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[1] We present a model-order reduction technique that overcomes the computational burden
associated with the application of Monte Carlo methods to the solution of the groundwater
flow equation with random hydraulic conductivity. The method is based on the Galerkin
projection of the high-dimensional model equations onto a subspace, approximated by a
small number of pseudo-optimally chosen basis functions (principal components). To obtain
an efficient reduced-order model, we develop an offline algorithm for the computation of
the parameter-independent principal components. Our algorithm combines a greedy
algorithm for the snapshot selection in the parameter space and an optimal distribution of
the snapshots in time. Moreover, we introduce a residual-based estimation of the error
associated with the reduced model. This estimation allows a considerable reduction of the
number of full system model solutions required for the computation of principal
components. We demonstrate the robustness of our methodology by way of numerical
examples, comparing the empirical statistics of the ensemble of the numerical solutions
obtained using the traditional Monte Carlo method and our reduced model. The numerical
results show that our methodology significantly reduces the computational requirements
(CPU time and storage) for the solution of the Monte Carlo simulation, ensuring a good
approximation of the mean and variance of the head. The analysis of the empirical
probability density functions at the observation wells suggests that our reduced model
produces good results and is most accurate in the regions with large drawdown.
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1. Introduction

[2] The physical description of groundwater flow in satu-
rated porous media is derived from the solution of a para-
bolic partial differential equation. The application of this
simple mathematical model to real hydrological systems
depends on several parameters, such as the initial and bound-
ary conditions, the forcing terms, and the aquifer properties,
i.e., the hydraulic conductivity and the specific storage. In
large aquifers, the heterogeneity of the soil is usually mod-
eled by subdividing the aquifer into a number of zones, based
on the geological formations of the aquifer. Then, in the clas-
sical deterministic approach, the calibration of the numerical
model is usually achieved by solving an inverse problem
[Yeh, 1986; Oliver and Chen, 2011], where the zonal param-
eter values are estimated by minimizing the discrepancies
between the model output and observations. Because of the
presence of measurement errors as well as the complexity

and heterogeneity of the real system, convergence to the
correct parameter values is not always guaranteed. The
uncertainty of model parameters is taken into account in
the probabilistic approach [Dagan, 1982], where the stochas-
tic partial differential equation for the groundwater flow gov-
erns the evolution in time of the entire probability density
function (PDF) of the head. This probabilistic approach is
used in many applications, such as in a framework for fore-
casting and risk assessment, since it allows the quantification
of the uncertainties in model predictions

[3] The solution of a stochastic groundwater flow prob-
lem is achieved by way of numerical techniques such as
Monte Carlo (MC) methods [Robert and Casella, 2010;
Zhang et al., 2010], moment differential equations [Gua-
dagnini and Neuman, 1999], and polynomial chaos expan-
sion [Ghanem and Spanos, 1991; Li and Zhang, 2007]. MC
methods are widely used, as they can be implemented easily
using the deterministic numerical solvers and give an
approximation of the complete PDF of the head. MC meth-
ods provide the foundation for data assimilation techniques
such as the ensemble Kalman filter [Chen and Zhang, 2006]
and particle filters [Pasetto et al., 2012], and are used for
the solution of inverse problems [Hendricks Franssen et al.,
2009]. The main drawback of MC methods is that the em-
pirical distribution converges slowly to the real probability
distribution, such that many MC realizations are necessary
to obtain accurate results. Since each MC realization
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corresponds to a solution of the deterministic partial differ-
ential equation, this procedure is computationally expensive
and even infeasible in high-dimensional models.

[4] In this paper we propose an efficient MC method for
the solution of the transient groundwater flow equation with
stochastic hydraulic conductivity. The idea is to reduce the
computational requirements (CPU time and storage) associ-
ated with each single solution of the partial differential
equation and, consequently, improve the efficiency of the
MC method. With this purpose, we apply the proper orthog-
onal decomposition (POD) to the groundwater flow equa-
tion. The POD is a model-order reduction technique based
on the selection of a small number of orthonormal basis
functions (principal components) that span the spatial vari-
ability of the solutions. In this way the head is approximated
by a linear combination of these basis functions, and, using
a Galerkin projection, the dimension of the problem is
reduced by several orders of magnitude [Kunisch and Volk-
wein, 2001]. Several applications of the POD to the ground-
water flow problem have been reported in the literature.
Vermeulen et al. [2004] applied the Galerkin projection and
the state-space projection to a three-dimensional ground-
water model with pumping. McPhee and Yeh [2008] dem-
onstrated that the reduced model is able to reproduce the
sensitivities of head with respect to pumping and directly
embedded the reduced model in the constraint set of an opti-
mization model for groundwater management. Pasetto et al.
[2011] investigated the applicability of POD to a steady-
state groundwater flow equation with randomly distributed
recharge. Siade et al. [2012] used the POD to overcome the
computational burden associated with the estimation of the
hydraulic conductivity with the quasi-linearization method
combined with quadratic programming. Using the concept
of POD, Ba�u [2012] developed a stochastic groundwater
flow-reduced model, which was used for parameter uncer-
tainty analysis in connection with a multiobjective ground-
water management problem.

[5] The computation of the principal components is the
most important step in the construction of the reduced
model. On one hand, to avoid large errors in the reduced
model solution, we need a sufficient number of principal
components to capture the dominating characteristics of the
original full system model (FSM) in the reduced space. On
the other hand, the number of principal components deter-
mines the dimension of the reduced model and, conse-
quently, the computational time required to solve the
reduced model. The snapshots technique is often used for
the computation of the principal components associated
with one particular model solution. Siade et al. [2010] intro-
duced a methodology for the computation of optimal times
for the selection of snapshots in such a way that the result-
ing principal components account for the maximal variance
of the solution. This methodology is very efficient, as it
requires only two runs of the FSM to select the optimal
snapshots.

[6] In our application, the randomness of the hydraulic
conductivity represents an additional source of variability in
the space of the solutions. In theory, to obtain accurate
reduced models, we should compute different principal com-
ponents for each sample of the hydraulic conductivity
[Vermeulen et al., 2004]. However, as the computation of
the principal components requires the solution of the original

FSM, the construction of a different reduced model for each
MC realization would defeat the purpose of model reduction.
A different approach is based on the idea that, if two realiza-
tions of hydraulic conductivity are statistically indistinguish-
able, a single set of principal components can be used for the
construction of two reduced models (RMs). Moreover, we
can argue that if the principal components are collected from
appropriately chosen hydraulic conductivity values, then we
can obtain a unique set of principal components that cover
the entire parameter space.

