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Abstract. A subgroup H of an Abelian group G is said to be fully inert if the quotient
.H C �.H//=H is finite for every endomorphism � of G. Clearly, this is a common gen-
eralization of the notions of fully invariant, finite and finite-index subgroups. We investi-
gate the fully inert subgroups of divisible Abelian groups, and in particular, those Abelian
groups that are fully inert in their divisible hull, called inert groups. We prove that the inert
torsion-free groups coincide with the completely decomposable homogeneous groups of
finite rank and we give a complete description of the inert groups in the general case. This
yields a characterization of the fully inert subgroups of divisible Abelian groups.

1 Introduction

In this paper we introduce and investigate the notions of �-inert and fully inert sub-
groups of an Abelian group G, where � denotes an endomorphism of G. These
notions have their origin in the non-commutative setting, as we will briefly sur-
vey now.

Let G be an arbitrary non-commutative group. A subgroup H of G is inert
if H \Hg has finite index in H for every g in G (as usual, Hg denotes the
conjugate of H under g); an inert subgroup is close to being normal. Normal
subgroups, finite subgroups, subgroups of finite index, and permutable subgroups
are all examples of inert subgroups. The group G is called totally inert if every
subgroup ofG is inert. The class of totally inert groups includes Dedekind groups,
FC-groups, and Tarski monsters, but it contains no infinite locally-finite simple
group, so it is a highly complex class (see [3]). The notions of inert subgroups and
totally inert groups have been introduced in [2] and [3] (Belyaev [2] gives credit
to Kegel for coining the term “inert subgroup”); totally inert groups have been
studied also by Robinson in [14] under the name of inertial groups.

Recently, Dardano and Rinauro [4] changed the above setting simultaneously
in two directions: first, general automorphisms (not necessarily internal, as in [2]
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and [3]) were involved. Secondly, they moved the focus onto automorphisms, by
considering inertial automorphisms � of a group G, defined by the property that
ŒH W H \ �.H/� and Œ�.H/ W H \ �.H/� are finite (i.e., H and �.H/ are com-
mensurable) for every subgroup H of G. A characterization of the inertial au-
tomorphisms of an Abelian group is provided in [4]; when the Abelian group is
torsion, they coincide with the so-called almost power automorphisms, studied by
Franciosi, de Giovanni and Newell [9].

We move now definitively to the Abelian setting, so from now on the groups
are always assumed to be Abelian. Inspired by the notions described above, with
the relevant modification of considering endomorphisms of groups and not only
automorphisms, we introduced in [6] the following notion.

Definition 1.1. Let G be an Abelian group and � W G ! G an endomorphism.
A subgroup H of G is called �-inert if H \ �.H/ has finite index in �.H/,
equivalently, if the factor group .H C �.H//=H is finite.

Our motivation for investigating �-inert subgroups comes from the study of
the dynamical properties of a given endomorphism � W G ! G of an Abelian
groupG, developed in a series of papers concerning algebraic entropy (see [1, 15],
the more recent [5, 7], and the references there). The algebraic entropy of �,
roughly speaking, is an invariant measuring how chaotically � acts on the family
of finite subgroups of G. It turns out that, taking the family of �-inert subgroups
instead of the generally smaller family of finite subgroups, and with some slight
changes in the definition of the entropy function, we obtain a better behaved dy-
namical invariant called intrinsic algebraic entropy (see [6]).

The aspects of innovation in the definition of �-inert subgroup are the following.
First, as noted above, endomorphisms are considered in place of automorphisms;
this automatically imposes a second difference, namely, one does not ask finiteness
of the index ŒH W H \ �.H/�: that would rule out some natural endomorphisms
(e.g., the zero map, or the endomorphisms with finite image in case H is infinite).
The third and most important one is that both the subgroup and the endomorphism
are isolated into a ‘local condition’ that is not imposed on all subgroups or all en-
domorphisms.

We denote by I�.G/ the family of all �-inert subgroups ofG. Obviously I�.G/

contains all the �-invariant subgroups of G, as well as the finite subgroups and the
subgroups of finite index. Passing to a ‘global condition’, we have the following
definition.

Definition 1.2. LetG be an Abelian group. A subgroupH ofG is called fully inert
if it is �-inert for every endomorphism � of G.
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Fully inert subgroups of divisible Abelian groups 917

We denote by I.G/ the family of all fully inert subgroups of G, that is,

I.G/ D
\

�2End.G/

I�.G/:

The notion of fully inert subgroup can be viewed as a slight generalization of that
of fully invariant subgroup. Clearly, besides fully invariant subgroups, also finite
subgroups and subgroups of finite index are fully inert.

If the group G has few endomorphisms, the family of its fully inert subgroups
can be very large; for instance, if End.G/ D Z (and this can happen for torsion-
free groups G of arbitrary cardinality), then all the subgroups of G are fully in-
variant, hence fully inert too. Therefore the most interesting cases are when the
endomorphism ring of G is huge, this case occurs, for instance, when G is divis-
ible. So our main concern in this paper is to investigate fully inert subgroups of
divisible groups and, in particular, the groups which are fully inert in their divisi-
ble hulls (this property is independent on the choice of the specific divisible hull
of G); for these groups we coin an ad hoc name.

Definition 1.3. An Abelian group G is called inert if it is a fully inert subgroup of
its divisible hull.

This paper is organized as follows. In Section 2 we collect preliminary results
on �-inert subgroups, some of which are extracted from [6], and on fully inert
subgroups. In Section 3 fully inert subgroups of divisible groups are investigated,
as a preparation for the main results of the paper contained in Sections 4, 5 and 6,
where we characterize inert groups as follows.

In Section 4 we will characterize fully inert subgroups of finite direct sums
D D D1 ˚ � � � ˚Dn of divisible groups by showing that they are commensurable
with subgroups ofD of the form A D A1 ˚ � � � ˚ An, where each Ai is a fully in-
ert subgroup of Di satisfying a particular condition with respect to Dj , for j ¤ i

(Lemma 4.1 and Proposition 4.2). We describe in Corollary 4.3 when a direct sum
of finitely many groups is inert in terms of its direct summands and their interre-
lations. An easy consequence of this useful criterion is the fact that finite direct
powers of inert groups are inert. These results and a theorem of Procházka [13] are
used to deduce the major theorems of this section:

(i) the inert torsion-free groups are the divisible groups and the completely de-
composable homogeneous groups of finite rank (Theorem 4.9),

(ii) every inert mixed group splits (Theorem 4.10).

