

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Holomorphic extension from the sphere to the ball

Luca Baracco

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy

ARTICLE INFO

Article history: Received 29 June 2011 Available online 4 October 2011 Submitted by A.V. Isaev

Keywords: Separate extension Morera type theorem Testing families of analytic discs

ABSTRACT

Real analytic functions on the boundary of the sphere which have separate holomorphic extension along the complex lines through a boundary point have holomorphic extension to the ball. This was proved in Baracco (2009) [4] by an argument of CR geometry. We give here an elementary proof based on the expansion in holomorphic and antiholomorphic powers.

© 2011 Elsevier Inc. All rights reserved.

1. Main result - statement and proof

The characterization of boundary values of holomorphic functions by the extension along complex lines has a long history and many contributions in the context of harmonic analysis: as main references we quote Agranovsky and Semenov [2], Agranovsky and Valsky [3], Globevnik and Stout [6], Nagel and Rudin [8], and Stout [10]. More recently, the problem has been brought by Tumanov [11] in the framework of the CR geometry. From this point of view, we have obtained in [4] a principle of holomorphic extension from a convex boundary of \mathbb{C}^n for functions which have separate extension along generic (2n - 2)-parameter families of discs. In particular, the discs which pass through a fixed boundary point. It is well known that if we move the "center" of the system of discs to the interior, the conclusion fails; in this case, two interior points are needed according to Agranovsky [1]. The results of [4] apply to general convex sets but use stationary discs instead of straight lines (for the theory of stationary discs see [5] and [7]). What we wish to show here is that for the straight lines through a boundary point of the sphere the proof is much more direct and simple. In this specific problem, the theory of lifts of discs developed in [4] is not needed. Using Taylor expansions we can see that the moment condition forces the coefficients of the antiholomorphic powers to vanish.

Denote by C^{ω} the class of real analytic functions. Let \mathbb{B}^n be the unit ball of \mathbb{C}^n and let z_0 be a boundary point.

Theorem 1.1. Let f be a function in $C^{\omega}(\partial \mathbb{B}^n)$ and suppose that f extends holomorphically from $\partial \mathbb{B}^n$ along each line passing through z_0 . Then f extends holomorphically to \mathbb{B}^n .

Proof. (a) We first prove the result for \mathbb{B}^2 in \mathbb{C}^2 . It is not restrictive to assume that z_0 is the pole (0, 1). The straight discs through (0, 1) can be parametrized over $a \in \mathbb{C}$ as the sets D_a described by

$$D_a(\tau) = \left(\frac{\tau-1}{1+|a|^2}a, \frac{\tau-1}{1+|a|^2}+1\right) \quad \forall \tau \in \bar{\Delta}.$$

Note that when $|a| \gg 1$ the disc D_a gets close to the complex tangent line to the sphere at the point z_o , and moreover D_a lies in a neighborhood of z_o .

E-mail address: baracco@math.unipd.it.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\ @$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.09.067

Since $f \in C^{\omega}(\partial \mathbb{B}^2)$, and $\bar{\partial}_{z_2}$ is transverse to $\partial \mathbb{B}^2$ at z_o , f can be extended in a neighborhood of z_o holomorphically in z_2 ; this is an immediate consequence of Cauchy–Kovalewsky Theorem. We denote again by f this extension. We consider the power series expansion of f at z_o

$$f(z_1, \bar{z}_1, z_2) = \sum_{l=0}^{+\infty} \sum_{h+k+2m=l} b_{h,k,m} z_1^h \bar{z}_1^k (z_2 - 1)^m$$

note that we reordered the terms in a weighted degree (giving weight 2 to z_2). Taking |a| sufficiently big we consider the *N*-momentum on the disc D_a :

$$G(a, N) = \int_{\partial \Delta} \tau^{N} f\left(D_{a}(\tau)\right) d\tau$$

=
$$\int_{\partial \Delta} \tau^{N} \sum_{l=0}^{+\infty} \sum_{h+k+2m=l} b_{h,k,m} \left(\frac{\tau-1}{1+|a|^{2}}a\right)^{h} \left(\frac{\overline{\tau-1}}{1+|a|^{2}}a\right)^{k} \left(\frac{\tau-1}{1+|a|^{2}}\right)^{m} d\tau.$$
 (1.1)

