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Abstract. — Given the abelian p-group M = (a) B {(b)DC, where |a| =p™= |b] =p™>exp C=
=p*>1, set RIM)={@eP(M)|H?=H, ¢|Q,M)=1}. Our main result is the exist-
ence of a well determined isomorphism of R(M) onto o well defined subgroup of

n—-—m
1 PRG""*""R, _,) X PR(PR,,).

Introduction.

Let M be an abelian p-group of finite exponent, p” say, and P(M) its group of auto-
projectivities, that is the group of automorphisms of the subgroup lattice I(M) of M. In
case a basis of M contains at least 3 elements of order p”, a well known result of R.
Baer [1] states that every autoprojectivity of M is linear, that is it is induced by a group
automorphism; on the other hand if the rank of M is less than 3 the elements of P(M)
have been completely described in terms of automorphisms of the poset C(M) of the
cyclic subgroups of M [2].

The purpose of the present paper is to bridge the gap, that is to give a description of
the autoprojectivities of M in the case M has the following structure: M = H & C where
H=(a)® (b)with p" = |a| = |b| =p™=p®=expC # 1, and where either |a| > |b| or
|a] = |b| and s <n. For a fixed prime p, we shall call such a p-group an (n, m, s)-
group, or simply an (%, s)-group in case m = n.

In dealing with the group P(M), to begin with, we show that P(M) is a product of
two permutable subgroups, P(M) = RPA(M), with R N PA(M) =1, where PA(M) is
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and Statisties, Bachelor Hall, Miami University, Oxford, Ohio 45056 (USA).
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the group of linear autoprojectivities of M. The main concern in this paper will be to es-
tabhsh a very useful representation theorem of K as well determined subgroup of P =

H PR(p" * ™R, _.) x PR(pR,,), where R, = =Z/p®Z and PR(p" R,) is the group of

automorphlsms of the poset R(p”R,) of the cosets of p“R,.

The analysis needed to reach our conelusion is quite involved and complex. The pa-
per is divided in five sections.

In the first section we establish the above mentioned factorization, derive some use-
ful propositions and show that R can be embedded in P(H). In the second section it is
shown that the subgroup Py,m-14,(H) of P(H) which stabilizes (p™~'b) is isomorphic to
P. In the third section we introduce a convenient subgroup @ of P and show that R em-
beds in @. In the fourth section we deal with the case » = m and show that the embed-
ding is actually an isomorphism. Finally in the fifth section we prove that in general the
embedding is an isomorphism.

Our notation is standard, relying essentially on [3], [4] and [5]. f X <Y <G, X <Y
means that X is a maximal subgroup of Y.

U(R,) is the group of units of the ring R, =7%/p" Z.

1. = Preliminaries.

Given an abelian p-group M of finite exponent p”, it will be convenient to view M as
a Z-module as well as an E,-module.

For later references, let us define some specific subgroups of P(M) for a given
abelian p-group M. For X <M and a given integer s we set respectively

Px(M)={oeP(M)|X°=X}, R,M)={0oePM)|o|R,(M)=1}.

In the case M=H&C is an (n, m, s)-group, R(M) denotes the group {oe
eR,(M)|H®=H}. If (a, b) is a basis of H, @ = ({(a), (b)) will be called the frame associ-
ated to (a, b), and = (p™~ ™a + b) a unit point; we set

Ro(M)={eeRM)|a®=a}, Rq (M) ={oecRa(M)|u®=u}.

We begin with a statement whose proof is straightforward.

(1) Let M =A+ B be an abelian p-group of finite exponent, with exp B=exp(4 N
N B) = p*®, and p*~ ' A not cyelic. Then for given a, 8 in PA(M) we have a = § if and
only if a|/A=p|A and a|B=§|B. =

1.1. THEOREM. — Let M = H& C be an (n, m, s)-group, (a, b) a basis of H with asso-
ciated frame @ and unit point u. Then

P(M) = Ra, (M) PAM),  Ra,,(M)NPAGM) =1.

Proor. - Let (c;) be a basis of C; then for a given ¢ in P(M) there exists o in PA(M)
such that for 7= @a we get A" =d, u" =u, (¢;)" = (¢;). Now 7|2 ,(M) e PA(Q ,(M)),
so 7|2 ,(M) is 1nduced by an automorphism of the form 1@y, where y is in Aut C.
Set B=1@y ! in Aut M; then (with the obvious abuse of notation) z8 = (paﬁ lies in
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Rg, (M), and ¢ is in Ry ,(M)PA(M). If now g e Rq ,(M) N PA(M), it is clear that
o|H=1 and ¢|R2,(M)=1. Hence p=1by (1). =

From (1.1) also follows the relation
@) R(M) =R, ,(M)(PA(M)NR(M)) .

Given an abelian p-group M, $(M) shall denote the set of all maximal eyclic sub-
groups of M. Assume (a) <A <M, we define
V{a)s := (X| X e P(A),(a) S X).

So expV{a)sa= |a|p"®, h(a) being the height of a in A [3], hence also (a)=

=p" V(o).
It follows that

(8) for ¢ in P(M), {(a)® = (a) if \/{(a)j =V(a)s, and conversely provided A?=A. In
the case A = M, we simply write \/{a).

We recall that if H is a homocyclic abelian p-group of rank 2, then 6: (x) —V/(x) can be
extended (in a unique way) to an autoduality of H [6]; we shall refer to it as the expand-
ing autoduality of H. A useful property of J is the following one.

1.2. PrROPOSITION. — Let H be a homocyclic abelian p-group of rank 2, 6 its expand-
ing autoduality and y in P(H). Then y0 = dy.

PROOF. — (x)0x = (V(x)* = V(x)* = (x)yo. =
It follows in particular that

(4) for given t>0, x|Q,(H) and y|H/p*'H are equivalent since Q,(H) is dual to
H/p'H.

Next we give two criteria for extending autoprojectivities.

1.8. PROPOSITION ([4]). — Let M be an abelian p-group of exponent p™ with p™~ ' M of
order p and (91, @2) in P(2,_1(M)) x P(M/p"~' M). Then there exists a unique @ in
P(M) such that ¢|2,_,(M)=¢, and ¢|M/p" M =@, if and only if

91|, D) p" T M =¢5 |2, /p" M. =

1.4. PROPOSITION. — Let M be an abelian p-group of exponent p™, with p™~ 1M of or-
P
der p% and (9o, @1, ..., ¢, 0) bein [ P(VX;) x P(M /p™~* M), where X,, ..., X, are
i=0

the minimal subgroups of p™~ M. Then there exists a unique @ in P(M) such
that

e|VXi=¢: and @|M/p" ‘M=o
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if and only if

(%) ¢i|9n—1(M)=¢j|Qn—l(M),
(%) v [VXi/p" M =o|VX;/p" ' M .

PROOF. — Necessity. For i = j we get VX; N\/X; = 2,,_,(M). Hence ¢; |2,,_,(M)
= @|Qu (M) = ¢;|Q2,_,(M); moreover ¢;|VX;/p"'M = ¢|VX/p" M=
=o|VXi/p ' M.