In Section 5 we characterize torsion and inert mixed groups. We show that the
inert torsion groupsG are exactly those of the formG D F ˚ L

p2P Tp, where F
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is a finite group, P is a set of primes, and Tp is a homogeneous direct sum of co-
cyclic p-groups for each prime p 2 P , that is, of the form

L
˛p

Z.pmp /, with
p̨ > 0 a cardinal and mp 2 NC [ ¹1º (see Theorem 5.3). For a torsion group G

of this form we define the induced type Œm�
p�p2P as follows:m�

p D mp for p 2 P ,
m

�
p D 1 for p … P .
In the mixed case, inert groups are splitting (as mentioned above) with both

the torsion and the torsion-free summands inert groups; furthermore, (apart the di-
visible case) the type of the torsion-free completely decomposable homogeneous
summand is less than or equal to the induced type Œm�

p�p2P of the torsion sum-
mand, as described above.

The paper ends with Section 6, which completes the characterization of fully
inert subgroups of divisible groups started in Section 3.

Notation and terminology

We denote by N, NC, P , Z, Q, Z.m/ and Z.p1
/ the set of natural numbers, the

set of positive natural numbers, the set of prime numbers, the group of integers, the
group of rationals, the cyclic group of size m, and the co-cyclic divisible p-group,
respectively. The word ‘group’ will always mean ‘Abelian group’.

For a group G, we denote by t .G/ the torsion subgroup of G, by Gp the
p-primary component of t .G/, by P.G/ D ¹p 2 P j Gp ¤ 0º the set of the rel-
evant primes of G, and by D.G/ the divisible hull of G. By rk.G/ we denote
the torsion-free rank of G, and by rp.G/ its p-rank, that is, the dimension of the
p-socleGŒp� viewed as vector space over Z.p/. Let us recall that a mixed groupG
is splitting if its torsion part t .G/ is a direct summand of G; it is understood that
by ‘mixed group’ we mean a group which is neither torsion, nor torsion-free. For
unexplained notation and terminology we refer to [10].

2 �-inert and fully inert subgroups

We recall that, given an endomorphism � W G ! G and a subgroup H of G,
Tn.�;H/ denotes the subgroup

P
06k<n �

k
.H/ for all n 2 NC, and

T .�;H/ D
1X

kD0

�
k
.H/

is the minimal �-invariant subgroup of G containingH . The subgroups Tn.�;H/

and T .�;H/ are called the n-th partial �-trajectory and the �-trajectory of H ,
respectively. These notions, in case H is a finite subgroup of G, are the basic
ingredients for defining the algebraic entropy of � (see [7]). As usual, if H is
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Fully inert subgroups of divisible Abelian groups 919

a subgroup of a torsion-free groupG, the pure closure ofH will be denoted byH�;
recall that H�

=H D t .G=H/.
We start with some results already proved in [6], or easily deducible from them.

We provide their essential details, for the sake of completeness.

Lemma 2.1. Let G be a group, � W G ! G an endomorphism and H a �-inert
subgroup of G. Then the following assertions hold:

(a) Tn.�;H/=H is finite for all n 2 NC,

(b) T .�;H/=H is torsion,

(c) if G is torsion-free, then T .�;H/ is contained in H�, which is �-invariant
in G.

Proof. See [6, Lemma 2.1]. Item (a) is easily proved by induction on n, the case
n D 2 following by the definition of �-inert subgroup; part (b) follows from the
equality T .�;H/ D S

n2NC Tn.�;H/ and from the fact that each quotient group
Tn.�;H/=H is torsion. The first claim in (c) is an immediate consequence of (b),
as H�

=H D t .G=H/. Finally, let x 2 H�; then one has nx 2 H for some n ¤ 0.
As T .�;H/ is �-invariant in G, n�.x/ 2 T .�;H/, thus m�.x/ 2 H for some
m ¤ 0 by (b); this shows that �.x/ 2 H�, which is therefore �-invariant inG.

The following lemma shows that both I.G/ and I�.G/ (for any endomorphism
� W G ! G) are sublattices of the lattice of all the subgroups of G. Notice that
these lattices are bounded, as ¹0º and G are always �-inert for all � 2 End.G/.

Lemma 2.2. Let G be a group, � W G ! G an endomorphism.

(a) If H and H 0 are �-inert subgroups of G, then H \H 0 and H CH
0 are both

�-inert.

(b) If H is �-inert, then �n
.H/ is �-inert and H is �n-inert for every n 2 N.

(c) If H and H 0 are fully inert subgroups of G, then H \H 0 and H CH
0 are

both fully inert.

Proof. (a) See [6, Lemma 2.6]. The fact that H \H 0 is �-inert depends on the
existence of a natural embedding of Œ.H \H 0

/C �.H \H 0
/�=.H \H 0

/ into
Œ.H C �.H//=H �˚ Œ.H

0 C �.H
0
//=H

0
�. The fact that H CH

0 is �-inert de-
pends on the fact that ŒH CH

0 C �.H CH
0
/�=.H CH

0
/ is a quotient of the

direct sum Œ.H C �.H//=H �˚ Œ.H
0 C �.H

0
//=H

0
�.

(b) The first claim follows by the fact that .�n
.H/C �

nC1
.H//=�

n
.H/ is the

image under �n of .H C �.H//=H ; the latter claim follows from Lemma 2.1 (a).
(c) This is an immediate consequence of (a).
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As we will see in the next Example 2.7, I.G/ is not a complete lattice. In order
to prove this fact, we need the following result.

Lemma 2.3. Let G be a torsion-free group of finite rank. Then every finitely gen-
erated subgroup H of G of maximal rank is fully inert.

Proof. See [6, Lemma 2.4]; just observe that .H C �.H//=H is torsion (as G=H
is such) and finitely generated, being isomorphic to �.H/=.H \ �.H//.

In order to go on, we need to fix some more notation, which follows the stan-
dard notation, and recall some basic facts on the types (we refer to [10] for more
information on the notions of characteristic and type and their properties). A char-
acteristic is a sequence .mp/p2P of natural numbers or symbols 1 indexed by the
set P of the prime numbers; two characteristics .mp/p2P and .m0

p/p2P are equiv-
alent if mp D 1 if and only if m0

p D 1 and m0
p ¤ mp for at most finitely many

primes p where mp < 1 and m0
p < 1. The equivalence class of a characteristic

.mp/p2P , denoted by Œmp�p2P (or simply by Œmp�), is called the type of .mp/p2P .
Given two characteristics .kp/p2P and .mp/p2P , we set Œkp� 6 Œmp� if kp > mp

for at most finitely many primes p where kp < 1.
A rational group A is a non-zero subgroup of Q; without loss of generality,

one can assume that Z � A. The type of A, denoted by �.A/, is the type of the
characteristic .kp/p2P defined as follows: for each p, kp is the supremum of the
natural numbers k such that 1 2 pk

A. Two rational groupsA andB are isomorphic
if and only if �.A/ D �.B/.

Recall that two subgroups H1 and H2 of a group G are called commensu-
rable if H1 \H2 has finite index in both H1 and H2. Then it is easy to see that
�.A/ D �.B/ amounts to saying that A and B are commensurable, that is, A \ B
has finite index in both A and B .