[7] Heuristic methods, such as the greedy algorithm
[Grepl and Patera, 2005], have been developed to select
the snapshots in the parameter space. The goal is to choose
a set of parameter values and, in an offline setting, improve
the set of principal components until the solutions of the
reduced model satisfy a validation condition. For this pur-
pose, Grepl and Patera [2005] proposed an a posteriori
error estimation based on the norm of the residual in which
the computation of the residual does not involve the solu-
tion of the original FSM. We note that the ‘‘error’’ is
defined as the difference between the FSM solution and the
reduced model solution, while the ‘‘residual’’ is the vector
obtained by substituting the reduced model solution into
the FSM. Several examples of the use of residual norms to
estimate the error norm are presented in the literature
[Grepl and Patera, 2005; Rovas et al., 2006; Haasdonk
and Ohlberger, 2011; Hasenauer et al., 2012]. Note that,
for linear equations, error and residual norms are related by
a scaling constant, which is difficult to evaluate [Grepl and
Patera, 2005]. Hence, the main drawback in the application
of the greedy algorithm with the validation condition based
on a posteriori error estimation is that the norm of the resid-
ual can be much larger than that of the error, causing an
overestimation of the error. This results in an inefficient
reduced model in which the number of principal compo-
nents is unnecessarily larger than the one actually needed
to obtain the desired accuracy [Hasenauer et al., 2012]. An
approach to resolve this problem is proposed by Hinze and
Kunkei [2012], who applied the greedy algorithm to a non-
linear model with a one-dimensional parameter space and
presented a practical way to estimate the reduced model
error. They computed a scaling factor between the norm of
the error and the norm of the residual for the realizations
where the FSM solution is available and then linearly inter-
polated these values in the parameter space to compute a
scaled residual for all the reduced model solutions.

[8] In this study, we present a new methodology for the
computation of the principal components that combines the
optimal snapshots selection in time of Siade et al. [2010]
with the greedy algorithm of Grepl and Patera [2005] for
the selection of snapshots in the parameter space. We
improve the efficiency of the proposed approach by using
the scaled reduced model residual to estimate the error,
extending the approach of Hinze and Kunkei [2012] to a pa-
rameter space of general dimension and nonlinear interpola-
tion. Hence, the scaling factor needed to relate error and
residual norms is calculated ‘‘exactly’’ for those snapshots
for which the FSM solution is available, while for the
remaining runs it is interpolated from the ‘‘exact’’ values.
The resulting algorithm for the offline process guarantees an
efficient computation of the principal components. The
unique set of principal components thus obtained is sufficient
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to cover the variability of the head in both the parameter
space and time domain. Additionally, our approach mini-
mizes the number of FSM runs needed for the computation
of snapshots. The application of the reduced model to the
MC method is then straightforward. The reduced model not
only dramatically reduces the computational requirements
associated with each system solution but also permits a faster
evaluation of the ensemble statistics.

[9] We use two numerical examples to demonstrate the
validity and applicability of our proposed methodology: a
one-dimensional synthetic test case and a two-dimensional
model of the Oristano aquifer, in Italy. The accuracy of the
reduced model results is assessed by way of a comparison
with the standard MC solution in terms of ensemble mean
and variance on the domain and PDF of the head at a num-
ber of observation wells.

2. Problem Setting

[10] We consider the governing equation describing a
three-dimensional groundwater flow for a confined, aniso-
tropic aquifer with pumping [Bear, 1979]:

Ss
@h x; tð Þ
@t

�r � Krh x; tð Þð Þ ¼ q tð Þ; x 2 � � R3;

t 2 0; TF½ �;
(1)

where � is the domain of the aquifer, TF is the final time
[T], x is the vector of coordinates x; y; zð Þ, h is the head [L],
Ss is the specific storage [L�1], q is the specific volumetric
pumping rate [T�1], and K is the hydraulic conductivity
tensor:

K ¼
Kx 0 0
0 Ky 0
0 0 Kz

2
4

3
5;

with Kx ¼ Ky ¼ K [LT�1]. The initial and boundary condi-
tions are

h x; 0ð Þ ¼ h0 xð Þ; x 2 �;
h x; tð Þ ¼ hD x; tð Þ; x 2 GD � @�;
�Krh x; tð Þ � n xð Þ ¼ qN x; tð Þ; x 2 GN � @�;

8<
:

where GD and GN are the Dirichlet and Neumann bounda-
ries, respectively; h0, hD, and qN are known functions; and
n is the normal vector at the boundary. In the following, we
consider a heterogeneous horizontal hydraulic conductivity,
K xð Þ, while the other aquifer parameters are homogeneous.
We model the heterogeneity of K by subdividing the do-
main � into nz zones, �1; . . . ;�nz , such that

[
nz

i¼1
�i ¼ �; and �i \ �j ¼1 if i 6¼ j;

and the hydraulic conductivity K xð Þ is constant in each
zone, with values K1; . . . ;Knz in �1; . . . ;�nz , respectively.
We indicate with k the vector of the nz zonal values of con-
ductivity, k ¼ K1; . . . ;Knzf g. Here, we use zonation to
parameterize the hydraulic conductivity into a number of
zones, a method commonly adopted by groundwater practi-
tioners. Additionally, in each zone, we know the upper

bound and lower bound of the parameter. Further study is
needed to extend the present work to a randomly distrib-
uted hydraulic conductivity field.

[11] Without loss of generality, we solve equation (1) for
the drawdown s, defined as the difference between the head
(h) resulting from pumping and the initial head (H), i.e.,
s ¼ H � h. The initial and boundary conditions for the
drawdown are s0 ¼ 0, sD ¼ 0, and qN ¼ 0. We will assume
that the pumping rate is constant in time, a common practice
for pumping tests. The proposed methodology also applies to
a time-varying pumping rate. However, if more than one
pumping well is present and the pumping rate varies with
time, it is necessary to consider the response of each pumping
well separately and then apply the principle of superposition.

[12] The solution of equation (1) is achieved numeri-
cally, e.g., via finite elements, finite differences, or finite
volumes. A refined spatial discretization of the domain �,
characterized by nnd degrees of freedom (mesh nodes or
cells), results in a high-dimensional linear system of ordi-
nary differential equations (ODEs), written as

B
@s t; kð Þ
@t

þ AðkÞs t; kð Þ ¼ q; t 2 0; TF½ �; (2)

where A (stiffness matrix) and B (mass matrix) are positive
definite, symmetric, and sparse matrices of dimension
nnd � nnd , while s and q are the vectors of nodal drawdown
and source/sinks, respectively. In particular, focusing on the
linear finite element method with obvious adjustments for
other discretizations, the stiffness matrix can be written as a
linear combination of parameter-independent matrices Ai :

A kð Þ ¼ A K1; . . . ;Knzð Þ ¼
Xnz

i¼1

KiAi: (3)

[13] The components of each matrix Ai are evaluated
using unit conductivity over the portion of the domain
encompassing the ith zone, i.e.,

Aið Þrs ¼
Z
�i

r’r � r’sd�;

where ’r and ’s are the piecewise-linear basis functions
used in our finite element approach. An equation similar to
equation (3) also can be derived for the case of finite differ-
ence or finite volume schemes, where harmonic means of
the conductivity values are used.

[14] The solution in time of equation (2) is achieved with
a backward difference approximation, with variable time
step length �tl ¼ tl � tl�1, leading to the following linear
system of algebraic equations:

1

�tl
Bþ A kð Þ

� �
s tl; kð Þ ¼ 1

�tl
B s tl�1; kð Þ þ q; l ¼ 1; . . . ; lF :

(4)

[15] We term equation (4) as the full system model
(FSM).