Sufficiency. Given (¢q, @1, ..., @, 0) define

@)

o - T9 if T<VX, for some i,
T?  otherwise .

Similarly for (¢q?, @1, ..., ;% 07") define @’

a) @ and @' are well defined bijections: if T < VX, T< \/)_(; for i#j, then
T<Q,.1(M),so0 T?%=T%.If T VX, for every i, then p" ' M < T. Similarly for ¢'.
But now @@’ =¢'@ =1, so that ¢ and ¢’ are bijections.

b) ¢ and ¢' preserve inclusions. Let T) < T, <M.
b)) T:<VX, Then T =T} < Ty =Tg;
by) Ty <VX; and p" *M < Ty; then T, < T, +p" *M < T; hence

TP =T < (Ty+p" MY = (T, +p" ' MP < TF = T ;
by) p" 1M <T;; then
TP =T<Ts=TJ.
Similarly for ¢'.
Therefore @ is an autoprojectivity with (p|\/X’i =@;and ¢|M/p" 'M=9. ®
We end this paragraph with an analogue to (1).

1.5. THEOREM. — Let M = H® C be an (n, m‘, s)-group and 5, ¥ in P(M). Then n =17
if and only if n|H =90|H and n|Q,(M) = 3|2 (M).

PROOF. — Set o = 79 1. We have to show that ¢ = 1. Set » = "(M) = n — s; we begin
with r=1.
a) |p”‘1M| =p. We have ¢|Q,, (M) =1, and by (1), with A =H/p”“1M and
B=Qn_1(M)/p”‘1M, Q|M/p”‘1M= 1; 80 by 1.3 o=1.
b) |p" M| =p% Let 0 <X<p"“ 'M; by a), o| VX =1, hence o =1.
We now assume 7 >1 and use induction.
a) [p”‘1M| = p, Since (R ,_,(M)) =r — 1, by induction ¢|£,_(M) = 1. Since
QM/p*IM)<Q,(M)/p" 'M, 0|Q,(M/p" 'M)=1; thus by induction
o|M/p" 'M =1 and so, by 1.3, o=1.
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b) |p" M| =p% 0|R2,-1(M) =1, by induction, hence ¢|2,_,(VX)=1 for
0 <X<p" M. Since 2,(VX/X) <2, ,(VX) /X, 0]Q,(VX/X) = 1; thus by induc-
tion @|V/X/X =1, hence o| VX =1 by 1.3; therefore o =1. ®

1.6. COROLLARY. — Let M=H&C be an (n, m, s)-group. Then the restriction
map

y: R(M)—>R,(H), ¢ — ¢|H
is @ monomorphism. M

Proposition 1.5 tells us that a ¢ in P(H) can be lifted to a ¢ in P(M) satisfying pre-
scribed values on 2 ,(M) in at most one way. Actually our main purpose is to character-
ize the image of R(M) under v.

2. — A description of the autoprojectivities of R, (H).

Let H be a 2-generated abelian p-group. We then know that if C(H) is the poset of
all cyclic subgroups of H, the map

®) fi PH)—AwtC(H), x—yx|CH)

defines an isomorphism [2]; this canonical identification of the two groups will be un-
derstood whenever it turns out convenient. We also recall the known fact

(6) if K<H and H is homocyclic, then any y in Aut C(K) extends to a ¥ in AutC(H) [2].

Given an (n, m, s)-group M = H & C, to describe for a given ¢ in R(M) its action on
H, it will be convenient to consider M embedded as a subgroup in a (n, s)-group
M = H&®C. Given a basis (a, b) of H, where we assume |a| =p", we choose one
(@, b) for H such that (a, b) = (@, p™~ ™), while for Q,_,(H), 0 <k <n—m, we pick
(ax, by) = (p*a, p*b).

Let n;: B, .,— R, _;_1 be the canonical epimorphism, 3, the canonical module en-
domorphism of R,_, defined by x+~> px. Since kerw,=kerf,=p" ®*VR,_,, we
have the canonical factorization 7, = .7, so that via y, the module pR,_; can be
identified with R, _ 4, 1), as well as PR(pR,,_;) with PR(R,,_ 3, + 1)) via the induced iso-
morphism ¥;: ¢y tey ;= 0'. Since, for a given i in pR,, _;, we have {(a, + ib;) = (a; +
+ (@' p)by) = {(a + 1" 7, pby) = (@ + iy . pby), it follows that

- { (0 + i0by) = (@, + iy w0’ (b)),
(tpag + b)Y = ((iy 1) o' pay, + by)

holds for every ¢ in pR, _,.

Some further observations concerning R, are in order.

We know a given element 1 of the local ring R, can be uniquely represented in its p-
adic expansion i =4+ 4, p+ ... +i,_1p" "', where ;€ {0, 1, ..., p — 1} C R,; obvious-
lyiep®R,ifand only if iy=... =i,_; =0, 1€ U(R,) if and only if iy # 0. Modulo the ob-
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vious identifications we have

(8) iﬂo=i0+i1p+...+in_2pn_2,
(i1p+ . +in,1pn'1)'}/0=i1 + ... +'l.n__1pn~2,

while vo: G+ 4 p+ ... +iy_3p™ 2 dgt i p+ ... +i,_2p" 2+ 0p” ! defines an in-
jection of R,_, into R, such that imyvo=1ig+ 4P+ ... +i,_2p" %

Set @, = Kx)ﬁﬁ?”"‘(H) ||z] =p™ %} and C(%,) = {p'(x)|{(x)e P, 0 St < m};
we have C(H) = kL_JO C(2,).

To describe the action of y e P(H) on C(#,) it will be convenient to introduce coordi-
nates in the set &, with reference to the basis (q, b;) of 2, _.(H).

Pp={({ogx +iby)|iep” " "R, ,} O0<sk<n-m,
Prom=UUV =Gy +iby_ ) |[i€ Ry} U {(itty—p + by ) |i€ R},

UNV={{0y_m+iby_p)|iecWR,)},
U'={{ty-n+iby_p)|iepRy}, V'={{ity-m+by-m)|iecpR,}.
Now the maps

{5,0: pla, +1iby) —i+p" FTmIR, L, Osksn-—m, 0<t<m,

On-m: DOy -y + by gy > i+p™ 'R, 0<t<m,

define antiisomorphisms between the posets C(%,), 0 <k <n—m, C(U), C(V) and
R(p"~*~™R, _,). By restricting ¢ to pR,,, we see that d,,_,, and 6/, _,, define antiiso-
morphisms between C(U'), C(V') and R(pR,,). It follows that the map

n—m—1 "
I AutC(#) x Aut C(U) x Aut C(V) — kHO PR(p"~*~™R,_;) X PR(R,,),
E=0 =

-1 — -1 — -1 —
Xk Hék Xkék_aky Xn—mﬁdn—an—mén-m_an—m7 X;z—m F—)d;b—mx;z—ma;z~m_

=T,_., i an isomorphism.
By restriction we get the isomorphism

[ 1

) e ;ﬁ_ AutC(yk)xAutC(U)xAutC(V')—atcﬁmPR(p”—k-MRn_k)xPR(pRm>.
=0 =0

2.1. REMARK. — The meaning of the automorphisms ¢, in PR(p™ * ™R, _}), Tp—m i
PR(R,,) are best described for a given y in P(H) (provided U* = U, V¥ =V if n = m) by
the relations