We want to prove that $b_{h,k,m} = 0$ whenever k > 0. To this end, let l_o be the lowest weighted degree such that $b_{h,k,m} \neq 0$ for some k > 0 and let k_o be the highest degree in \bar{z}_1 for which this happens. We get G(a, N) = 0 for any N and any a, in particular, for ta with |a| = 1 and $t \to +\infty$. Consider the limit

$$\lim_{t \to +\infty} G(ta, N) t^{l_o} = \lim_{t \to +\infty} \sum_{l=l_o}^{+\infty} \sum_{h+k+2m=l} 2\pi i (-1)^{k+h+m+N+1} \\ \times {\binom{h+k+m}{k-N-1}} a^h \bar{a}^k \left(\left(\frac{1}{t^2} + |a|^2\right)^m \right) t^{l_o-l} \frac{1}{(\frac{1}{t^2} + |a|^2)^l} b_{h,k,m} \\ = \sum_{h+k+2m=l_o} (2\pi i) (-1)^{h+k+m+N+1} {\binom{h+k+m}{k-N-1}} b_{h,k,m} \frac{a^h \bar{a}^k |a|^{2m}}{|a|^{2l_o}} = 0,$$
(1.2)

where we have used the fact that $\int_{\partial\Delta} \tau^N (\tau - 1)^h (\bar{\tau} - 1)^k (\tau - 1)^m d\tau = (-1)^k \int_{\partial\Delta} \frac{(\tau - 1)^{h+k+m}}{\tau^{(k-N)}} d\tau = (-1)^{h+m+k+N+1} {h+k+m \choose k-1-N}$. We first notice that in the above summations, we can take k > N; in fact, since $\bar{\tau}\tau = 1$, then $(\tau - 1)^k = \tau^{-k}(1 - \tau)^k$ and the factor τ^{N-k} and Cauchy Theorem imply the vanishing of the terms with $N - k \ge 0$. Next, choosing $N = k_0 - 1$, we get the following relation on the coefficients *b*'s:

$$\sum_{\substack{h+k_o+2m=l_o}} (-1)^{h+m} \binom{h+k_o+m}{0} b_{h,k_o,m} a^{h+m} \bar{a}^{k_o+m} = 0.$$

Writing $a = e^{i\theta}$, we get

$$\sum_{h+k_o+2m=l_o} (-1)^{h+m+k_o} b_{h,k_o,m} e^{i\theta(h-k_o)} = 0,$$

which implies $b_{h,k_o,m} = 0$ for $h + k_o + 2m = l_o$. Therefore, when $k \ge 1$, we have $b_{h,k,m} = 0$ for any weighted degree *l*. This concludes the proof in dimension 2.

(b) We pass from \mathbb{B}^2 to \mathbb{B}^n . We still suppose that z_0 is the point $(0, \ldots, 1)$. By (a) we know that f extends holomorphically along the slices of \mathbb{B}^n with the 2-dimensional planes through z_0 . All these extensions to different slices glue together to a single well-defined function. In fact, two slices have intersection which is a line through z_0 unless it is empty; we still call f this extension. It is clear that $f \in C^{\omega}(\mathbb{B}^n)$ because f is given by the integral Cauchy formula for a real analytic function on a real analytic family of circles. We note that f is holomorphic on any straight line through 0 (since either this pass through z_0 or it is contained in a single 2-dimensional slice through z_0). Application of Forelli's Theorem (see [9]) yields the conclusion. \Box

References

- [1] M. Agranovsky, Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \mathbb{C}^n , J. Anal. Math. 113 (2011) 293–304.
- [2] M.L. Agranovsky, A.M. Semenov, Boundary analogues of the Hartogs theorem, Sib. Math. J. 32 (1) (1991) 137-139.
- [3] M.L. Agranovsky, R.E. Valsky, Maximality of invariant algebras of functions, Mat. Zh. 12 (1971) 3–12.
- [4] L. Baracco, Holomorphic extension from a convex hypersurface, arXiv:0911.1521 [math], 2009.
- [5] C.H. Chang, M.C. Hu, H.P. Lee, Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc. 310 (1) (1988) 355–369.

^[6] J. Globevnik, E.L. Stout, Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J. 64 (3) (1991) 571-615.

- [7] L. Lempert, La métrique de Kobayashi et la reprsentation des domaines sur la boule (The Kobayashi metric and the representation of domains on the ball), Bull. Soc. Math. France 109 (1981) 427-474 (in French).
- [8] A. Nagel, W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (4) (1976) 841–865. [9] W. Rudin, Function Theory on the Unit Ball of \mathbb{C}^n , Grundlehren Math. Wiss., Springer-Verlag, New York, Berlin, 1980.
- [10] EL Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44 (1) (1977) 105–108. [11] A. Tumanov, A Morera type theorem in the strip, Math. Res. Lett. 11 (1) (2004) 23–29.