[16] The unknown hydraulic conductivity values Ki are
modeled as random variables with a given probability
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distribution [Dagan, 1982]. In this paper we consider that
Ki values are uniformly distributed random variables :

Ki � U Ki
min;Ki

max
� �

;

where Ki
min and Ki

max are the lower bound and upper
bound, respectively, of Ki. We use a uniform distribution
since the upper bound and lower bound of the hydraulic
conductivity in each zone are usually available during
model calibration. However, our proposed methodology
applies to other probability distributions as well. MC meth-
ods can be used to approximate the temporal evolution of
the PDF of the head, h, by solving equation (4) for several
independent samples of the hydraulic conductivity k. Let
L ¼ k1; . . . ; knens

� �
be the ensemble of MC realizations of

hydraulic conductivity, where nens is the number of sam-
ples. The PDF of the drawdown at time tl is then approxi-
mated by the empirical distribution of the ensemble of
solutions s tl; k

1
� �

; . . . ; s tl; k
nensð Þ. MC methods are more

accurate when a large number nens of FSM solutions are
used; this procedure is computationally expensive and
impractical for high-dimensional models (large nnd).

3. Reduced-Order Methods

[17] Model reduction methods can decrease the compu-
tational cost associated with the solution of equation (4).
The idea of Galerkin model reduction techniques [Kunisch
and Volkwein, 2001] is to compute an approximated draw-
down, ~s tl; kjð Þ, using a suitable linear combination of a
small number of basis functions (also called principal com-
ponents), p1; . . . ; pnpc

, where pi is a nnd-dimensional vector
and npc is the number of principal components used in the
reduction. Indicating with P the nnd � npc matrix whose
columns are pi; . . . ; pnpc

, we arrive at

s tl; k
j

� �
� ~s tl; k

j
� �

¼ P a tl; k
j

� �
: (5)

[18] The npc-dimensional vector a is the solution of the
reduced-order equation obtained substituting s with ~s in
equation (4) and applying the Galerkin projection with
respect to P :

1

�tl
~B þ ~A kj

� �� �
a tl; k

j
� �

¼ 1

�tl
~B a tl�1; k

j
� �

þ ~q; (6)

where ~A kjð Þ ¼ PT A kjð ÞP, ~B ¼ PT BP, and ~q¼PT q. We
refer to equation (6) as the reduced model (RM). Note that
the matrix ~B is parameter independent, so it can be com-
puted once and then stored. Due to the linear dependence
of A on the hydraulic conductivity (equation (3)), the com-
putation of ~A also does not depend on the original high
dimension nnd :

~A kð Þ ¼
Xnz

i¼1

KiP
T AiP ¼

Xnz

i¼1

Ki
~Ai; (7)

where the matrices ~Ai are parameter-independent matrices
in the reduced dimension. In this way, the assembly and the
solution of RM (equation (6)) are performed only in the
reduced dimension npc.

[19] An RM is accurate if the error e tl; k
jð Þ between the

FSM and RM solutions

e tl; k
j

� �
¼ s tl; k

j
� �

� ~s tl; k
j

� �
(8)

is small (in norm). The error associated with the RM is esti-
mated a posteriori using the computation of the residual
vector r tl; kjð Þ obtained by replacing s with ~s in equation
(4) [Grepl and Patera, 2005; Rovas et al., 2006; Hasena-
uer et al., 2012]:

r tl; k
j

� �
¼� 1

�tl
Bþ A kj

� �� �
P a tl; k

j
� �

þ 1

�tl
BP a tl�1; k

j
� �

þ q:

(9)

[20] The error is related to the residual by the following
equation:

r tl; k
j

� �
¼ 1

�tl
Bþ A kj

� �� �
e tl; k

j
� �

� 1

�tl
B e tl�1; k

j
� �

: (10)

[21] Equations (9) and (10) reveal two important proper-
ties of the residual : (i) the residual is computed without
knowing the corresponding FSM solution and (ii) the resid-
ual is zero when the error is zero. Moreover, Haasdonk and
Ohlberger [2011] demonstrated the following a posteriori
error estimate:

ke tl; k
j

� �
k2 	 C kj

� �
kr t0; k

j
� �

k2 þ
Ztl

0

kr �; kj
� �

k2d�

0
@

1
A

¼ R tl; k
j

� �
;

(11)

where

kek2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXnnd

i¼1

e2
i

s

and C kjð Þ is a constant that can be approximated by the value
1 for our particular model [Haasdonk and Ohlberger, 2011].
We note that r tl; k

jð Þ is the residual vector, while R tl; k
jð Þ is

the estimation of the error norm based on the time-integrated
norm of the residual. We can compute R tl; k

jð Þ in the
reduced dimension npc in the following manner:

kr tl; k
j

� �
k2 ¼ aj

l

� �T
PT 1

�tlð Þ2
BT Bþ 2

�tl
BT Aj þ Aj

� �T
Aj

 !
P aj

l

� 2 aj
l

� �T
PT 1

�tlð Þ2
BT Bþ 1

�tl
Aj
� �T

B

 !
P aj

l�1

� 2 aj
l

� �T
PT 1

�tlð Þ2
BT þ Aj

� �T

 !
q

þ aj
l�1

� �T
PT 1

�tlð Þ2
BT B

 !
P aj

l�1

þ 2 aj
l�1

� �T
PT 1

�tl
ÞBT

� �
q

þqT q;

(12)
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where the matrices PT BT BP, PT Aj
� �T

BP, PT Aj
� �T

AjP,
the vectors PT BT q, PT Aj

� �T
q, and the scalar qT q can be

computed offline (a procedure similar to the one used in
equation (7) applies for the parameter-dependent quanti-
ties). Note that, to simplify the notation, in the previous
equation the time and parameter dependences are shown
with the indices l and j, respectively.

[22] In the following we present an efficient algorithm to
compute the principal components pi. We search for princi-
pal components that are time- and parameter independent,
and that can be applied to the construction of RM associ-
ated with each realization of hydraulic conductivity in L.
In this way, the expensive computation of the principal
components is performed only once, in an offline setting,
i.e., before the application of the RM to the MC simulation.
We select a set of hydraulic conductivity values K,

K ¼ k̂
1
; . . . ; k̂

nk
n o

, to validate the RM accuracy (the vali-

dation set). The set K can be different from the set L ;
thus, we use the symbol ‘‘ˆ’’ to distinguish between the
realizations in K, used for the offline process, and the ran-
dom realizations in L, used in the MC simulation. We start
from a reduced model of dimension one and compute the
RM solution for all realizations in the validation set K.
Then, we increase the number of principal components
until the error associated with the RM solution is less than
a given tolerance for all realizations in K.

3.1. Optimal Snapshots Selection in Time

[23] The reduced model is initialized considering the first

realization in K, k̂
1
. Our choice is to select k̂

1
as the realiza-

tion with the mean value of the conductivity in each zone. In
this way the reduced model reproduces the average response
of the system. Then, the principal components are computed

based on the transient FSM solution for k̂
1
, to capture the

dominating characteristics of the solution in time.
[24] Given a realization of the hydraulic conductivity k

and given a fixed number npc of basis functions for the
reduced model, it is possible to compute an optimal set of
time-independent principal components that minimizes the
errors e tl; kð Þ, for l ¼ 1; . . . ; lF . The snapshots technique
[Vermeulen et al., 2004] is a practical method developed
for the computation of the principal components. This
requires the storage of the FSM solution at specific times,
t̂1; . . . ; t̂nsn . The solution vectors obtained at these times are
called snapshots and are indicated by ŝt1

; . . . ; ŝtnsn
. Then,

we apply the principal component analysis (PCA) on the
set of the snapshots to identify the optimal basis functions
to be included to approximate the snapshots. In principle,
to completely characterize the FSM solution, we should
store a snapshot for each time step. This is not feasible in
high-dimensional systems, but unnecessary since very little
new information will be provided if snapshots are taken
close to each other in time where the rate of change in
drawdown is small.