(10)

(o + iy = (@ + 0, by), iep” F "R, 4,
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for ¢ in W(R,,), 1Ty—m= (i '0,-n) "L In particular, in the case n =m, o and 7 as ele-
ments of PR(R,) must satisfy anologous relations. =
2.1. LEMMA. — Let H = (a)® (b) be a group with p" = |a| = |b| =p™and 1 <s<sm.
Then
n—-m-—1
&: PH)pr-1y—  [1  AutC(9) X Aut C(U) x AwtC(V') =T,

k=0

X oy s Xn-m—15 X s X v where x5 =x|C(Pp), xu=x|C), xv =x|C(V"), is a
monomorphism. A o in T lies in P(H)yn-1y if and only if

(11) Xe=Xk+1 on C(?k)ﬂC(g)k+1) OSkSn—’m—Z,
Xn-m-1=Xu On C(‘?n—m—l)nC(U),
A o in P(H)?pn-q,) lies in R, (H)® if and only if

(12) xolp™fU=1, xv|p™°V'=1.

ProoOF. - Clearly ¢ is an embedding and (11) and (12) are to be satisfied. Converse-
ly the compatatibility conditions (11) give rise to an automorphism of C(H), so by (5) to
an element y of P(H) which clearly fixes (p™~!b). Moreover y belongs to R,(H) if (12)
is satisfied. =

We may now claim that for a given basis (a, b) of the group H where' p"=|a| =
=z |b]| =p™ and 1 <s<m the map

(13) n="e: Ry(H)—> Il PR(p*""R,_,) x PR(PR)
=0
is a monomorphism.

2.2. THEOREM. — Let 0 = (0¢, ..., Op—ms Tn-m) be an element of
I1 PR(p""*"™R,_,)x PR(pR,,).
k=0

Then o lies in P(H)lyn-1py if and only if
Q) ORTL,=Np0ke1, 0Sk<n—m.
A o in P(H)lyn-1y) lies in R (H)" if and only if

b) i6,=i p°Ry_y, 0<k<n—m,it, =4 p*Rn.

PROOF. = a) Given g, assume there exists a y in P(H),»-15 such that y”7 = ¢. Then
using Remark 2.1 we get (a1 + i, 0p410p41) =@ 41 + 7,0y 4 1) = play, + @b )* =
=(a+1+ 10, br 1), thatis w01 = 0. On the other hand, given o satisfying a),
by (9) there exists a €= (X¢, ---» Xn—m—1, XU» Xv') Such that £°=g. But now p{a; +
+ b ) = (@ g H 10 by 1) = (G F T 041 b y) = (g oy + Dy by )P4+, hence
by 2.1 there exists a y in P(H)y,»-15 such that y" = o.
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b) y lies in R (H) if and only if:
P ET g+ iby) = p" T ay + b ) = pn T F (0 + o by)
P iyt by} =P TN+ O ) =D T (T o O Buea)
ie. if and only if i6,=1 p°Ry_, Ty n=t p°R,. "W

We shall denote this mutual relationship via 7 between the elements y of B;(H) and
those (G¢, ..., Op_my Tn_m) Of H PR(p""*~™R,_.) X PR(pR,,) as expressed in 2.2

by writing x<—->(00, Y rn_m) or simply by y<>(0¢, ..., Opms Tu_m) if 7 18
clear from the context.
In case » = m the situation in 2.2 becomes very simple; in fact

2.3. COROLLARY. — Let H be a homocyclic group of exponent p”, (a, b) a basis of it
and 1 <s<mn. Then 5 defines an isomorphism of R, (H) onto the group {(o, 1) e
ePR(R,) x PR(pR,)|ic=1 p°R,, it=1i p°R,}. W

2.4. PROPOSITION. — Let H be a homocyclic group of exponent p" 1 < s<mn, (a, b a
basis of H, % in R,(H), 7< 3,7, H=(a)®(b) a subgroup of H and o,=
=7g... 1. B,— R, _; the canonical epimorphism.

a) if (a, b) = @, p"~™b), 1 <m<mn, then
H*=H if and only if (p" ™R,)’=p" "R,;
bY let y<>(0gy .oy On s Tnm)y, 1 S8<m; then

0,=00,, on p" k™R,
¥ = lezf(mdonlyzf{ KOk T P "
On- mTn- m_’TQn m on PRm,

C) ,Lf (a/’ b)=(ak) bk)’ 1gssn_k7 fO”' Xk n Rs(pkﬁ)7 let Xk@(ak) Tk:)-
Then

Xie= J~C|PkH if and only if 00K=00k, QkTK="T0uk;
d) if @, b)) = @+Q (@), b+, (D), x1=7 | He=H /2, (D), 7 R,@})

with 3 <> (G, T,); then

Xx=% i and only if 0;0,= 00k, 01Tk =1TQy-

PROOF. — a) (& +ib) < H if and only if i € p”~™R,,. Hence (& +ibY = (@ +iGb) < H if
and only if igep™ ™R,.
b) y=#%|H if and only if (a;+i0,0.bp) = (t+i0,bp)* =p*@a+iby=
=p*(a +15b) = (a, + 150, by); similarly for 7, _,,.
¢) xr=7%|p*H if and only if for ieR,, {(a+i0,05bk) = (@ +io,by)* =
= p*@+ibY¥ = p*(@ +15b) = (a;, + 150, by); similarly for 7,;
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d) Follows from ¢) and (4).

2.5. PROPOSITION. — Let H be a homocyclic group of exponent p™, 1 <s<mn, (a,b) a
basis of H and y in PA(H). y is induced by the automorphism o+ a + 2b, b—> b, rep-

resented by the matrix ((1) i), A WR,), z in R, if and only if for y"=(0, 1) e

€ PR(R,) X PR(pR,) we have c: i—>il+z2, 1: i—> A +iz)~L
In this case we have

a) o7l il =27t i i1 —i2)"Y  moreover jo—io= (j—1) A
Jr—it=(j—1) Ay, where A=A +i2)(A +jz))7!

b) x|2,(H)=1if and only if Ai=1 p°R,, z=0 p°R,.