Since every non-zero endomorphism of Q is an automorphism, the above obser-
vations yield the following example that will be essentially exploited in the proof
of Theorem 4.9.

Example 2.4. Every subgroup of Q is fully inert.

The hypothesis in Lemma 2.3 that the subgroup is finitely generated cannot be
removed, as the next example shows.

Example 2.5. Let G D Q ˚ Q be the direct sum of two copies of the field Q of
rational numbers, and consider H D A˚ B , where A and B are non-isomorphic
non-zero rational groups. We claim that H is not �-inert, if � denotes the auto-
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Fully inert subgroups of divisible Abelian groups 921

morphism of Q ˚ Q defined by �.x; y/ D .y; x/ for x; y 2 Q. Indeed,

H C �.H/ D .AC B/˚ .AC B/;

therefore .H C �.H//=H Š .AC B/=A˚ .AC B/=B , which fails to be finite.

Even the hypothesis in Lemma 2.3 that the finitely generated subgroup H of G
has maximal rank cannot be removed, as the next lemma shows.

Lemma 2.6. A non-zero fully inert subgroup G of Qn
.n > 1/ has rank n.

Proof. Assume, by way of contradiction, that rk.G/ < n; then Qn D D1 ˚D2,
with G 6 D1 and D2 ¤ 0. There is a non-zero map � W G ! D2 that can be
extended to an endomorphism  W Qn ! Qn. Then

.G C  .G//=G D .G C �.G//=G Š �.G/

is infinite, a contradiction.

The following is the announced example showing that I.G/ is not a complete
lattice, so also I�.G/ is not complete: we will see that the intersection and the
infinite sum of countably many fully inert subgroups need not be fully inert, in
items (1) and (2) respectively.

Example 2.7. Let us consider again G D Q ˚ Q, as in Example 2.5.

(1) Let Hn D nZ ˚ Z for every n 2 NC. Since Hn is a finitely generated maxi-
mal rank subgroup of G, it is fully inert by Lemma 2.3, while

\

n2NC

Hn D ¹0º ˚ Z

is not fully inert, by Lemma 2.6.

(2) Let Kn D p
�nZ ˚ q

�nZ for every n 2 N, where p and q denote two differ-
ent prime numbers. Since Kn is a finitely generated maximal rank subgroup
of G, again by Lemma 2.3 it is fully inert, while

X

n2N

Kn D ZŒ1=p�˚ ZŒ1=q�

is not fully inert, by Example 2.5.

The next result shows that a finite index subgroup H1 of a subgroup H2 of
a group G is �-inert or fully inert in G if and only if H2 has the same property.
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Lemma 2.8. Let G be a group, � W G ! G an endomorphism and H1, H2 sub-
groups of G such that H1 � H2 and H2=H1 is finite. Then:

(a) H1 is �-inert if and only if H2 is �-inert.

(b) H1 is fully inert if and only if H2 is fully inert.

Proof. (a) Consider the canonical surjective homomorphism

� W H2 C �.H2/

H1
! H2 C �.H2/

H2
:

Since ker� D H2=H1 is finite, the quotient group .H2 C �.H2//=H1 is finite if
and only if .H2 C �.H2//=H2 is finite.

Assume that H2 is �-inert. Then the quotient group .H2 C �.H2//=H2 is fi-
nite and so .H2 C �.H2//=H1 is finite. Since H1 C �.H1/ � H2 C �.H2/, we
conclude that .H1 C �.H1//=H1 is finite, hence H1 is �-inert.

Conversely, assume that H1 is �-inert. As H2=H1 is finite, also �.H2/=�.H1/

is finite, and so .H2 C �.H2//=.H1 C �.H1// is finite as well. Since

.H2 C �.H2//=.H1 C �.H1// Š ..H2 C �.H2//=H1/=..H1 C �.H1//=H1/

and .H1 C �.H1//=H1 is finite by assumption, we have that also the quotient
group .H2 C �.H2//=H1 is finite. By the earlier observation, .H2 C �.H2//=H2

is finite, that is, H2 is �-inert.
Statement (b) follows from (a).

As an easy consequence of Lemma 2.8 we derive the following result.

Corollary 2.9. Let G be a group, � W G ! G an endomorphism and H1;H2 two
commensurable subgroups of G. Then:

(a) H1 is �-inert if and only if H1 \H2 is �-inert, if and only if H2 is �-inert.

(b) H1 is fully inert if and only if H1 \H2 is fully inert, if and only if H2 is fully
inert.

Proof. Apply Lemma 2.8 twice, using that H1=.H1 \H2/ and H2=.H1 \H2/

are finite by hypothesis.

The next immediate consequence of the above corollary will be used to provide
a complete characterization of inert p-groups (see Theorem 5.2).

Corollary 2.10. If a subgroup H of a group G is commensurable with some fully
invariant subgroup of G, then H is fully inert.
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Fully inert subgroups of divisible Abelian groups 923

The sufficient condition from this corollary is quite far from being necessary.
Indeed, according to Example 2.4, every subgroup of Q is fully inert, while the
only non-zero fully invariant subgroup of Q is Q itself, and so obviously no proper
subgroup of Q is commensurable with Q.

3 Fully inert subgroups of divisible groups

The following folklore fact in Abelian group theory will be freely used in the
sequel.

Fact 3.1. The non-zero fully invariant subgroups of a non-trivial divisible groupD
are:

(i) D itself and the subgroups DŒpn
� (n > 1), if D is a p-group,

(ii) the subgroups T D L
p Tp, where Tp is fully invariant in the p-component

Dp of D, if D D L
p Dp is torsion,

(iii) the fully invariant subgroups of t .D/ and D itself, in the general case.

Our aim in this section is to characterize the fully inert subgroups of the divisible
groups. A basic result by Kulikov [11] says that a divisible group D containing
a subgroup G, has a minimal divisible subgroup D1 containing G, and any two
minimal divisible subgroups D1 and D0

1 containing G are isomorphic over G
(see also [10, Theorem 24.4]); furthermore, it is easy to see that D1=G Š D

0
1=G.

These minimal divisible subgroups are divisible hulls of G (recall that a divisible
hull of G is any divisible group in which G embeds as an essential subgroup), and
are direct summands in D; we will denote by D.G/ a fixed divisible hull of G.

Proposition 3.2. Let D be a divisible group, let G be a subgroup of D and let
D D D1 ˚D2, where D1 is a minimal divisible subgroup of D containing G.
Then G is fully inert in D if and only if it is fully inert in D1 and Im.˛/ is finite
for every homomorphism ˛ W G ! D2.