[25] Siade et al. [2010] suggested a general procedure
for selecting optimal snapshot times for the groundwater
equation (equation (1)). Let Ts be the time at which the so-
lution s TS ; kð Þ approximately reaches a steady state. This
can be computed by solving the FSM equation (4) with a
termination condition:

ks tl; kð Þ � s tl�1; kð Þk2

ks tl; kð Þk2

	 �S ;

with the tolerance �S sufficiently small (e.g., �S ¼ 10�3)
or, when appropriate, with other simple approximations
based, e.g., on the Theis equation. The optimal snapshot
times t̂ i are then located along an exponential function:

t uð Þ ¼ TS

0:9
�e�u þ �ð Þ; u 
 0; (13)

where �, �, and � are computed using the results presented
in Siade et al. [2010].

[26] Finally, as we are interested in the solution of
equation (1) in time interval 0; TF½ �, we choose t̂1 ¼ �t1
and t̂nsn ¼ TF . Let u1 and unsn be such that t u1ð Þ ¼ t̂1 and
t unsnð Þ ¼ t̂nsn , respectively, using equation (13). The other
snapshot times are computed using equation (13) on
equally spaced values of u, with step �u ¼
unsn � u1ð Þ= nns � 1ð Þ :

u1; . . . ; ui ¼ ui�1 þ�u; . . . ; unsnð Þ:

[27] The appealing feature of this method is the possibil-
ity of computing nsn quasi-optimal snapshots with only two
FSM runs. A PCA is applied on the snapshots, and the cor-
responding principal components pj

1; . . . ; pj
nsn

are stored
(the index j means that the principal components are com-
puted from the realization kj). Moreover, as we solve the
FSM to get the snapshots, we can store the FSM solution at
the output times and then compute the error associated with
the RM solution at these times. If the error is above a toler-
ance value � e, then the RM can be improved adding a new
principal component. Note that the principal components
are ordered in such a way that, if the desired dimension of
the RM is npc, then the RM constructed with the first npc

principal components, pj
1; . . . ; pj

npc
, is the one that mini-

mizes the error. For this reason, the best way to improve
the RM is to add the first unused principal component to
the set pj

1; . . . ; pj
nsn

. To summarize, we use Algorithm 1,
shown in Appendix A, to initialize the RM.

3.2. Snapshot Selection in the Parameter Space

[28] The greedy algorithm is a heuristic method used to
determine which parameter values in K are to be selected
for generating the snapshots without applying Algorithm 1,
i.e., the FSM, to each realization k̂

i
. The main idea is to

compute the new snapshots for the realization in K where
the RM solution gives the worst approximation of the FSM
solution. In this way we improve the RM by including the
basis functions that were not previously considered. Since
the FSM solution is not available for all realizations in K,
we use the estimation of error based on the residual (equa-
tion (11)) to determine whether the RM solution is accurate.

[29] The matrix of the principal components P is initial-
ized as described in the previous section. Then, we com-
pute the RM solution and the norm of the corresponding
residual for each realization in K. If the maximum norm of
the residual is above a specified tolerance value �e, we
compute the FSM corresponding to the realization with the
maximum norm of the residual in agreement with the
greedy algorithm. The matrix of the principal components
is updated using Algorithm 1. We repeat these operations
until the maximum norm of the residual is smaller than a
specified tolerance value for all realizations in K.
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[30] We let K� ¼ fk̂�1; . . . ; k̂
�ngrg, (K� � K), be the set

of the ngr parameter values selected from the first ngr itera-
tions of the greedy algorithm: in other words, at the nth

gr
iteration of the greedy algorithm, k̂

�ngr
satisfies

k̂
�ngr ¼ arg max

k̂
i2KR TF ; k̂

i
	 


: (14)

[31] Note that we use the symbol ‘‘�’’ to indicate the real-
izations in K for which we compute the snapshots. For
each realization k̂

�j
, we select snapshots in time and collect

the corresponding principal components p�j as described in
Algorithm 1. To ensure the orthogonality of matrix P, the
new principal components are orthonormalized with respect
to the columns of P and possible redundant principal com-
ponents are discarded. Moreover, at each modification of
the principal components, it is convenient to check whether
the error still satisfies the validation condition for all the
realizations in K�. If the condition is not satisfied, more
principal components are selected from the realization with
the maximum error, without any additional FSM run.

[32] Since the norm of the residual RðTF ; k̂
iÞ can be much

larger than the norm of the error, using equation (11) in the
greedy algorithm may select more principal components
than necessary in order to satisfy the desired accuracy [Hase-
nauer, 2012]. Following the suggestion of Hinze and Kunkei
[2012], we scale the norm of the residual RðTF ; k̂

iÞ to better
estimate the error. We note that for all the realizations in K�
we know both the error and the residual. Then for these real-
izations, we compute an exact scaling factor ��j such that

��j ¼
ke TF ; k̂

�j	 

k2

R TF ; k̂
�j	 
 ; 8 k̂

�j 2 K�: (15)

[33] For the other realizations in K, we approximate the
scaling factor �i associated with k̂

i
, interpolating the values

��j with respect to the hydraulic conductivity. For this pur-
pose, we need to introduce a metric in the parameter space
that relates the change in drawdown to the change in hy-
draulic conductivity. We consider the following distance
di;j between k̂

i
and realization k̂

�j
in K� :

di;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnz

m¼1

1

K̂ m
i
� 1

K̂ m
�j

 !2
vuut ; j ¼ 1; . . . ; ngr;

where the inverse values of K̂ m
i are used to take into account

the inverse relation between drawdown and hydraulic conduc-
tivity. Let k̂

�r
and k̂

�s
be the two conductivity values in K�

closest to k̂
i

with associated distances di;r, di;s, and scaling
factors ��r and ��s. We propose the following scaling
function:

�i¼����1� 1���rð Þexp �di;r

�

� �����; if ngr¼ 1:����1� 1���rð Þexp �di;r

�

� �
� 1���sð Þexp �di;s

�

� �
�

1�0:5 ��rþ��sð Þð Þexp �di;rþdi;s

�

� �����; if ngr
 2:

8>>>>>>><
>>>>>>>:

(16)

[34] This scaling is defined such that, if the distances di;r

and di;s are large, �i is about 1 (no scaling): otherwise, �i

varies continuously between ��r, ��s, and 0:5 ��r þ ��sð Þ.
The factor � controls the shape of the scaling function.
When ngr ¼ 1, large values of � result in scaling factors �i

closer to ��r, while small values result in scaling factors
closer to 1.

[35] Let R̂ TF ; k̂
i

	 

be the scaled residual

R̂ TF ; k̂
i

	 

¼ �iR TF ; k̂

i
	 


: (17)

[36] We apply the greedy algorithm with the following
modification of equation (14):

k̂
�ngr ¼ arg max

k̂
i2KR̂ TF ; k̂

i
	 


: (18)

[37] The resulting procedure is summarized in Algorithm
2 (shown in Appendix B).