PROOF. - y is induced by ((1) i) in AutH, if and only if (a + i0b) = (e + ib)* =

= (a + (i +2)b), (ira +b) = (ia + b)* = (ia + (A +i2)b) = (i(A + iz) 'a + b) holds.
a) A straightforward computation.

b) ik +z=1 p°R, for every i if and only if A=1 p°R,, 2=0 p*R,; but then
(A+iz)"'=1p°R,, ie. it=i p°R,. ®

2.6. PROPOSITION. — Let H be o homocyclic group of exponent p", 1 <s<n, (a, b) a
basis of H, yx in P(H) such that U* = U and y<>(0, 7). Let (, b) be the basis of H with
(a, b) = (b, a) and y<> (G, 7). Then

16 =

ot e
{(z o) if e WR,),  — olpR, |

iT if iepR,,

PRroOF. - R, = U(R,) UpR For i in UW(R,): (& +i6b)y = (@ +iby* = (a+1i by =
((t7'o) ta+ b) (@+("o)” 1); for i in pR,: (& +i5b) = (& +ibyr = (b +ita) =
(@ +1ivbY; for i in pR, (id + b) = (a + ib)* = (a + iob) = (icd +b). =

3. — Congruence relations associated to autoprojectivities.

Let us, as usual, denote with M = H @ C an (n, m, s)-group, (a, b) a basis of H with
|a| =p™. Due to Baer’s result [1], if K& C < M, where K < H and p®~ 'K is non-cyclic,
for any ¢ in B(M) such that K =K, ¢' = ¢| K& C/p° K lies in PA(K® C/p*® K), hence
it is induced by an automorphism o @ 4 (determined up to a multiplication), where a

‘eAutK/p°K and ueUR,), determined modulo p*R,, is a multiplication on p*K®
@ C/p®K; by abuse of notation, for simplicity, we shall write ¢’ = (a; u). We start by
gathering some information about a and u in some specifie situations relevant to us. We
shall also denote by (4, 4;), for 1;e U(R,), the dilatation a+—ad |, b~> bl 5, and with
trz, for z in R, the transvection a+—a + 2b, b+ b.



128 M. CosTANTINI - C. S. HOLMES - G. ZACHER: A representation theorem, etc.

3.1. LEMMA. - Let M = H® C be an (n, m, 8)-group, 1 <s <m and ¢ in R(M). Let
@=0|2,.:(M)/p°2,.,. Then

(A3 1) A,eUR,) with A,=1 p*~'R,, 0<t<m-—s,
pi=14 (a; 1) a,ePAQ, (H)/p*Q2,.,

fixing at least a cyclic subgroup of order p°, m—s<t<n-s.

PROOF. - By (4) ¢ |2, .+(H) /p* Q24 =1for 0 <t <m — s; hence ¢, = (1,; 1). Since
®1|R:(M)/2(H) =1, we must have 1, =1p* ' R,. Let H = (a)® (b) with |b]| =p™;

consider X = (p™ °b); then by (8) (VX)?=VX?=VX, hence (VX,p°H)/p°H
is a fixed cyclic subgroup of order p®, and now the conclusion follows easily. =

32. LEMMA, - Let M=H®C be a (n, s)-group with n=s+1, 0 <X<H, (a, b) a
basis of H such that X < (a) and @ in P(M) such that ¢ |2 ;(H) = 1. Then the following
statements are equivalent

i) H=H and ¢|C=1;

i) | R,(M)=(A1; 1), @|M/p°M = (Ag; 1) with A;€ U(R)n (determined mod-
ulo p°®Rn);

iii) | VE/X = ((102 zX); 1) with C?=C
1

Proor. — By 1.3 ¢|H/p®H =1, hence i) implies ii); that ii) implies i) is clear.
ii) implies iii): since ¢|VX N H/X has (pb, X) /X as fixed point being ¢|Q2(H) =1,

A
cpl\/J?/X=(( 2 ZX); 1). Now o|VX/X, pb)=(A3;1) = (A 1), o|(pb, C)=
1
=(A1;1) =(A;; 1) hence 1} =4, p°R,. iii) implies ii): ¢ |2 (M) = (1; 1) since ¢ |C=1

and ¢| R ,(H) = 1; moreover ¢ |(pb, C) = (1;; 1). But now by (1) A =1, p°’R,; similarly
e|M/p’M=(Az1). =

3.1. REMARK. — In case in 3.2 we have 1,#1, pR,, clearly by a proper choice of a
with X < (a) one can reduce zy to 0.

3.3. LEMMA. — Let M =H&®C be an (n, s)-group and ¢ in R(M). By 3.1
P2 1(M)[p°R,1=(A; 1) where Ac U(R,) and A=1 p* 'R, .
Then

(PIQSH(M)/[)S-QsH: (lt§ 1)
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for every 0 <t <n—s. Moreover for 0 <X <H,

0 !

/'Lt
o|(VXe,,.an /0°(VX)e,,, = (( “ ); 1)

(with reference to a basis (a, b) with X <{a)).

PrROOF. - By 3.1 ¢|Q,,.,(M)/p*R2,,,=(y 1) and A=1,=1 p* lR,. Assume

A#1 p°R,; since by 8.2 and Remark 3.1 ¢|(VX)g,, un/p*(VXa,,, =4, 1), via
the expanding autoduality of (\/)—()QS“(H)/X we get go|(\/)_()gs+t(m/ps(\/)_()gw=

= (4,1). Moreover 3.2 applied to Q,,,(M)/p°Q,.,_, gives us by induction
9| (VXa, . 00 /p°(VE)g,,,= (¢, 4171 1) for 0 <t < —s; hence 2,4 "¢~ V=4 p*R,,
that is 1, =A'p*R,, and using 3.2 one gets that @| Q. (M) /p* Q.= (A} 1) 0<t<
< n — 5. Assume now thereis a ¢ >1 such that 1,#1 p°R, while 1;_, =1 p°*R,; then by
32 9| (VX)a,, a0 /P°VX)q,.,= (A, 1; 1) while ¢|(VX)q,, an /X = (trz; 1) which is
a contradiction to the expanding autoduality. The conclusion now follows using again
3.2 applied to ¢|Q,.,,(M)/p°R2,,;_;. ™

3.2. REMARK. - Let M = H@® C be an (n, m, s)-group, s <m, (a, b) a basis of H, with
|a| =p”, A the associated frame and ¢ in R(M). If one decomposes ¢ according to (2):
@ =¢@(a; 1), where ¢,eRq (M), a e PA(H) such that a|2,(H) =1, then

@R 1 (M) [p°R,s11=(A; 1) =91 |2, :(M) /p° Q115
moreover, as a consequence of (3)

(14) (b, p*R,,)=(b,p* R, )? fort>m—s. =

3.4. THEOREM. — Let M = HP C be an (n, m, s)-group with s <m, (a, b) a basis of
H with p"=|a|, A the associated frame and ¢ in R(M) By 31
Q| (M) p° R, 1=(1;u), u m WR,) determined modulo p°R, and
u=1p* 1R,. Then there exists a € PA(H) N R,(H) such that

(1; uh), 0st<m-s,

Q..M Q.=
120 D/ 2 {(l,ut“m‘”;ﬂ‘)(at;l), m—s<t<m-s,

where o= a|2,,,(M)[p° Q. has (b, p*R,.)/p* R+ as a fixed point. \

PRrOOF. — Set r= (M) =n — m. If r =0 the conclusion holds by 3.3 for u=1"1. As-
sume now r > 0. According to Remark 3.2 we write o = ¢ (a; 1), a e PA(M) and ¢,
eRgq,,(M). As a conseguence of (14), a; has the required property. Set M=
=M/(p"~'a). By 32 for u=21""1 we get ¢ |Q,0) =(1,u;pn), ¢1|2::.M) =
= (1, u; u®). Thus foro =@ (1, p ™" u71), 0|2, =1,0| 2, 1) = (1; p). If now
r=1,by 33 (1; u" ' "*)=0|M /p*M=0|M/p*M, hence @, |M/p*M=(1, u; u""*),
that is for »=1 3.4 holds.