Proof. Assume first that G is fully inert in D and let � W D1 ! D1 be an endo-
morphism of D1. Let  be any extension of � to D; then

.G C �.G//=G D .G C  .G//=G

is finite, so G is fully inert in D1. Furthermore, given a fixed homomorphism
˛ W G ! D2, it extends to a homomorphism ˇ W D ! D; since .G C ˇ.G//=G is
finite and .G C ˇ.G//=G D .G ˚ ˛.G//=G Š ˛.G/, it follows that ˛.G/ must
be finite.
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Conversely, assume the subgroup G fully inert inD1 and Im.˛/ finite for every
homomorphism ˛ W G ! D2. Let � W D ! D be an endomorphism of D, and let
�i W D ! Di be the canonical projections (i D 1; 2). Then

G C �.G/ � .G C �1.�.G///˚ �2.�.G//I
therefore

G C �.G/

G
� G C �1.�.G//

G
˚ �2.�.G//:

The first summand of the right term is finite, as G is fully inert in D1, and the
second summand is finite by assumption, setting ˛ D �2 � �. Hence G is fully
inert in D.

It is immediate to check that, given a group G and two different divisible hulls
of it, G is fully inert in the first one if and only if it is fully inert in the latter.
In view of Proposition 3.2, the problem of finding the fully inert subgroups of
a fixed divisible group is split into the following two problems:

(P1) characterize the groups G which are fully inert in their divisible hulls, that
is, the inert groups,

(P2) characterize the pairs of groups .G;D/ with G inert, D divisible, and such
that Im.˛/ is finite for every homomorphism ˛ W G ! D.

Problem (P1) will be completely settled in Section 5, and problem (P2) in Sec-
tion 6. In the sequel of this section we consider a more general setting for (P2),
without asking G to be inert (see Definition 3.3).

For every pair .G;D/ of groups let

�.G;D/ D ¹p 2 P W rp.G/ > 0 and rp.D/ > 0º:
If D is non-trivial and divisible, one can easily check that Hom.G;D/ D 0 if and
only ifG is torsion and �.G;D/ D ;. To tackle (P2) (and its more general version)
we need a more subtle notion.

Definition 3.3. Let G;D be non-trivial groups and let D be divisible.

(a) We call the pair .G;D/ almost orthogonal if Im.˛/ is finite for every homo-
morphism ˛ 2 Hom.G;D/.

(b) For a subgroup L of D we call the pair .G;D/ relatively almost orthogonal
with respect to L if Im.˛/=.Im.˛/ \ L/ is finite for every ˛ 2 Hom.G;D/.

Remark 3.4. The weaker version proposed in item (b) was tailored in order to fit
inert groups, as a group G is inert if and only if .G;D.G// is relatively almost
orthogonal with respect to G (see also Corollary 4.3 that describes when a finite
direct sum is inert).
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Fully inert subgroups of divisible Abelian groups 925

To completely determine all almost orthogonal pairs, it is relevant to know when
a given group G admits divisible quotients and which divisible groups can be
obtained as quotients of G. The groups that do not admit a divisible quotient were
described in [8]. For the sake of completeness, and due to the fact that [8] is not
easily accessible, we provide a proof of this theorem, formulated in a counter-
positive form that is more appropriate for our purposes.

Theorem 3.5 ([8]). For a group G the following conditions are equivalent:

(a) There exist a prime p and a surjective homomorphism G ! Z.p1
/.

(b) Some non-trivial quotient of G is divisible.

(c) Either rk.G/ is infinite, or rk.G/ D n is finite and for every free subgroup F
of rank n of G some p-primary component of G=F is unbounded.

(d) Either rk.G/ is infinite, or rk.G/ D n is finite and for some free subgroup F
of rank n of G some p-primary component of G=F is unbounded.

If rk.G/ is infinite, then G has a quotient isomorphic to Q.@0/, so every countable
divisible group can be obtained as a quotient of G. If in (c) and (d) the second
option occurs, then G has a quotient isomorphic to Z.p1

/.

Proof. The implications (a) ) (b) and (c) ) (d) are trivial.
To prove (d) ) (a) assume first that rk.G/ is infinite. Then G contains a free

subgroupF of rank @0. Hence, one can define a surjective homomorphismF ! Q
that can be extended to a surjective homomorphism � W G ! Q by the divisibility
of Q. Composing with the obvious surjective homomorphism Q ! Z.p1

/, we
are done. Now assume that rk.G/ D n is finite and for some free subgroup F of
rank n ofG the p-primary componentHp ofG=F is unbounded for some prime p.
It suffices to find a surjective homomorphism Hp ! Z.p1

/; it will produce then
a surjective homomorphismG ! Z.p1

/ via the compositionG ! G=F ! Hp.
Our assumption that Hp is unbounded guarantees that, for any basic subgroup B
of Hp, Hp=B is non-zero divisible (see [10, Section 33]), hence the conclusion
follows.

(b) ) (c) Assume, by way of contradiction, that (c) fails. Then rk.G/ D n is
finite and there exists a free subgroup F of rank n of G such that all p-primary
components of G=F are bounded. Since every divisible group has as a quotient
Z.p1

/ for some p, there exists a surjective homomorphism f W G ! Z.p1
/.

Since f .F / is finitely generated, hence a finite subgroup of Z.p1
/, we can as-

sume without loss of generality that f .F / D 0 (by taking a further quotient mod-
ulo the finite subgroup f .F /). This assumption entails F � kerf , so that we get
a surjective homomorphism q W G=F ! Z.p1

/ factorizing f . This is impossible,
since all primary components of the torsion group G=F are bounded.

!rrrooouuuggghhhttt      tttooo      yyyooouuu      bbbyyy      |||      UUUnnniiivvveeerrrsssiiitttaaa      dddeeegggllliii      SSStttuuudddiii      dddiii      PPPaaadddooovvvaaa
AAAuuuttthhheeennntttiiicccaaattteeeddd      |||      111444777...111666222...222222...222000333

DDDooowwwnnnllloooaaaddd      DDDaaattteee      |||      111111///222666///111333      333:::222444      PPPMMM



926 D. Dikranjan, A. Giordano Bruno, L. Salce and S. Virili

One can easily see that a group is divisible precisely when it admits no maximal
proper subgroups. Using this fact, the following further condition, equivalent to
those of Theorem 3.5, was given in [8]: there exists a subgroup N of G such that
G has no maximal proper subgroups containing N .

From Theorem 3.5 we obtain a complete description of the almost orthogo-
nal pairs.

Theorem 3.6. Let .G;D/ be a pair of groups, with D non-trivial divisible.

(a) If the pair .G;D/ is almost orthogonal, then:

(a1) rk.G/ and �.G;D/ are finite,

(a2) for all p 2 �.G;D/, tp.G/ is bounded and one has either rp.G/ < 1
or rp.D/ < 1.

(b) If G is torsion, conditions (a1) and (a2) are also sufficient for .G;D/ to be
almost orthogonal.

(c) If the pair .G;D/ is almost orthogonal and G is not torsion, then:

(c1) D is torsion,

(c2) for every free subgroup F of G of maximal rank, .G=F /p is bounded for
all primes p such that rp.D/ > 0 and �.G=F;D/ is finite.