[38] A crucial point in the application of Algorithm 2 is
the choice of an adequate set K, i.e., the set of realizations
of hydraulic conductivity for the validation of the RM over
the entire parameter space. A possible choice is to set
K � L, i.e., to validate the RM directly on a subset of the
preselected set of MC realizations. We prefer to explore
another approach, to avoid the dependency of the offline
algorithm to the random realizations. We note that (i) the
RM is accurate when the parameter values are close to each
other and (ii) in the offline stage we are interested in the
validation of the RM for the worst parameter combinations.
Therefore, we propose to select K as the set of all possible
combinations of the upper bound, lower bound, and the
mean of the hydraulic conductivity in all zones. If a differ-
ent probability distribution describes the hydraulic conduc-
tivity, then the same choice is possible for K, considering
the tails (e.g., the first and the last 10 quantiles) and the me-
dian of the distribution instead of the upper bound, lower
bound, and mean. With this approach the size of K
increases rapidly with the number of zones, nk ¼ 3nzn , com-
promising the computational cost. However, Algorithm 2
still can be efficient because only the RM runs for all nk

realizations, while the FSM solution is computed only for a
few realizations. If the number of combinations 3nzn far
exceeds the number of realizations nens , then we still can
apply the offline procedure directly on the set of realiza-
tions L used in the MC method.

3.3. Online: Monte Carlo and RM

[39] The online procedure consists of applying the RM
to the MC method, i.e., the solution of equation (6) for all
the realizations of hydraulic conductivity in L. Then, the
desired statistics (i.e., spatial mean, spatial variance, PDF
at the output nodes) are computed from the ensemble of
solutions ~s tout

i ; k1
� �

; . . . ;~s tout
i ; knens
� �

at the output times
tout
1 ; . . . ; tout

F . The low dimension of the RM allows us to
efficiently evaluate the ensemble statistics. As the matrix ~B
and vector ~q are computed offline, the RM is assembled
simply, using equation (7) to compute the matrix ~A (com-
putational cost Oðnzn n2

pcÞ). Then, equation (6) requires
the solution of a linear system of dimension npc � npc for
each time step. For calculating the statistics of the draw-
down at the output time tout

i , we let �~s tout
i

� �
and C~s tout

i

� �
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be the nnd-dimensional vector of the mean and the nnd �
nnd covariance matrix of the ensemble ~s tout

i ; kj
� �

, respec-
tively. These quantities are efficiently computed using equa-
tion (5) without the solution in the high-dimensional space:

�~s tout
i

� �
¼ 1

nens

Xnens

j¼1

~s tout
i ; kj
� �

¼ 1

nens

Xnens

j¼1

P a tout
i ; kj
� �

¼ P
1

nens

Xnens

j¼1

a tout
i ; kj
� �

¼ P�a tout
i

� �
;

where �a is the npc-dimensional vector of the mean values
of the coefficient a

C~s tout
i

� �
¼ 1

nens � 1

Xnens

j¼1

~s tout
i ; kj
� �

� �~s tout
i

� �� �
~s tout

i ; kj
� ��

��~s tout
i

� ��T

¼ 1

nens � 1

Xnens

j¼1

P a tout
i ; kj
� �

� �a tout
i

� �� �
a tout

i ; kj
� ��

��a tout
i

� ��T
PT

¼ P Ca tout
i

� �
PT ;

where Ca is the npc � npc covariance matrix of the coeffi-
cient a.

4. Numerical Results

4.1. One-Dimensional Model, TC1

[40] To validate our proposed methodology, we first con-
sider the synthetic test case used by both McPhee and Yeh
[2008] and Siade et al. [2012]. Figure 1 depicts a one-
dimensional aquifer of length 100 m, with a pumping well
located in the center and Dirichlet boundary conditions of 0
m. The thickness of the aquifer (b) is 1 m with a constant
specific storage (Ss) of 1 m�1 so that in equation (1) the
elastic storage represents the storage coefficient and the hy-
draulic conductivity tensor represents scalar transmissivity.
The aquifer is subdivided into five zones, and the hydraulic
conductivity is modeled as a uniformly distributed random
variable in each zone, with lower bound Ki

min ¼ 0.1 m/d
and upper bound Ki

max ¼ 20 m/d. We consider a pumping
test with duration of 100 days (TF ¼ 100 d) with a constant
pumping rate of q ¼ 10 m3/d. We name this test case TC1.
The numerical simulation is performed with the program
Sat2D [Gambolati et al., 1999], a finite element-based soft-
ware for the simulation of saturated groundwater flow with

a preconditioned conjugate gradient solver for the linear
system arising from equation (4). The FSM consists of
nnd ¼ 303 nodes (three lines of 101 nodes each). To take
into account the random parameters, we apply the MC
method using nens ¼ 10,000 independent realizations of hy-
draulic conductivity. The ensemble-based statistics on the
drawdown are computed and stored every 5 days, for a total
of 21 output times. The numerical simulation of this simple
scenario requires a CPU time of about 21 min, i.e., 0.13 s
for each MC realization.

[41] To improve the computational efficiency of the MC
simulation, we apply our RM, using Algorithm 2 to com-
pute the parameter-independent principal components. The
set K consists of 35¼ 243 realizations of hydraulic conduc-
tivity. The tolerance on the average nodal error � e is set to
10�3 m while the value of � for the computation of the
scaling factors �i (equation (16)) is set to 1000 m2. For
each K�realization, we store nsn ¼ 15 snapshots at the opti-
mal times computed by equation (13) with the following
values for the parameters [Siade et al., 2010]:

t 0ð Þ ¼ 1:11� 10�7Ts; t 1ð Þ ¼ Ts; � ¼ �3:87� 10�6:

[42] Table 1 shows the comparison of CPU times
between the FSM and the RM for the MC simulation. It
also shows the CPU time required for the offline and online
calculations. The offline procedure for TC1 requires the
computation of 24 FSM solutions (12 for the computation
of the steady-state time Ts and 12 for the selection of the
snapshots) and 3295 RM solutions, for a total CPU time of
14 s. The resulting RM has dimension npc ¼ 30 (compared
with nnd ¼ 101), which corresponds to a RM about 40
times faster than the FSM (0.3 � 10�2 s per realization).