Assume r > 1. Since M) = r — 1, by induction o| M /p*M = (1, u"~1=™; pn~17%);
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but then ¢, |M/p°M=¢,|M/p°M=(1,u"" ™;u""*), and the conclusion fol-
lows. =

Following the notation introduced in n. 2 we have

3 5. LEMMA. — Let M =H®C be an (1, m, 8)- -group, <m, (a, b) a basis of H with
=la|, ¢ in R(M) and u in ‘LL(R ) as given in 3.1. If now, according to (13),

(q0|H)’7 (Gos oovs Oy Trem) H PR(p"~*~™R,_,) X PR(pR,,), for any ¢ in C
we have

(g + b+ ) = (g + i b+ ™ *%¢), O0<k<n-s,

<ia’n—m+bn—m+c>¢= <irn—man—m+ bn—m‘*‘/"m_sc)'

Proor. ~ (10) implies

(15) <ak+ibk+c>"’=<ak+i0'kbk+lc), OSkSTL-—S,
(G-t by €)= (T Oy + Oy + 17 C).

On the other hand, using 3.4 we have
16) { {ay, + by + €)= {a, + 1" by + u" 7S¢+ pSlyay + 2by))
(10— T by T )P =+ by ™ e+ 0 (Y Gy +2'b,_ )
=(Q+yp*)ap+ (@' +2p®) by +u" " F ) = (g + " b+ u" " %),
{ ={(@"+P°Y") Oyt (12" P by + 1™ 5y = (8" Gy g + by + 1™ ).
Comparing (15) with (16) and picking a ¢ in C of order p°®, one concludes. m

We are now in the position to establish the announced congruence relations.

3.6. THEOREM. — Let M =H®C be an (n, m, s)-group, s <m, (a, b) a basis of H
with p" = |a|, @ the associated frame and ¢ in R(M). We know from 3.1 that
Q|21 (M) [p? Q2,1 = (1; u), wheve p lies m ‘u(R ) with u=1p°* "' R,. According to

(10), (@|H)" = (00 --+s Onems Tn—m) lies in H PR(p"~*~™R,_,) x PR(pR,,). Then
the followig relations hold

Q) OR M =Tp0+1, 0Sksn—m—1,
b) io,=1 p°R,_4, 0k<sn—-—m, it,., =1 p°R,,.

(17a) j=i PR, = jor—io,=(G-Du’ p**'R,_4,
forevery 0sk<sn—m n—m-k<f<n-—s-—k;
(17b) JE’L prWL:}an—m“iTn—mE(j_i)/"f ps+me’

Jor every 0 < f<sm—s.
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Proor. - 2.4 takes care of a) and b); moreover, according to Remark 2.1 ii), we have
to deal only with o, since we derive the congruence relations for z,,_,, from those for
O, m. We remark that due to limitations 0 sk s<n-mandn-m—-k<f<n-s-—k,
for any h in R, _, (kp’b), + c) is contained in Q,,(M). Thus, if for & # 0 we decompose
h=p°h', h' in UW(R,_;), from 3.4 we get, for some wep®Q, _;_ r+q(M),

(hp by +u" k- UretDer )y, if f<n-k—(e+s),

18 hp by, + ¢)? =
a8 (hp'bi+ ) {(hpfbk+c), if fzn—k—(e+s).

If we choose a ¢ in C of order p*, by 3.5 we have
19 (ak + (i + hpf) b, + c>¢ = (ak + (1 + hpf) o1by +lun—k—sc>'

On the other hand (a; + (i + hp”) 0, b, +u™ " *~%c) < (a; + 10, by,) + (hp b, + ¢)?. Tak-
ing into account (18) and (19) one gets

(g + (i + hp”) o by +pu" " F ey =

(o, + 10, by, + VP b, + ou™ et e ), if f<n—k—(e+3s),

{ag + 10, b + v hp b, + v’ c) if fzn—k—(e+s).
Thus

v=pl*® p*R, 4, v'=p""F"° p°R,_,.

But then
@0) (ap+ G+ hp?) oyl +pu" F ey =
((ay, + 0 by + u T hp b+ u™ e+ ul e pt I (yay + 2by))
= if f<n—-k—-(e+s),
| {ap + oyl + ™ o hp Tl +u" %) i fEn—k—(e+s),
» ( <ak(1 +ps+f+eyluf+e)+ (iak+pfh,uf+e) bk_*_‘uf+eps+f+ezbk+‘un—k—sc>
= if f<n—k—(e+s),
(0 +iopby +u" P hpb %) i f2u—k— (e Fs),
( (o, + e(ioy, + p ) by + e e ps T r e, + u" k%)
= Ciff<n—k—(e+s),
| (o +io by +u" " hp b +ur"t"%¢)y if fEn—k—(e+s).

Since e=1 p**/**R, _,, comparing the coefficients of b, in (20) and taking into ac-
count that #°=1 p* 'R, _,, setting j =1 + hp?®, the conclusion follows for g,. ™

3.3. REMARK. - i) (17a) and 00, =0 p°R, impiies io,=1 p°R, for every i,



132 M. CosTANTINI - C. S. HOLMES - G. ZACHER: A representation theorem, elc.

ii) (17a) and o, in Symp”~*~™R, _, implies o in PR(p" *"™R, _,).

Similarly for 7,,_,,. ®

At this stage we set U(w,s)= {[ule UWR,/p*R,)|u=1p° 'R,}. This is a
cyclic group of order p —1 if s=1, of order p if s=2. Now we introduce a par-

ticular subgroup @, , s of [T PR(p™~*"™R,_,) x PR(pR,,) X Un, s): Dy, s=
k=0

={(00, -++y On—ms Tn—m,[#])| the relations a), b), (17a) and (17b) of 8.6 hold}. When
n =m we simply write @, ;. That this group is relevant to our investigations stems
from the fact that 3.6 gives us an embedding of R(M) into @, ,, ;. Let us be more pre-
cise. With the help of the monomorphism # in (13) define (with abuse of notation) the
monomorphism

@) 4z R(H) X Un, )= [] PR ¥ "R, ) x PR(pR,,) X Un, s),

k=0
(,[u]) = (", [u]). Then Theorem 2.2 tells us that @, ,, ; < (R, (H) x Un, s))' and
using 1.6

22) w: RIM)—>R,(H) X Un,s), e—>(¢|H,[x]) and (1; u)=¢|L2,. (M) /p*L2,:1,

is a monomorphism (u in U(R,) determined modulo p*R,).
Thus by 3.6

@3) j=on: RM)—=P, s, @~ @|H),[1]) is a monomorphism .