(d) If G is not torsion, conditions (a1), (a2), (c1) and (c2) are also sufficient for
.G;D/ to be almost orthogonal.

Proof. (a) The finiteness of rk.G/ follows immediately from the proof of the im-
plication (d) ) (a) in Theorem 3.5. If �.G;D/ is infinite, one can easily pro-
duce a homomorphism ˛ 2 Hom.G;D/with infinite image; this implies finiteness
of �.G;D/. If tp.G/ is unbounded for some p 2 �.G;D/, then by Theorem 3.5
there exists a surjective homomorphism ˇ W G ! Z.p1

/which produces a homo-
morphism ˛ 2 Hom.G;D/ with infinite image. Finally, if both rp.G/ and rp.D/
are infinite, then there exists a homomorphism � W GŒp� ! DŒp� with infinite im-
age, that can be extended to a homomorphism ˛ 2 Hom.G;D/with infinite image.

(b) Take any homomorphism ˛ 2 Hom.G;D/. Split ˛ into its finitely many
non-trivial restrictions p̨ on the p-primary components with p 2 �.G;D/. For
a fixed p 2 �.G;D/, Im. p̨/ is a bounded subgroup of Dp. Moreover, our hy-
pothesis ensures that either the domain of p̨ is finite, or rp.D/ is finite; thus in
both cases Im. p̨/ is finite.

(c) The assumption that the pair .G;D/ is almost orthogonal ensures that
rk.G/ D n is finite, by (a), and the assumption that G is not torsion ensures that
n > 0. Then (c1) is obvious. To prove (c2), fix a free subgroup F of G of rank n.
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Fully inert subgroups of divisible Abelian groups 927

Assume that rp.D/ > 0 for some prime p, while the p-primary component Hp

of G=F is unbounded. Then by Theorem 3.5 there exists a surjective homomor-
phism G ! Z.p1

/, which gives a homomorphism ˛ 2 Hom.G;D/ with infi-
nite image, a contradiction. Now assume that �.G=F;D/ is infinite. For every
p 2 �.G=F;D/ there exists a non-trivial homomorphism p̨ 2 Hom.Hp;Dp/.
This gives rise to a homomorphism ˛

0 W G=F ! L
p Dp 6 D with infinite image.

Composing with the canonical projection G ! G=F one gets a homomorphism
˛ 2 Hom.G;D/ with infinite image, a contradiction. This proves that �.G=F;D/
is finite.

(d) Let conditions (a1), (a2), (c1) and (c2) hold true. By hypothesis, one has
rk.G/ D n > 1. Then conditions (c1) and (c2) guarantee that for every free sub-
group F of rank n of G the pair .G=F;D/ is orthogonal. For any homomorphism
˛ 2 Hom.G;D/ one can find a free subgroup F of rank n of ker˛, since D is
torsion. Therefore, ˛ factorizes through ˛1 W G=F ! D. Since Im.˛1/ is finite,
Im.˛/ is finite as well.

The next results provide some necessary conditions for a subgroup G of a di-
visible group D to be fully inert.

Lemma 3.7. Let G be a fully inert subgroup of a divisible group D. Then G
contains all divisible subgroups D0 of D admitting a surjective homomorphism
G ! D0.

Proof. Let D0 be a divisible subgroup of D and let  W G ! D0 be a surjec-
tive homomorphism. By the divisibility of D, one can extend  to an endomor-
phism � W D ! D that obviously satisfies D0 � �.G/. Since G is fully inert,
.G C �.G//=G is finite. On the other hand,

.G C �.G//=G � .G CD0/=G Š D0=.D0 \G/:
Since D0=.D0 \G/ must be divisible, this is possible only if D0 � G.

Lemma 3.7 makes it relevant again to know when a given group G admits non-
trivial divisible quotients and which divisible groups can be obtained as quotients
of G. This was described in Theorem 3.5 above and allows us to prove some of
the most relevant necessary conditions satisfied by fully inert subgroups of divisi-
ble groups.

Theorem 3.8. LetG be a proper fully inert subgroup of a divisible groupD. Then:

(a) G has finite (torsion-free) rank,

(b) if G has as a quotient an unbounded p-group for some prime p, then G con-
tains the p-primary component of D.
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Proof. (a) Let us assume, by way of contradiction, that rk.G/ is infinite. According
to Theorem 3.5, for every countable divisible subgroupD0 ofD there exists a sur-
jective homomorphism G ! D0. By Lemma 3.7 this yields D0 � G. Since D is
generated by its countable divisible subgroups, this proves that G D D, a contra-
diction.

(b) Suppose that the quotientG=H is an unbounded p-group for some prime p.
By Theorem 3.5, there exists a surjective homomorphism G ! Z.p1

/. Hence,
applying again Lemma 3.7, we can conclude that G contains all subgroups of D
isomorphic to Z.p1

/. Since the p-primary component ofD is generated by these
subgroups, we are done.

4 Properties of the inert groups related to direct sums

The aim of this section is to investigate fully inert subgroups of finite direct sums
of divisible groups D D D1 ˚ � � � ˚Dn; the subgroups of D of the form

G D G1 ˚ � � � ˚Gn;

with Gi a subgroup of Di for all i , are called box-like subgroups. From this in-
vestigation we will derive the characterization of inert torsion-free groups (Theo-
rem 4.9) and the fact that inert mixed groups are splitting (Theorem 4.10).

Recall that a torsion-free group H of rank n (n 2 NC) is completely decom-
posable if H D A1 ˚ � � � ˚ An, where Ai has rank 1 for every i D 1; : : : ; n. The
group H is almost completely decomposable if it has a completely decompos-
able subgroup of finite index. A torsion-free group is homogeneous if all its rank-
one pure subgroups have the same type. Thus, a completely decomposable group
A1 ˚ � � � ˚ An is homogeneous if Ai Š Aj for all i; j 2 ¹1; : : : ; nº.

The next lemma shows that the study of fully inert subgroups of finite direct
sums of divisible groups can be reduced to box-like subgroups.

Lemma 4.1. Let D1; : : : ;Dn be divisible groups and let H be a subgroup of
D D D1 ˚ � � � ˚Dn. Let Ai D H \Di for i D 1; : : : ; n and A D A1 ˚ � � � ˚An.
Then the following conditions are equivalent:

(a) H is fully inert.

(b) ŒH W A� < 1 and A is fully inert.

Proof. Clearly, we may assume that n D 2; the general case follows by induction.
Denote by �i (i D 1; 2) the canonical projection ofD ontoDi . Assume thatH

is fully inert. Then the quotients

�i .H/=.H \ �i .H// Š .H C �i .H//=H
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Fully inert subgroups of divisible Abelian groups 929

are finite for i D 1; 2, as each �i can be considered also as an endomorphism ofD.
Then their quotients �i .H/=Ai are finite for i D 1; 2. Since H=A is contained
in .�1.H/˚ �2.H//=A Š �1.H/=A1 ˚ �2.H/=A2, we conclude that H=A is
finite. By Lemma 2.8, A is fully inert.