[43] To demonstrate the accuracy and efficiency of Algo-
rithm 2 with the modified greedy algorithm, Figure 2
reports the norm of the error keik, the norm of the residual
Ri and the scaled norm of the residual R̂

i
for all the realiza-

tions in K. Figure 2a refers to the first iteration of the algo-
rithm, when the snapshots are taken only from one
realization (solid vertical line) and new snapshots are com-
puted for the realization with maximum R̂

i
(dotted vertical

line). Figure 2b shows the last iteration. The horizontal line
represents the error tolerance � e ¼ 10�3. The continuous
vertical lines indicate the realizations where the FSM solu-
tion is computed. We can see that, in the first iteration, the
RM accurately approximates only the realization from
which the snapshots are selected and is not parameter inde-
pendent (because the error is above the tolerance value).
Moreover, the scaled norm of the residual underestimates
the norm of the error, which is actually closer to Ri. This is
due to the fact that we are computing the scaling factors �i,

Table 1. Comparison Between the FSM and RM CPU Times for
the MC Simulation for TC1

Time for One
Iteration (s)

Total
Time (s)

FSM nens ¼ 10,000 nnd ¼ 303 0.12 1279
RM online nens ¼ 10,000 npc ¼ 30 0.35 � 10�2 110
RM offline nk ¼ 243 ngr ¼ 12 14
RM total 124

Figure 1. Sketch of the one-dimensional aquifer used for
TC1.
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using only one correct value ��, and the large value chosen
for � imposes almost the same value of the scaling factor to
all the realizations. Larger values of � can cause a gross
underestimation of the error, with the risk of falsely vali-
dating the RM when the real errors may still be very large.
Figure 2b shows the results from the last iteration of Algo-
rithm 2. In this case the RM is more accurate for all the pa-
rameter values in K, as it consists of 30 principal
components obtained from 12 FSM solutions. The scaled
norm of the residual, R̂

i
, provides a good estimate of the

norm of the errors, as both these values are below the
required tolerance. In contrast, the norm of the residual, Ri,
overestimates the error. This shows that if the validation con-
dition is based only on the unscaled residual Ri, the greedy
algorithm may proceed with the calculation of additional
principal components that are unnecessary.

[44] Figure 3 compares the FSM and the RM head for
four realizations of the hydraulic conductivity in K at time
TF . Although the four FSM solutions exhibit very different
profiles, the solutions obtained from the RM, utilizing the
30 parameter-independent principal components computed
in the offline algorithm, are indistinguishable when com-
pared with the FSM solutions.

[45] Finally, to demonstrate the applicability of the RM
to MC simulations in TC1, we compare the ensemble statis-
tics produced by the FSM and the RM solutions. For this
purpose, we compute the FSM and the RM covariance mat-
rices of the so-called augmented state, the vector of the
nodal solutions s t; kð Þ augmented with the associated vec-
tor of the hydraulic conductivity k. We indicate with z t; kð Þ
the vector of the augmented state

z t; kð Þ ¼ z1; . . . ; znndþnzð Þ ¼ s1 t; kð Þ; . . . ; snnd t; kð Þ; k1; . . . ; k nzð Þ:

[46] Figure 4 shows the matrix of the correlation coeffi-
cients associated with the augmented state of the system,
computed with the FSM at the final time (TF). Each ele-
ment (i; j) of the correlation matrix is computed by the fol-
lowing equation:

Corr zi; zj

� �
¼

Cov zi; zj

� �
	zi	zj

;

where Corr is the correlation, Cov is the covariance, and 	
is the standard deviation. Figure 5 shows the errors between
the correlation coefficients computed with the FSM and the
correlation coefficients computed with the RM. We can see
that the statistics obtained by the RM are consistent with
the FSM for almost all nodes. Small errors are detected on
the Dirichlet boundaries. In fact, the RM statistics slightly

Figure 2. Norm of the error kek, scaled residual norm R̂, and residual norm R associated with all real-
izations in K at the first and last iteration of the greedy algorithm in TC1. The continuous vertical blue
lines indicate the realizations selected by the greedy algorithm for the computation of the snapshots. The
dashed vertical blue line indicates the realization with the maximum scaled residual after the first itera-
tion of the greedy algorithm. (a) First iteration and (b) last iteration.

Figure 3. Comparison between four FSM solutions and
the respective RM solutions for TC1.
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overestimate the correlation coefficients between the nodes
in the first and second zones and the hydraulic conductivity
of the first zone. We observe similar results for zone 5.
This behavior is due to the small drawdown values near the
boundary and to the oscillatory nature of the principal com-
ponents. To avoid large errors, the RM coefficients are
computed in such a way as to match the FSM solution at
nodes with large drawdown, i.e., in the neighborhood of the
pumping well. As a consequence, the RM solution can be
less accurate where drawdown is small. However, we note
that the errors reported in Figure 5 are relatively small with
respect to the true values of the correlation coefficients
shown in Figure 4. This implies that the RM can be used to
perform MC simulation.

4.2. Two-Dimensional Test Cases, TC2, TC3, and TC4

[47] In this section we investigate the applicability of the
RM to a more complex two-dimensional model, developed

to simulate the groundwater flow in a confined aquifer
located in the Oristano plain, in west-central Sardinia, Italy
[Cau et al., 2002; Siade et al., 2012]. The domain of the
Oristano aquifer is discretized using 29,197 nodes and
57,888 triangular elements. The comparison between the
FSM and the RM is performed on the basis of the results
obtained in three synthetic test cases (TC2, TC3, and TC4).
In these test cases, we consider a pumping test with a dura-
tion of 4 days. There are six pumping wells extracting at a
constant rate of q¼ 1000 m3/d, and zero Dirichlet boundary
conditions are imposed. The aquifer, shown in Figure 6,
has a constant thickness (b¼ 110 m) and specific storage
(Ss ¼ 10�5 m�1). Figure 7 shows the zonation patterns
used to model the heterogeneous hydraulic conductivity,
with 3 zones in TC2, 7 zones in TC3, and 15 zones in TC4.
The lower bound and upper bound of the hydraulic conduc-
tivities are Ki

min ¼ 0.1 m/d and Ki
max ¼ 20 m/d in each

zone, respectively. The numerical solution of the FSM
requires a CPU time of about 45 s for each realization of the
hydraulic conductivity. As a consequence, the CPU time
required by the MC method with an ensemble size of nens ¼
1000 is about 14 h (taking into account the time for the com-
putation of the ensemble statistics). In this situation, the
advantage of using the RM for MC simulation is evident.
Tables 2–4 compare the CPU times for the FSM and the RM
for TC2, TC3, and TC4, respectively. The offline process is
performed with a tolerance � e ¼ 10�3 m. For TC2 the vali-
dation set K consists of nk ¼ 27 realizations of hydraulic
conductivity. Using Algorithm 2, we select snapshots from
13 of these realizations and compute 545 RM solutions, for
a total offline CPU time of 890 s. The final number of princi-
pal components is npc ¼ 28, and the corresponding RM is
solved in 0.25 � 10�2 s (18,000 times faster than the FSM).
The MC simulation with the RM requires 15 s which, when
added to the offline process, yields a total computational
time of 905 s (55 times faster than the FSM).

[48] In TC3, the larger number of random parameters
implies a larger variability in the MC solutions. For this
reason, we enlarge the set K for the validation of the RM,

Figure 4. Matrix of the correlation coefficients of the
extended state associated with the ensemble of FSM solu-
tions for TC1.

Figure 5. Errors between the correlation coefficients
computed with the ensemble associated with the FSM and
RM solutions for TC1.

Figure 6. Oristano model with the location of the six
pumping wells (dots) and the 20 observation wells
(crosses).
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with the consequent offline process that is computationally
more expensive than in TC2. Using nk¼ 37¼ 2187 combi-
nations of hydraulic conductivity, Algorithm 2 requires 31
FSM solutions and 123,361 RM runs for a total CPU time
of 4115 s. The resulting RM consists of 76 principal com-
ponents and is solved in 0.13 � 10�1 s (3400 times faster
than the FSM). The final time for the offline and online
processes is 4141 s.

[49] In TC4, the validation of the RM on all 315 combi-
nations of hydraulic conductivity becomes impractical. In
this case we apply the offline process directly to the 1000
hydraulic conductivity realizations used in the MC method.
Due to the large number of parameters, the offline process
requires more FSM runs (ngr¼ 65) than TC3, with a CPU
time of 7132 s. The final number of principal components
used in the RM is 71 and the total time to apply the MC
method is 7158 s.