The main result of n. 5 will be the statement that actually j is an 1somorph1sm onto
D, ., s, giving us a very handy representation of R(M). The identification of @7, ,, ;<
< R(H) x U(n, 8) via n with @, ,, ; (uniquely determined modulo a basis of H) will be
understood whenever we shall need it, and for it again a notation like (y,[u])<
<= (0g, oory Op—ms Tn-m,L1t]) Will be used.

In case M is an (n, s)-group, as already pointed out in 2.8, the situation in 3.6 be-
comes simpler as expressed in the following

3.7. COROLLARY. — Let M = HD C be an (n, s)-group, (a, b) a basis of H and ¢ in

R(M) We know that @|Q,.1(M)/p*Q,.1=(1; u), where u lies in WER,) with

=1 p* 'R,. According to (10), (¢|H)" = (0, ) lies in PR(R,) x PR(pR,,). Then the
followmg relations hold

b) ivc=1 p°R,, ir=1 p*R,,

@4 j=i p/R,=jo—io=(G -/ p**'R, 0sfsn-s,
j=i p/Ry=sjr—ir=(-i)u’ p**'R, O<f<n-s. m

We end this paragraph with
3.8. PROPOSITION. ~ Let M = H ®C be an (n, s)-group, M = H® C an (n, m, s)-sub-

group of M with s <m, and § in R(M). Pick o basis (d, b) of H and suppose (a, b) =
=, p"~™b) is a basis of H. According to (23), let & = (5,%,[ul) be in @, ;.
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Then M%?=M if and only if (p”‘mRn)?’:p”‘mRn. Moreover for a given
(UOy o3 On—my Tp- m’[,u ]) in ¢n m, sy W€ have (§7J IM)] (GOa Y Opn-ms Tn ma[/",])
if and only if the following relations hold: [u'] = [ul QkOk= Goy on p" ™R,
forOsksn-—mand 0p_nlo-n=7T0n-m O PR,.

ProoF. — Straightforward using 24 a) and ). =

4. — A representation theorem of R(M), M an (n, s)-group.

In this number we begin with the homocyclic case. The general situation will be
dealt with in n. 5.

4.1. LEMMA. - Let H be a homocyclic group of exponent p", 1 <Ss<mn, (a, b) and
(@, b) bases of H and for y in R,(H), according to (13), let "= (g, 1), x" = (0, 7).
Then

(o, 7,[u) e @, s if and only if 0, 7,[u)eP, ;.

ProoF. — For symmetry reasons it is sufficient to prove one implication. Notice that
UR,) =UR,), (pR,)’ =pR, since ic=1 p°R,.

1) @, b) = (b, a).
Using 2.6, one gets

i0=0"to)y '=ip°R, for ic UR,), ioc=1r=ip*R, for iepR,,
tT=i0=1 p°R, for iepR,.

Hence for j=1i p°R,, we have jG —i5=(j —)u’ p°R,, jT —it= (G —)u’ p°R,. As-
sume now j =14 p’R,, 0 <f<mn — s, and observe that here j e U(R,,) if and only if ie
e W(R,). Using again 2.6, a straightforward computation leads to conclude that
(57 %y [,u]) € QSn’ s

2) (@,0) = (a, Ab), A e U(R,).
n
By 25 (é 2) = (0, 7,) e PR(R,) X PR(pR,), where oy: ir>id, 7,: ir>id L,

Since & =o0,007}, T=r1,tr;7}, taking into account 25 a), one easily sees that
G, T, [u) e Dy, 5.

8) @b =(a+b,b).
n
By 2.5 ((1) i) = (04, T,) e PR(R,) X PR(pR,), where 0,: i—>i+1, 7;: i—=#(1+

+4)~L. Since 6 =0,007} by 2.5 a) one concludes that for j=i p’R,, jo—io=
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= (j—i)u’ p**/R,, 0 <f<m -—s. Since again T =1,777" we get

P o~ jT"’iT J_?: f
Jr—ivT= - — = . — =
(1—-jo1—ir) (1—jrXl—ir)
- j—1 i J i F (it I of mstf
= /=1 - =(j'—1i R,,
a-pa-n" (1_]. l_i)ﬂ G Jul p
being

(1= i)(1 -5 — (1 —in)(1 =jr) _
(1 —irX1 —jr) -

WG —1) 0 p**'R,.

It follows that (5, 7,[u]) € @, ;-
Since any basis (@, b) of H can be obtained from (a, b) by applying successively ele-
mentary transformations, the conclusion follows.

42. LEMMA. — Let H be a homocyclic group of exponent p*, 1 <s<n-—1, (a,bd) a
basis of H and (o, 7,{u]) in &, . According to (21) there is y in R,(H) such that
[ = (o, 7,[uD).

a) Set H,=pH, and choose the basis (o), b;) = (pa, pb). If (x|H;,[ul) —
> (04, T1,[¢]), then (04, t4,[1]) lies in D ,_1 ;.

_b) Set I7=H/QI(H), and choose the basis (E, b=(a+Q,H),b+Q2,H)). If
(x| H,[u]) = @G, 7T, [ul), then (G,7,1ul) lies in &, _y ;.
ProoF. — a) By 24 ¢)
g0, =tong=in,p°R,_,
mpTt1=ttno=tmop°Ry_1.
Moreover
jﬂoal - iﬂool = (j0~i0) o= (jﬂo _iﬂo)ﬂf ps+fRn_1 ,
jnofl "?:ﬂofl = (jr_'if)ﬂ()E (].7[0 - 2-77:0) /uf ps+fRn_1 s
that is (o1, 71, U e P, -

b) Using 2.4 d) one again concludes. ®

We remark that due to 4.1 the conclusions of 4.2 are independent of the choice of
the basis (a, b) of H.

4.3. LEMMA. — Let H be a homocyclic group of exponent p™, 1 Ss<n and 0 <X <
< H. Let (a, b) be a basis of H such that X = (p™~ 'a). Choose the basis (@, b) = (a +
+ X, pb+ X) for \/)—(/X, and let (o, v,[u]) be in D, ;. Let y in R,(H) be such that



M. CosTANTINI - C. S. HOLMES - G. ZACHER: A vepresentation theorem, elc. 135

O[] = (0, 7,[u]), and put yxx=x|VX/X. If y%=(0ox,7x) i PR(R,_,)X
X PR(pR,, _,), then

b) iox=i p* 'R, itx=i p**IR,_,,

) [FZ P R imjox—iox=G -0t p R,y 0SfSn-1-s,
C
j=i p’R,_y=jrx—trx= (G- p**R,_;, O0sf<n-1-s.

Proor. - Using Remark 2.1 and (7) one gets: (@+ioxb)= (@ +ib)**=
=(a+iys by /X=(a+iy, ' ob)/X=(a+iy; oy pb)/X =(a+ic’'D), hence ox=
=o' e PR(R,_,) where o' =y;'oy,. Notice that j=i p’R,_; if and only if
Jjyet=iysip’*IR,; but then: iox=(iyg')oyo=i p* 'R,_; and joy—iox=
=(rilo—iyglo)yo= (G- p**/R, ;.