If ŒH W A� < 1 and A is fully inert, again Lemma 2.8 implies that H is fully
inert.

Now we characterize the fully inert box-like subgroups of finite direct sums of
divisible groups.

Proposition 4.2. Let D1; : : : ;Dn be divisible groups and let Gi be a subgroup
ofDi for i D 1; : : : ; n. ThenG D G1˚� � �˚Gn is fully inert inD D D1˚� � �˚Dn

if and only if

(a) the subgroup Gi is fully inert in Di for i D 1; : : : ; n,

(b) for every pair of indices i ¤ j , .Gi ;Dj / is relatively almost orthogonal with
respect to Gj .

Proof. We assume again that n D 2; the general case follows by induction. As-
sume first that G is fully inert in D.

(a) To prove that the subgroupG1 is fully inert inD1 consider an endomorphism
�

0 W D1 ! D1 and extend it to an endomorphism � W D ! D by letting � vanish
on D2. Then G C �.G/ D .G1 C �

0
.G1//˚G2, hence

.G1 C �
0
.G1/=G1 Š ..G1 C �

0
.G1//˚G2/=.G1 ˚G2/ D .G C �.G//=G

is finite, as G is fully inert in D. Analogously one checks that G2 is fully inert
in D2.

(b) To prove that the pair .G2;D1/ is relatively almost orthogonal with re-
spect toG1, assume that for some homomorphism ˛ 2 Hom.G2;D1/ the quotient
Im.˛/=.Im.˛/ \G1/ Š .G1 C ˛.G2//=G1 is infinite. Extend ˛ to a homomor-
phism ˛1 W D2 ! D1 and extend ˛1 to an endomorphism � W D ! D letting �
vanish on D1. Then

�.G/ D ˛.G2/;

so .G C �.G//=G D ..G1 C ˛.G2//˚G2/=.G1 ˚G2/ Š .G1 C ˛.G2//=G1 is
infinite. This contradicts the hypothesis thatG is fully inert inD. Analogously one
checks that .G1;D2/ is relatively almost orthogonal with respect to G2.

Now assume that (a) and (b) are fulfilled. Let �1 W D ! D1 and �2 W D ! D2

be the canonical projections, and let � W D ! D be an endomorphism. Then,
with a little abuse of notation, we can write � as a sum � D �1 C �2 C �3 C �4,
where �1 W D1 ! D1, �2 W D2 ! D2, �3 W D2 ! D1 and �4 W D1 ! D2. From
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the equality
G C �.G/

G
D G1 C �1.G1/C �3.G2/

G1
˚ G2 C �2.G2/C �4.G1/

G2

we get the conclusion. Indeed, .G1 C �1.G1//=G1 and .G2 C �2.G2//=G2 are fi-
nite because of (a). The finiteness of .G1 C �3.G2//=G1 and .G2 C �4.G1//=G2

is ensured by (b).

As a first corollary we obtain a complete description of when a direct sum of
groups is inert.

Corollary 4.3. A finite direct sum of groups G D G1 ˚ � � � ˚Gn is inert if and
only if

(a) all subgroups Gi are inert,

(b) for every pair of indices i ¤ j , .Gi ;D.Gj // is relatively almost orthogonal
with respect to Gj .

Proof. Apply Proposition 4.2.

Remark 4.4. It is worth observing that a subgroup G of a divisible group D is
fully inert exactly if it is relatively almost orthogonal with respect to itself. So
Proposition 4.2 and Corollary 4.3 could be stated just using conditions (b) for
all indices i and j , possibly equal. We prefer the presentation given, as it allows
a clear proof.

From Proposition 4.2 we obtain the following immediate consequence.

Corollary 4.5. For a subgroup G of a divisible group D the following conditions
are equivalent:

(a) G is fully inert in D.

(b) Gn is fully inert in Dn for all n 2 NC.

(c) There exists an n 2 NC such that Gn is fully inert in Dn.

We shall see in the sequel that direct sums of two inert groups need not be inert.
Nevertheless, taking D D D.G/ in the above corollary, we get a positive result as
far as finite direct powers are concerned.

Corollary 4.6. For every group G the following conditions are equivalent:

(a) G is inert.

(b) Gn is inert for all n 2 NC.

(c) There exists an n 2 NC such that Gn is inert.
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Example 4.7. According to Example 2.4, every rational group is inert. Hence
Corollary 4.6 implies that every finite rank homogeneous completely decompos-
able group is inert. We shall see in Theorem 4.9 that these groups are the only inert
torsion-free groups.

We need first the following result providing a complete description of the fully
inert subgroups A of finite direct sums Dn of a divisible group D. According to
Lemma 4.1, it is not restrictive to assume that A is a box-like subgroup.

Proposition 4.8. Let D be a divisible group, let A1; : : : ; An be subgroups of D
(with n > 2), and let A D A1 ˚ � � � ˚ An � D

n. Then the following conditions
are equivalent:

(a) A is a fully inert subgroup of Dn.

(b) All subgroups Ai are fully inert in D and pairwise commensurable.

(c) There exists a fully inert subgroup A0 of D such that A is a finite extension of
(hence, commensurable with) An

0 .

Proof. (a) ) (b) Assume that the subgroupA is fully inert. Then the subgroupsAi

(i D 1; : : : ; n) are fully inert in D by Proposition 4.2. Fix two different indices i
and j . Then .Ai ;D/ must be relatively almost orthogonal with respect to Aj by
Proposition 4.2. Taking as a test homomorphism the inclusion Ai ,! D, we de-
duce that Ai=.Ai \ Aj / is finite. Similarly one proves that Aj =.Ai \ Aj / is finite,
so Ai and Aj are commensurable.

(b) ) (c) Assume that Ai (i D 1; : : : ; n) are pairwise commensurable and fully
inert in D. Then A0 D A1 \ � � � \ An is fully inert in D by Lemma 2.8, so An

0 is
fully inert in Dn from Corollary 4.5. As An

0 has finite index in A, we deduce that
A is commensurable with An

0 .
(c) ) (a) It follows from Corollary 4.5 that An

0 is a fully inert subgroup of Dn.
Now Lemma 2.8 applies.

We can now describe the inert torsion-free groups H . It turns out that they
are not commensurable with the only fully invariant subgroup of their divisible
hull D.H/, which is, by Fact 3.1, D.H/ itself. This is a remarkable difference
with respect to the torsion case (see next Theorem 5.3).

Theorem 4.9. A torsion-free groupH is inert if and only if it is either divisible, or
completely decomposable homogenous of finite rank.