[50] To verify the accuracy of the final RM on the single
realizations, we compute the error eðTF ; k̂

jÞ for all the
members of K. Figure 8 shows the head contours at the
final simulation time (TF) obtained with the FSM and RM
for the realization with the maximum norm of the error
(Figure 8a) and the maximum nodal error (Figure 8b) in
TC2. Analogous results have been obtained for TC3 and
TC4. For example, in TC2 the realization with the maxi-
mum error in the norm (Figure 8a) has hydraulic conductiv-
ity values K1 ¼ 0.1 m/d, K2 ¼ 10 m/d, and K3 ¼ 0.1 m/d,

while the realization with the maximum nodal error (Figure
8b) has hydraulic conductivity values K1 ¼ 20 m/d, K2 ¼
20 m/d, and K3 ¼ 0.1 m/d. The results show that, even as
the head drastically changes for different combinations of
the hydraulic conductivity, the RM solutions compare
favorably with the FSM solutions. Similar to the results
obtained in the one-dimensional test case, we note that the
RM solution is most accurate in the neighborhood of the
pumping wells, i.e., in the regions with larger drawdown,
while it becomes less accurate near the boundary where the
drawdown is small.

[51] Since the RM solutions do not perfectly match the
FSM solutions for each realization, we are now interested
in evaluating how these errors affect the leading statistical
moments of the head that are usually approximated with
the MC methods. With this purpose, in Figure 9 we com-
pare the expected value and the variance of the ensemble of
the FSM and the RM solutions for TC4. Analogous results
have been obtained for TC2 and TC3. The results show that
the RM satisfactorily reproduces the mean head field in all
test cases. However, errors in the variance are larger and,
as expected from the previous results, there is an underesti-
mation of the variance of the head in areas far from the
pumping wells.

[52] Finally, we analyze the empirical distribution of
head at 20 observation wells indicated in Figure 6. To com-
pare the data obtained with FSM and RM, we apply the
two-sample Kolmogorov-Smirnov test (KS) with the null
hypothesis that the two ensembles are from the same con-
tinuous distribution. The test is performed at several output
times (1 min, 5 min, 10 min, 30 min, 1 h, 2 h, 6 h, 12 h,
1 d, 2 d, 3 d, and 4 d). The results obtained indicate that the
KS-test fails at the initial times when drawdown is small
over the entire domain. Consistent with the previous
results, the KS test frequently fails on observations wells
that are located closer to the boundary (e.g., wells number
1, 3, and 6). However, most importantly, the null hypothe-
sis is validated at almost all output times for the observa-
tion wells that are in the neighborhood of the pumping
wells (e.g., well numbers 8, 10, 13, 15, 18, and 19).

Table 4. Comparison Between the FSM and RM CPU Times for
the MC Simulation for TC4

Time for
One Iteration (s)

Total
Time (s)

FSM nens ¼ 1,000 nnd ¼ 29,197 45 50,000
RM online nens ¼ 1,000 npc ¼ 71 10�2 26
RM offline nk ¼ 1,000 ngr ¼ 65 7,132
RM total 7,158

Figure 7. Zonation patterns used for TC2 (three zones),
TC3 (seven zones), and TC4 (15 zones) for the Oristano
model.

Table 2. Comparison Between the FSM and RM CPU Times for
the MC Simulation for TC2

Time for One
Iteration (s)

Total
Time (s)

FSM nens ¼ 1,000 nnd ¼ 29,197 45 50,000
RM online nens ¼ 1,000 npc ¼ 25 0.25 � 10�2 15
RM offline nk ¼ 27 ngr ¼ 13 890
RM total 905

Table 3. Comparison Between the FSM and RM CPU Times for
the MC Simulation for TC3

Time for
One Iteration (s)

Total
Time (s)

FSM nens ¼ 1,000 nnd ¼ 29,197 45 50,000
RM online nens ¼ 1,000 npc ¼ 76 0.13 � 10�1 26
RM offline nk ¼ 2,187 ngr ¼ 31 4,115
RM total 4,141
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4.3. Offline Algorithm: Dependency on K
[53] In this section we investigate the dependency of the

RM accuracy to the validation set K. We consider Algo-
rithm 2 for TC2 with K given by (i) the complete set of
combinations of upper bound, lower bound and the mean
of hydraulic conductivity (nk ¼ 27), represented by
Kup-low , and (ii) a set of random realizations, denoted by
KMC , of sizes nk ¼ 27, 50, 100, 200, 500, and 1000. To
avoid the dependency of the greedy algorithm to the scaled
residual, the validation condition is based directly on the
norm of the error. The resulting reduced-order models are
compared on the basis of the maximum error on the solu-
tions associated with the set L of 1000 MC realizations of
hydraulic conductivity (different from the realizations con-
sidered in the offline algorithm). Figure 10 shows these
maximum errors obtained for the different choices of K as
a function of the dimension nk : Moreover, in Figure 10 we
highlight the number of principal components obtained af-
ter the greedy algorithm. Figure 10 shows that our choice
of using Kup-low in the offline algorithm provides better

results than considering KMC with nk ¼ 27, 50, and 100
random realizations. However, in TC2, Kup-low has only 27
realizations and is not sufficient to describe the probability
space as accurately as KMC with nk ¼ 200, 500, and 1000
realizations. To see if Kup-low is a reasonable choice for the
validation set, we apply the offline algorithm to validate the
RM on the set K ¼ Kup-low þKMC with 1000 random real-
izations. In this case the greedy algorithm computes the
first 22 principal components from eight realizations
belonging to Kup-low , achieving a maximum norm of the
error of 0.003 m on the entire K. Only the last two principal
components are computed from the realizations in KMC .
Figure 11 shows that the RM validated on the set K ¼
Kup-low þKMC also maintains the desired accuracy (errors
smaller than the threshold � e) when applied to the inde-
pendent set L.

4.4. Offline Algorithm: Scaled Residual

[54] In this section we show the practical advantages of
using the scaled residual for the estimation of the errors in

Figure 8. Comparison between the head obtained by solving the FSM (continuous line) and RM
(dashed line) for the realizations of the hydraulic conductivity with the (a) maximum norm of the error
and (b) maximum nodal error for TC2.

Figure 9. (a) Expected value and (b) variance of the ensemble of the drawdown obtained with the
FSM (continuous lines) and the RM (dashed lines) results for TC4.
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the greedy algorithm. We consider Algorithm 2 in TC2
with the validation set K ¼ Kup-low . The estimation of the
error is performed with (a) the scaled norm of the residual
R̂

i
and (b) the norm of the residual Ri. Figure 11 shows the

main results of the application of these two greedy algo-
rithms, comparing the maximum error with its estimation
as a function of the number of the principal components. In
both cases, the maximum error falls under the threshold
value � e after six iterations of the greedy algorithm, with
20 principal components. Using the scaled norm of the re-
sidual R̂

i
(Figure 11a), the error is underestimated in the

first iterations due to the lack of information for interpolat-
ing the scaling factors. However, in the subsequent itera-
tions, we obtain a good estimation of the error and the
greedy algorithm stops with only five additional iterations.