We proceed now to determine 7y Having in mind Remark 2.1, we may con-
sider 7 as an element of PR(R,): (imo7x0 + b) = (im @ + b)** = (ia + pb)* + X/X =
= (i'(pa) + pb)* + X/X = (i' tpm,a + b), that is imorx=1 tpm,. It follows that
imotx=1"1prg=1"pro=1mep**'R,_,. Observe that j=pj'=i=pi’'p’R, if
and only if j'=i'p/"'R,, 1<f but then jmory—imorx=4'"Tpmo— 1 Tpmy=
=(j' —i"w Ty = Grg—img) u’ T p*t/R,_,. m

We are now in the position to prove the main result of this paragraph.

4.4. THEOREM. — Let (o, 7,[u]) be an element of @, ;, M=H®C an (n, s)-group
and (a, b) a basis of H. Define on C(M) the following map ¢:
(p*(a +ib) + ) = (p*(a +iob) + u"~*"*¢), ieR,, 0 <k<n-s,
(p*Gia +b) +¢) = (p*(ita + b) + u"*"*¢), iepR,, 0<k<n-—s,
p=1, on &(Q,(M)),

Then there exists a unique @ in R(M) such that @ |C(M) = ¢.

PRrROOF. — The uniqueness is clear since an autoprojectivity is uniquely determined
by its action on the cyclic subgroups. We remark that if ¢ exists, then it lies in R(M)
and @ |Q,. (M) /p* Q.= (1; u'), being io=1i p*R,, it=1i p°R,.

Let y in R,(H) be such that (¢, [u])" = (o, 7,[x]). To prove the existence of ¢ we
shall use induction on r=n —s.

a) r=1.

Pick any minimal subgroup X; of H. According to 4.1, without loss of generality we
may assume X; = (p”~'a). By 4.3 ¢), for ;= % | VX, N H/X; we have (notice that here
f=0) ioy, =4 +00yx, and since (pb)*: = (pb), x; is induced by the automorphism

((1) /z;)’ where z; =00, =0 p* 'R, ue UWR,), u=1p° 'R,. It follows that (p[\/Z-/Xi

is induced by the automorphism (((1) Zl), ﬂ); hence by 1.3 ¢ defines an autoprojectivity
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@ ; on VX;. Since ¢ | e(M /p° M), as it has been defined, is induced by (1; u), one checks
that conditions (x) and (+x) of 1.4 are satisfied by (¢, ..., ¢,, 0), where g is the auto-
projectivity of M /p®M induced by the automorphism (1; ). But now the existence of @
is assured by 1.4.

b) r>1.
b;) From a) we know that cp[@(!)s(@/Xv)) is induced by the automor-

IOOXV.
0 u » H

Consider on \/X—V/XV the automorphism

1 -0o_u!
ay= b
0 u!

1

phism

then, by 2.5, we have

for ieR,_,,

. - ‘1 —
o, 1> —0oxu
(25) { ¥

t,0 i iu(l—i0ox) =7 p*R,_, for iepR,_;,

being 0oy, =0 p* 'R,_, by 43 b), and g =1p°* 'R, _,.

But then for e R, ., iox,=00% +iu +jp° for some jeR,_; by 4.3 c). Hence
iox,0,=00x +iu+jp*)u ' —00gu'=i+jp’u~'=ip°R,_,. On the other
hand, for i e pR, _; by 4.3 b) and (25) we get ity 7, =1ty =i p°R,_;. We have there-
fore proved

%) {iaxvo,,Ei p*R,_, forieR,_;,

irx,7,=1 p°R,_, for iepR,_,.
Finally,, taking into account 2.5 a), 4.3 ¢) and (26), we have for j=1 p’R, _1

(27) jUXvov - ?:GX,,UV = (jUX,, - iGXV)ﬂ_l = (.7 - ’L) /"f ps+fRn—1 ’

JTx, T, — ity T,=(jrx, — ity ) ue ', where e=(1-i00x)1-j00x)=1 p°R, ;.
Hence (jry, —irg)ue ‘= (jry, —itx)u p " 'R,;; but (jrx —irx)u=
= -9 u p**/R,_. Therefore

(28) jtx T, ~ ity r,=G-Du  p*'R,_,.

We conclude from (26), (27) and (28) that (6x,0,, 7x,7,,[u]) liesin @, _; ,. Hence by
induetion ¢7, | C(VX,/X,) defines an autoprojectivity on VX, /X,: hence ¢ determines
an autoprojectivity ¢, on VX,/X,.

b,) By using 2.4 c¢), a straightforward verification shows that (o, 73,[#]) lies
in @, ; , where ¥|2,-1(H)<>(01, v1). Hence by induction | C(R2,_,1(M)) deter-
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mines an autoprojectivity . But then, by (1, 3), (y, ¢,) defines an autoprojectivity ¢,
on VX, induced by the map ¢.

bs3) Using 2.4 d), a direct computation shows that (G, 7;,[u]) e @, _1, s, Where
x|H/2,1(H) <> (31, 7,), so it defines an autoprojectivity on M/Q(H) which modulo the
automorphism (1; u) induces the same map as ¢ on C(M/2,(H)). Call o the autopro-
jectivity of M/Q {(H) induced by ¢. Applying 1.4 to (¢y, ..., @, 0) one concludes that

there is @ in P(M) such that ¢ |@(\/Z) = ¢|C€(VX,). Hence @ is the autoprojectivity of
M determined by ¢. =

4.5. COROLLARY (representation theorem). — Let M = H@® C be an (n, s)-group and
(a, b) a basis of H. Then the monomorphism j: R(IM)— D, ; of (23) is an isomor-
phism.

Proor. — This follows from 4.4. =

4.1. REMARK. - Define &% = {(o, 7,[ul) e @, s|06=0,07=0}. Then j|Rq(M)
defines an isomorphism of Rq(M) onto D ,, while j| Ry , (M) defines an isomorphism
of Ry (M) onto @5 %= {(0, 7,[u) e ®y ;|lo=1}

5. — The general representation theorem.

Let M = H®C be an (n, m, s)-group. We begin with the case m = s. We treat this
case separately since it is radically different from the case m > s.

5.1. LEMMA. — Let M be an (n, s, s)-group, (a, b) a basis of H with |a| =p", and ¢

in Ro(M). Then ¢|Q,,.(M) [p*@,,,= (1 0); .l where u,=1p*1R,, 0 <t<
<n-—s. 0 u

PROOF. — Set ¢ ;= @ | Q4 ,(M) /p* Q1€ PA(Q ;. «(M) [p° 2 ..). Since ¢ € Rq (M),
it follows that ¢, is induced by an automorphism of the form (((1) 0 ); U t). To conclude
Hy

we only need to assume s = 1. Since 1 = Q,,, (M) /p°R2,,, <2, (M) /p° 2., We
get uy=pu,_1 p° 'R, '

Now assume ¢ =1 and write X = (p"~'a). Let y in Aut(Q,, (M) /X) induce ¢;.
Now (p"Pa+c+X)=(p" Pa+c+Xy=(p" *a+uc+X). Since |p" *a+X|=
=pi"1, choosing an element ¢ in C of order p*~' one concludes that u,=1
pf~ "R, =
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5.2, THEOREM. — Let M =H®C be an (n, s, s)-group, (a, b) a basis of H with
la| =p" win WR,)n with u =1 p° 'R, and @ in Rqy(Q2,_1(M)). Then there exists ¢

in Rq(M) such that @ |M/p*M = (((1) 2), /4).
Proor. — Set r=n —s.
)r=1.