Proof. Divisible groups are trivially inert, so the sufficiency follows from Exam-
ple 4.7. To check the necessity, assume that H is inert. It suffices to consider
the case when H is not divisible. In view of Theorem 3.8, H has finite rank n.
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By Lemma 2.6, we can assume without loss of generality that H is fully inert
in Qn. Then, by Lemma 4.1 and Proposition 4.8,H is a finite extension of a group
of the form A

n, where A is a rational group. This means that H is almost com-
pletely decomposable. To conclude, it suffices to recall the well-known fact that
a finite extension of a completely decomposable homogeneous group is again com-
pletely decomposable homogeneous (see [12], [10, Theorem 86.6]).

As an application of Lemma 4.1 and Corollary 4.3, we show that any inert mixed
group G splits.

Theorem 4.10. If G is an inert group, then G D t .G/˚H and

(a) the subgroups t .G/ and H are both inert groups,

(b) moreover, .H;D.t.G/// is relatively almost orthogonal with respect to t .G/.

Conversely, if G D t .G/˚H is a splitting group satisfying (a) and (b), then G is
inert.

Proof. LetD D t .D/˚D1 be the splitting decomposition of the divisible hullD
ofG. In order to prove thatG is splitting, it is enough to note that t .G/˚.G\D1/

has finite index in G, according to Lemma 4.1. Now the conclusion follows from
a result by Procházka [13], stating that finite extensions of splitting groups are still
splitting (see also [10, vol. II, Exercise 2, p. 188]), and (b) follows from Corol-
lary 4.3.

The sufficiency follows directly from Corollary 4.3, noting that

Hom.t.G/;D1/ D 0;

so that .t.G/;D1/ is almost orthogonal (so also relatively orthogonal with respect
to any subgroup of D1).

5 Characterization of the inert groups

In this section we continue the step-by-step description of the inert groups that
started with the torsion-free case in Theorem 4.9 above. The torsion case will be
tackled in Section 5.1 and the mixed case will be concluded in Section 5.2, making
use of Theorem 4.10.

5.1 Inert torsion groups

By Corollary 2.10, every group G which is commensurable with some fully in-
variant subgroup of D.G/ is inert. The main goal of this subsection is to show that
the groups obtained in this way cover all possible inert torsion groups.
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Fully inert subgroups of divisible Abelian groups 933

Lemma 5.1 characterizes, in terms of Ulm–Kaplansky invariants, the p-groups
that are commensurable with a fully invariant subgroup of their divisible hull. For
the notion of Ulm–Kaplansky invariants and their connection with direct sum of
cyclic groups we refer to [10].

Lemma 5.1. Let G be a reduced p-group with divisible hull D.G/ D D. The fol-
lowing facts are equivalent:

(a) There exists an n 2 NC such that G and DŒpn
� are commensurable.

(b) There exists an n 2 NC such that DŒpn
�=GŒp

n
� and G=GŒpn

� are finite.

(c) G is bounded with at most one infinite Ulm–Kaplansky invariant.

(d) G is commensurable with a fully invariant proper subgroup of its divisible
hull.

Proof. (a) , (b) This is an immediate consequence of the definition of commen-
surable subgroups, taking into account that DŒpn

� \G D GŒp
n
�.

(b) ) (c) The hypothesis that the quotient G=GŒpn
� is finite ensures that G

is bounded, so that there exists a positive integer k such that G D L
16i6k Bi

with Bi Š Z.pi
/
.˛i /, where the ˛i are the Ulm–Kaplansky invariants of G. Then

DŒp
n
�=GŒp

n
� finite ensures that ˛i is finite for each 0 < i < n, while G=GŒpn

�

finite ensures that ˛i is finite for each i > n, hence only ˛n is possibly infinite.
(c) ) (d) Let G D L

16i6k Bi with Bi Š Z.pi
/
.˛i /, as above. If all the ˛i are

finite, i.e., if G is finite, then G has finite index in DŒpk
�. If ˛n is infinite for

some 1 6 n 6 k and all the remaining invariants are finite, then both G=GŒpn
�

and DŒpn
�=GŒp

n
� are finite, so we are done.

(d) ) (a) Follows from the fact that DŒpn
� (n 2 NC) are the only proper fully

invariant subgroups of D (see Fact 3.1).

We can now give the characterization of inert p-groups.

Theorem 5.2. A p-group G is inert if and only if it is either divisible or bounded
with at most one infinite Ulm–Kaplansky invariant.

Proof. If G is divisible, then it is obviously inert; furthermore, if G is bounded
with at most one infinite Ulm–Kaplansky invariant, it is commensurable with
a fully invariant subgroup of D.G/, according to Lemma 5.1. Hence G is inert,
by Corollary 2.10.

Conversely, suppose G is inert and not divisible. Then G is bounded by Theo-
rem 3.8(b). Thus, we can writeG D L

16i6k Bi , whereBi Š Z.pi
/
.˛i /, k 2 NC

and the ˛i are suitable cardinals for all i . To conclude the proof, we have to show
that at most one ˛i is infinite. Suppose, looking for a contradiction, that ˛i and j̨
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are infinite for some i < j . Let B 0
i 6 Bi and B 0

j 6 Bj be countable direct sum-
mands, and let �0 W D.B 0

j / ! D.B
0
i / be an isomorphism. Extend �0 to an endo-

morphism � W D.G/ ! D.G/ and notice that the infinite group

Z.pj �i
/
.N/ Š D.B

0
i /Œp

j
�=B

0
i D �.B

0
j /=B

0
i

D �.B
0
j /=�.B

0
j / \G Š .G C �.B

0
j //=G

embeds into .G C �.G//=G, contradicting the fact that G is inert.

An inert p-group G can be written, in a unique way up to isomorphism, in the
form

G D F ˚ Z.pi
/
.˛/
;

where 1 6 i 6 1, ˛ is a positive cardinal, F is a finite group such that:

(a) if i D 1, then F is zero,

(b) if i < 1, then F has no summands isomorphic to Z.pi
/,

(c) if both i and ˛ are finite, then pi�1
F D 0 (i.e., ˛ equals the Ulm–Kaplansky

invariant of maximal index).

We say that the inert p-group G is then written in its canonical form.
Passing to the global case, we can derive easily the characterization of inert

torsion groups.

Theorem 5.3. For a torsion group G the following conditions are equivalent:

(a) G is inert.

(b) Each p-primary component Gp of G is an inert p-group, and all but finitely
many of them are either divisible or have a single non-zero Ulm–Kaplansky
invariant.

(c) G is of the form
G Š F ˚

M

p2P.G/

Z.pmp /
.˛p/

;

where F is a finite group, mp 2 NC [ ¹1º and the p̨ are positive cardinals
for each p 2 P.G/, Fp D 0 whenevermp D 1, and Fp ˚ Z.pmp /

.˛p/ is the
canonical form of Gp.

(d) G is commensurable with a fully invariant subgroup of its divisible hull.