Instead, estimating the error with the residual Ri (Figure
11b) shows an overestimation of the error. As consequence,
a larger number of iterations of the greedy algorithm are
performed, with unnecessary computation of additional
FSM solutions and principal components.

5. Summary and Conclusions

[55] We have presented a model-order reduction tech-
nique that addresses the computational burden associated
with the MC simulations of confined groundwater flow
models with stochastic hydraulic conductivity. We pro-
posed a new offline algorithm (Algorithm 2) for the com-
putation of parameter-independent principal components,
which constitutes the core of the RM. In this offline pro-
cess we combined a residual-based greedy algorithm for
the selection of snapshots in the parameter space with a
quasi-optimal method for the selection of snapshots in
time. The algorithm starts with an initial set of principal
components and improves this set until the RM solution is
validated on an appropriately chosen set K of hydraulic
conductivity realizations. The validation condition is pro-
vided by estimating the error norm with the norm of the
residual scaled by a suitable coefficient (equations (16)
and (17)). The greedy algorithm selects the new snapshots
corresponding to the hydraulic conductivity value that
maximizes the estimation of the RM error (equation (18)).
Then, the FSM solution is used for the selection of the
snapshots at the optimal times given by equation (13).
Finally, the principal component analysis performed on
the set of snapshots produces the new principal compo-
nents needed to improve the RM solution. This new meth-
odology allows the evaluation of the reduced model with
only a few essential FSM runs, ensuring the computational
efficiency of the algorithm and the accuracy of the RM so-
lution. Once the principal components are computed, the
application of the RM to the MC simulation is straightfor-
ward. Since the RM is parameter independent, it can be
used efficiently to compute the main statistics associated

Figure 10. Maximum error of the RM on 1000 MC real-
izations, for different choices of the validation set K in TC2.
The horizontal line represents the error associated with
K ¼ Kup-low (continuous line) and K ¼ Kup-low þKMC (dot-
ted line). The dashed line shows the errors associated with
K ¼ KMC , with nk ¼ 27, 50, 100, 200, 500, and 1000.

Figure 11. Comparison between the estimation of the error at each iteration of the greedy algorithm
using the validation condition on (a) the maximum-scaled norm of the residual R̂

i
and (b) the maximum

norm of the residual Ri. The dotted line shows the maximum norm of the error, while the horizontal
dashed line is the threshold value �e for the termination of the greedy algorithm.
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with the ensemble of solutions, such as the expected value
and the covariance of the head.

[56] We first verified our methodology on a one-dimen-
sional test case with five conductivity zones (TC1) and then
applied it to a two-dimensional model of the Oristano aqui-
fer with 3, 7, and 15 different conductivity zones (TC2,
TC3, and TC4). The RM solution was compared with the
classical MC solution in terms of CPU times, expected
head values, and head variance in the entire domain as well
as the empirical probability distribution function of the
head at the observation wells. The numerical results lead to
the following conclusions.

[57] Our algorithm reduced the 29,197 nodes of the Oris-
tano model to less than 100 principal components, with a
corresponding RM solution that is at least 1000 times faster
than the FSM solution. The computation of the principal
components in the offline process is the most expensive
part of the procedure, as it requires a certain number of
FSM solutions. The number of FSM runs used by our off-
line process is reduced by using the scaled residual to esti-
mate the error norm driving the greedy algorithm. This
number increased with the number of random parameters,
due to the fact that the FSM solutions corresponding to
larger parameter sets have more degrees of freedom and, as
a consequence, the RM needs more information to accu-
rately describe the space of the solutions. Nevertheless, the
numerical results demonstrate that, with 15 zones, our
methodology (offline plus online) is more than 10 times
faster than the standard MC approach with the same level
of accuracy. However, we would like to note that our ulti-
mate goal is to develop a parameter-independent RM that
can be used for fast online execution. This goal has been
achieved, as demonstrated by an application of the pro-
posed methodology to the Oristano aquifer in Italy, where
the FSM was reduced by 3 orders of magnitude and ran
1000 times faster than the FSM. Moreover, our offline algo-
rithm allows the construction of the RM with a limited
number of FSM, rendering the proposed scheme attractive
for large-scale computations.

[58] The comparison between the statistics of the ensemble
of solutions given by the RM and FSM suggests that our RM
produces the correct expected value of the head over the
entire domain, while it slightly underestimates the variance in
the regions of small drawdown. In addition, the two-sided KS
test applied to the empirical distributions of the heads at the
observation wells indicates that the RM is most accurate in
the neighborhood of the pumping wells, i.e., where the
response of the system to pumping is higher. We attribute this
fact to the methodology that we employed for the generation
of principal components. In fact, with the principal component
analysis, we keep the principal components corresponding to
the larger eigenvalues that describe the dominating character-
istics of the solution, while we discard the principal compo-
nents corresponding to small eigenvalues, which are only
useful for a detailed description of the solution in regions of
low variance, i.e., regions with low sensitivity to pumping.

[59] Further research is needed to extend our methodol-
ogy to compute the principal components for the case of
spatially distributed random hydraulic conductivities, par-
ticularly for aquifers with strong local heterogeneity, for
which the interpolation scheme employed to evaluate the
scaling factors used in Algorithm 2 needs to be completely

revised. How to derive reduced models under such situa-
tions is a topic of future research.

Appendix A: Algorithm 1: RM Initialization

1) Compute Ts for k̂
1

2) Compute t̂1; . . . ; t̂nsn

3) Solve equation (4) and store ŝt1
; . . . ; ŝtnsn

4) Compute p1
1 ; . . . ; p1

nsn

5) npc  1
6) P fp1

1g
7) Solve equation (6) for k̂

1

8) Compute keðTF ; k̂
1Þk2

9) While keðTF ; k̂
1Þk2 
 � e

a) npc  npc þ 1
b) P fp1

1; . . . ; pnpc

1 g
c) Solve equation (6) for k1

d) Compute keðTF ; k̂
1Þk2

10) End While

Appendix B: Algorithm 2: Offline: Modified
Greedy Algorithm

a) ngr  0
b) npc  0

c) k̂
�1  k̂

1

d) R̂ðTF ; k̂
�1Þ  2� e

e) While R̂ðTF ; k̂
�ngrþ1Þ 
 � e

(1) ngr  ngr þ 1
(2) Compute p

�ngr

1 ; . . . ; p
�ngr
nsn from k̂

�ngr
(Algorithm 1)

(3) i ngr

(4) While R̂ðTF ; k̂
�iÞ 
 � e

a. npc  npc þ 1
b. Improve P with a principal component from k̂

�i

c. For j ¼ 1! ngr (Loop on K�)
i. Solve the RM equation (6) for k̂

�j

ii. Compute keðTF ; k̂
�jÞk2, R̂ðTF ; k̂

�jÞ and ��j

(equation (15))
d. End For
e. i ¼ arg maxj¼1; ... ;ngr R̂ðTF ; k

�jÞ
(5) End While
(6) For j ¼ 1! nk (Loop on K)

a. Solve the RM equation (6) for k̂
j

b. Compute �j (equation (16)) and R̂ðTF ; k̂
jÞ (equa-

tion (17))
(7) End For
(8) k̂

�ngrþ1 ¼ arg maxk̂2KR̂ðTF ; k̂
jÞ

f) End While
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