Here ¢ =1 and for M /p®*M pick ¢’ = (((1) 2), ,u). Then ¢' |2,(M)/p°M =1, so

by (1.3) (¢, ') defines a ¢ in Bq(M) with the required properties.
2) r>1.

We use induction on 7. There exists § = (((1) l?'); u' e Aut (M /p”‘lM ) such that

Y=0@B|2,_1(M)/p" M lies in Ry (2,,_,(M)/p"~* M). Now by induction y extends

0 pu

VB 2,_1(M)/p™ M = @, hence by 1.3 (¢, pB ') defines an element ¢ of Rq(M)
and one can check that it has the required properties. =

to a PeRg(M/p" 'M) such that v|M/p*M= (1 0,); ,uﬂ’). But now

5.3. EXTENSION LEMMA. — Let s <m <w be positive mtegers If (Ggy vovy Cp—my
To—m u]) lies in &, .., then there exists a (G, ..., Op—m- 1,rn o 1,[/,t]) m
D, m+1,s SUch that for 0Sk<m—m—1, o,=3 |p"~ k- mRn > On-me1Tm—m1=

=TTp-m—-10n-—m Tn m=-1-m-1""Np-m-1Tn-—m-

ProOF. — Let ie R, and let i =4y + ... +i,_;p" ! be its p-adic expansion as intro-
duced in n. 2. Set r =n — m. We begin with

a;) r=1.
Define

o, if iepR,,
1523 ot o F g1 DT R0Vt (D" "

-8

T=(p+ iy P P D AT Vot (P e+ i P
if iepR, .
Clearly (g, 7) lies in Sym R, X SympKR,,, and we have
29 10y =10¢gmg=1790, for iepR,,

by 3.6 a).
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Take now i e U(R,,); then for j=4y+ ... +4,_,_, p" * " 'wehavej=ip" °R,, so
that '

(30 Jroo1 ~ im0 = (g — i) 4" = = (hy_ " " P T ) o™ R

It follows from (30) that
31 10Ty =JMg0 1+ iMg01 — M0, =1Ty01.
In particular for ie R, we have io =1 p°®R,; moreover by (29) and (31) we get
(32) OMy=m307.
Since i =imyv,y p" ' R,, using (32) we obtain for j, i in R,
(33) JO—I0 =0 Vg — g0,V P 'R,.
(33) with (17a) shows that
jo—ic=G-i)u p**/R, forj=i p’R,,0<f<n-s.

Morever, for f=n —s by the definition we get j6 —i6 = (j —1)u™ " *. Since 00 =
=00y=0p°R,, by Remark 3.3 we conclude that ¢ lies in PR(R,,). With a similar proce-
dure one can deal with 7.

We come now to the case

) r>1.
We observe that (o4, ..., 0y—m, Ty—m,[#]) lies in &, _; ,, ;. By induction there
exists a (01, ..., Op—(m+1) Tu—m+1), [4]) In @y_1 iy s such that for 1<k<n-

~ “kim—1 . _~ iy ~ _
(m+1), o,ePR(p" """ 'R,_;) with 0,=0;,|p" " ™Ry_t, On-m-1Tn-m-1=
= -m—-10n-ms Tn-m—-1Tn—-m-1=Tp-m-1Tn—m-

Since p* ™ !R,=p" ™R, L.Jp""m‘l‘u(Rn), similarly to a;) we introduce g, on
p" ™ 'R,, defining

io, ifiep® ™R,

iaoz (in_m_lpn_m_1+...+in_s_1pn—s~1)n00’11/0+

(g p " e iy p" DU i iep™ T IUR) W

A similar routine checking as in a;) leads us to recognize that (G,,d;...,
On-m-13 Tn-m—1,u]) lies in &, ,, 1,5, which concludes the proof. =

54. THEOREM. — Let s <m <mn be positive integers, ¢: B,—R,_; the canonical
epimorphism and (Og, ..., Op_my Top—m p]) 0 P, 5. Then there exists a (0, T,[u])
D,  suchthat for 0 Sksn—m, 00, =010k, TOn-—m =0 n-mTn_m hold on the ob-
vious domains.

Proor. — Set r=n—m. If r=1, the conclusion follows from 5.3. We assume
now r>1. By 53 there exists a (09, ..., Op_m-1, Toom-1,l]) In @, , .1 s such
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that O-I’clpn_k_mRn—k:am On-m-1T-m-1=T-m-10n-my Tn-m-1Tp-m-1=
=%y -m-1Ty-m- By induction, there exists a (g, 7,[#]) in @, , such that for 0 <k <
sn—-m-—1 we have anZQkU;c on pn_k_m—any %Qn—m—lzgn—m—lr;—m—l
on pR,.

Since o}, |p" * ™R, _, =0, and T, 1T py_m-1=Tp—m—1Tn—m, the conclusion
follows. m

5.5. THEOREM (the general representation theorem). — Let M=H&@C be an
(n, m, s)-group, with s <m, (a, b) a basis of H with p" = |a|. Then the monomor-
phism j of R(M) into D, ,, s as gwen in (23) is an isomorphism.

PROOF. - Given a (04, ..., Oy—m) To-m,[1])in @, _,, by 5.4 there exists a (0, 7,{u])
in &,, such that 0gy=0,0, 0<k<n-mM, T0,-W=0Cn-mTn-m- Let
M = H&C be an (n, s)-group with a basis (&, b) such that a = @, b = p”~"b. By 4.5 we
know that there exists a ¢ e R(M) such that & = (5, 7,[1]); moreover by 3.8 M? =M
if and only if (p™~™R,)° =p"~ ™R, which actually is the case, since 7 |p" "R, = g,.
Finally, using 3.8 again, one concludes that ¢ |MeR(M) and (¢ |M Y =
=(00, ory Op—ms Tn—mslitl)

5.6. COROLLARY. — Let M = H® C be an (n, m, s)-group with s <m, (a, b) a basis of
H with p"= |a|, u=(p" ™a+b) a unit point and j: R(M) =D, ., s the isomor-
phism of 5.5. Then (0, ..., Op—my Ty—m» (1)) € RE (M) if and only if _

0ce=0, lo,_m=1 and 07,_,=0.

Proor. - In fact (@)? = (a) if and only if 06y = 0, (p” " ™a + b)? = (p" " ™a + b) if and
only if 16,_, =1 and (b)? = (b) if and only if 07,_,,=0. =
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