1; x2; : : : / D .0; x0; x1; : : : /. So the right Bernoulli shift on the direct sum
M .N/ considered in Example 2.14 is just the restriction of b̌.

Theorem 4.4. Let R be a commutative Noetherian ring and let L W Mod.R/ !
R�0 [ ¹1º be a discrete length function. Let M be a locally L-finite R-module
such that L.M/ > 0. If b̌ W MN ! MN denotes the right Bernoulli shift, then
entL.b̌/ D1.

Proof. Without loss of generality, we can assume M to be finitely generated and
such that zL.M/ D 0. By a well-known result on modules over Noetherian rings
(see Theorem 1 of Section 1 in [2]), there exists a chain of submodules

0 D A0 � A1 � � � � � An DM

such that Ak=Ak�1 Š R=Pk for some prime ideal Pk , with k 2 ¹1; : : : ; nº. Since
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we are supposing zL.M/ D 0, we get that L.A1/ D L.R=P1/ > 0. Let us set
P D P1; it is enough to prove now that the right shift b̌ on .R=P /N has infinite
L-entropy since .R=P /N is isomorphic to a b̌-invariant submodule of MN and
because of Fact (v) in Section 2.2. The canonical isomorphism of R-modules

..R=P /N/b̌Š.R=P /ŒŒX��
is also an isomorphism of modules over the integral domain S D .R=P /ŒX�. Now
L induces a discrete length function NL W Mod.R=P /! R�0 [1. But lFin NL D
Mod.R=P / because NL.R=P / < 1; therefore ent NL W Mod.S/ ! R�0 [ ¹1º is
a discrete length function and, in view of [14, Theorem 2], ent NL D ent NL.S/ � rkS
where ent NL.S/ D NL.R=P / (see Example 2.14). Therefore

ent NL.b̌/ D NL.R=P / � rkS ..R=P /ŒŒX��/:
It is well known and easily seen that rkS ..R=P /ŒŒX��/ is infinite. The conclusion
now follows from the remark that on .R=P /-modules entL and ent NL coincide.
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