Proof. (a) ) (b) The proof that Gp is an inert p-group for every prime p is
straightforward. So each Gp is either divisible, or bounded with at most one infi-
nite Ulm–Kaplansky invariant, by Theorem 5.2. The p-components Gp which are
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bounded with more than one non-zero Ulm–Kaplansky invariant are not fully in-
variant in their divisible hullD.Gp/; for these p, there exists an endomorphism �p

of D.Gp/ such that the quotient .Gp C �p.Gp//=Gp is non-trivial. If this occurs
for an infinite set of primes p, it gives rise to the endomorphism � D L

p �p

of D.G/ D L
p D.Gp/, such that .G C �.G//=G is infinite, a contradiction.

The implications (b) , (c) ) (d) are obvious, and (d) ) (a) follows by Corol-
lary 2.10.

We have seen in Theorem 4.9 that item (d) fails to be true in the case of inert
torsion-free groups; we will see in Remark 5.6 that item (d) fails also for inert
mixed groups.

When the inert torsion group G is written as in Theorem 5.3 (c), we say that G
is in its canonical form; note that all themp and p̨ are uniquely determined byG,
and F is unique up to isomorphism. For the purposes of Section 5.2, we introduce
the following convention:

Definition 5.4. For an inert torsion group G D F ˚ L
p2P.G/ Z.pmp /

.˛p/ writ-
ten in its canonical form, we define the induced type Œm�

p�p2P as follows:

m
�
p D

´
mp for p 2 P.G/,
1 for p … P.G/.

5.2 Inert mixed group

Our aim in this subsection is to obtain a complete description of the inert groups
in the mixed case.

Theorem 5.5. A mixed group G is inert if and only if either G is divisible, or the
following conditions are satisfied:

(a) G D T ˚H is splitting, where T is a torsion group and H is a torsion-free
group,

(b) T D F ˚ L
p2P Z.pmp /

.˛p/, where F is a finite group, P is a set of primes,
mp 2 NC [ ¹1º and the p̨ are positive cardinals for each p, and Fp D 0

whenever mp D 1,

(c) H Š A
n, where A is a rational group of type �.A/ D Œkp�,

(d) Œkp� 6 Œm
�
p�.

Proof. Let us assume thatG is not divisible and letD D D.G/ be the divisible hull
of G. First, assume G inert, so that G has finite torsion-free rank by Theorem 3.8.
By Proposition 4.10, (a) holds and both T and H are inert groups. Therefore (b)
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and (c) follow by Theorem 5.3 and Theorem 4.9, respectively. Clearly, we can
identify t .D/ with D.T /, and write D D t .D/˚D1, where D1 D D.H/. Our
next aim is to show that (d) is equivalent to asking .H; t.D// to be relatively
almost orthogonal with respect to T . According to Theorem 4.10 (ii), this will
imply the validity of (d), in case G is inert.

Indeed, (d) fails when either kp D 1 andmp < 1 for some prime, or kp > mp

for infinitely many primes p. In both cases there exists a homomorphism

˛ W
M

p

Z.pkp / ! t .D/

such that Im.˛/=.Im.˛/ \ T / is infinite.
Since there exist epimorphisms

H ! A !
M

p

Z.pkp /;

calling  W H ! t .D/ the composition of these epimorphisms with ˛, we get that
Im. /=.Im. / \ T / is infinite, witnessing that .H; t.D// fails to be relatively
almost orthogonal with respect to T whenever (d) fails.

Let us assume now that (a), (b), (c), (d) hold true. By Theorem 4.9 and The-
orem 5.3, (b) and (c) imply that T and H are inert groups. Let us consider a
homomorphism ˛ W H ! t .D/. Since t .D/ is torsion, ker˛ ¤ 0. We can assume
without loss of generality that Z is contained in ker˛, so

˛.A/ Š A= ker˛ D
M

p

Z.plp /;

with Œlp� 6 Œkp�. Then (d) yields Œlp� 6 Œm
�
p�. This means that ˛.A/=.˛.A/ \ T / is

finite. Hence, .H; t.D// is relatively almost orthogonal with respect to T . There-
fore G is inert, according to Proposition 4.10.

Remark 5.6. If G is a inert mixed non-divisible group, then G cannot be com-
mensurable with any fully invariant subgroup of D.G/, as they are all torsion, by
Fact 3.1. This shows that no counterpart of Theorem 5.3 (d) remains valid in the
mixed case.

The groups satisfying only the hypotheses (b), (c) and (d) of Theorem 5.5 do
not split, in general, as the next example shows.

Example 5.7. Every Abelian groupG with t .G/ Š L
p2P Z.p/ andG=t.G/ D A

of rank one and type �.A/ D Œ1; 1; 1; : : : � satisfies the hypotheses (b), (c) and (d)
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Fully inert subgroups of divisible Abelian groups 937

of Theorem 5.5. We will show that there are 2@0 non-isomorphic groups G with
these properties; only the splitting group among them is inert. From the exact
sequence

0 ! Z ! A !
M

p

Z.p/ ! 0

we derive the long exact sequence

HomZ

�
Z;

M

p

Z.p/
�

! Ext1Z

�M

p

Z.p/;
M

p

Z.p/
�

! Ext1Z

�
A;

M

p

Z.p/
�

! Ext1Z

�
Z;

M

p

Z.p/
�

D 0:

The first group in the above sequence is isomorphic to
L

p Z.p/, so it is countable;
the second group has cardinality the continuum, since it is isomorphic to

Q
p Z.p/,

so the third group, consisting of the isomorphism classes of the groupsG satisfying
the properties described above, also has cardinality the continuum.

6 Characterization of fully inert subgroups of divisible groups

The complete characterization of inert groups now makes possible the solution of
problem (P2) posed in Section 3, namely, characterize the pairs of groups .G;D/
with G inert and D divisible, such that Im.˛/ is finite for every homomorphism
˛ W G ! D (that is, almost orthogonal).

Theorem 6.1. Let G be a non-divisible inert group and D a divisible group. Then
the pair .G;D/ is almost orthogonal if and only if the following assertions hold:

(a) If G Š F ˚ L
p2P Z.pmp /

.˛p/ is torsion and in its canonical form, then:

(a1) if mp D 1, then rp.D/ D 0,

(a2) if p̨ is infinite, then rp.D/ is finite,

(a3) rp.D/ D 0 for almost all p 2 P (i.e., �.G;D/ is finite).

(b) If G Š A
n is torsion-free, where A is a rational group of type �.A/ D Œkp�,

then:

(b1) D is torsion,

(b2) rp.D/ D 0 for almost all p such that kp > 0,

(b3) rp.D/ D 0 for all p such that kp D 1.

(c) If G is mixed, then D satisfies all conditions stated in (a) and (b) above.
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Proof. The proof is a straightforward application of Theorem 5.5, which gives the
structure of the inert group G, and Theorem 3.6, giving the equivalent conditions
for .G;D/ to be an almost orthogonal pair in this case.
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