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1 Introduction

Let us start by considering the following suggestion. Instead of considering the problems of

infinities on the moduli space of curves Mg of a given string theory, we consider the oppo-

site question. Essentially, we consider the problem of finding the partition functions with

a world sheet metric, D scalars, b-c and β-γ systems corresponding to volume forms on the

moduli space of Riemann surfaces which are free of singularities at the Deligne-Mumford

boundary. Such a question has a positive answer in view of the results of [1], where it was

shown how to absorb, in a modular invariant way, the point dependence due to the inser-

tion of b zero modes. As a consequence of that, the resulting partition functions involving

the path integration on the world-sheet metric are well-defined volume forms Mg.

The finding in [1, 2] are in some sense a consequence of the basic observation by Yu. I.

Manin [3, 4] that the bosonic Polyakov measure [5] is (essentially) the same of the modulo

square of the Mumford form [6].

The formulation of string and superstring perturbation theories face the hard problem

of considering their effective characterization as geometrical objects on Mg. The algebraic-

geometrical structure of such a space, and of its Deligne-Mumford compactification Mg,

provides a powerful tool, still largely unexplored, to check the consistency of the theory

at any genus. Several questions concerning the definition of the theory, such as unitarity

and structure of the singularities, are endowed in the geometry of Mg. Generally it is not

true the opposite, there are subtle questions concerning Mg which may not appear in the

purely field theoretic formulation. In this respect, in recent years it has been clear that the

original formulations of the known string theories may map to other formulations whose

elementary fields are different. The main example is the Berkovits pure spinor formulation

of superstring theory [7, 8]. Changing the field content leaving invariant the theory is a

question strictly related to the Mumford isomorphism

λn ∼= λ⊗cn
1 , (1.1)

where λn are the determinant line bundles and cn = 6n2 − 6n + 1. Physically λn is as-

sociated to the partition function of a b-c system of weight n, whereas the scalar target

coordinates correspond to λ1, the Hodge bundle. For each n the Mumford form µg,n is the

unique, up to a constant, holomorphic section of λn ⊗ λ−cn
1 nowhere vanishing on Mg. It

is useful to note that this implies that its inverse is also holomorphic.
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Let C be a compact Riemann surface of genus g ≥ 2. A further development concerning

the Mumford isomorphism is the following map

ψ : SymnH0(KC) −→ H0(Kn
C) , (1.2)

which is surjective for g = 2 and for C non-hyperelliptic of genus g > 2. Roughly speaking

this provides another relation between the two sides of the Mumford isomorphism (1.1).

It can be seen as a way to use the stringent properties of the Mumford forms µg,n in

considering the problem of characterizing the Jacobian (1.2). This is the essence of recent

developments in the characterization of Riemann surfaces in Pg−1 and the related Schottky

problem [9–12]. It has been shown in [1, 2] that the map (1.2), together with the Mumford

isomorphism, is crucial in constructing the string measures.

Here we show that the partition functions introduced in [1] include a class which is

free of the singularities that usually arise when one considers the pinching of handles of

the Riemann surface.

2 Singularity-free at the Deligne-Mumford boundary

In [1] it has been considering string theories with some underlying hidden symmetry which

are still to be discovered from first principles. The preliminary basic step has been to

classify all forms on Mg satisfying some natural properties.

1. Since each string theory involves the path integration over the world-sheet metric, it

should be a modular invariant (3g − 3, 3g − 3) form, i.e. a volume form on Mg.

2. Such forms should correspond to determinants of laplacians associated to the space-

time coordinates to b-c and/or β-γ systems of any conformal weight.

3. The combination of such determinants should be Weyl invariant.

The solution is based on the Weyl and modular invariant properties of the Bergman repro-

ducing kernel

B(z, w̄) =

g
∑

1

ωj(z)(τ
−1
2 )jkω̄k(w) , (2.1)

where ω1, . . . , ωg, are the canonically normalized holomorphic abelian differentials, τ2 ≡
Imτ , with τ the Riemann period matrix.

Let us show that
∫

Mg

Z[J ] =

∫

DgDXDΨexp(−S[X]− S[Ψ]) , (2.2)

corresponds to a volume form on Mg. Here S[X] denotes the Polyakov action in

D = 26 + 2
∑

k∈I

nkck ,

dimensions, where ck = 6k2−6k+1 is (minus) 1/2 the central charge of the non-chiral (b-c)

β-γ system of weight k. I is the set of conformal weights k ∈ Q, J the set of nk ∈ Z/2.

– 2 –
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DΨ denotes the product on k ∈ I of |nk| copies of the non-chiral measures, including the

zero mode insertions, of weight k b-c systems for nk > 0, or β-γ systems for nk < 0. S[Ψ]

is the sum of the corresponding non-chiral b-c and β-γ actions.

The string partition functions Z[J ] correspond to the Polyakov partition function ZPol

times a rational function of determinants of laplacians. Namely

Z[J ] = ZPol

∏

k∈I

Znk

k . (2.3)

In particular, it turns out that [1]

Zn =

∫

DXDbDb̄DcDc̄(bb̄)n exp(−S[X]− 1

2π

∫

C

√
gb∇z

1−nc+ c.c.) , (2.4)

with

(bb̄)n =

∫

CNn

∏

j

B1−n(zj , z̄j)b(zj)b̄(zj) ,

coincides with

Zn =

(

det′∆0

N0

)−cn
detMn det

′∆1−n

detNn
, (2.5)

where

(Mn)jk =

∫

C
φ̄nj (z)B

1−n(z, z̄)φnk(z) ,

(Nn)jk =

∫

C
φ̄nj ρ

1−nφnk ,

with φnj are the zero modes associated to the b-field and ρ = 2gzz̄ is the metric tensor in local

complex coordinates, that is ds2 = 2gzz̄dzdz̄. It follows by (2.3) that the string partition

functions (2.2) correspond to integral of Weyl invariant volume forms on Mg [1]. This

provides a manifestly intrinsic way to absorb the point dependence, that is the expression

B = tφ1 · Y −1 · φ̄1 ,

implies that (bb̄)n depends only on the complex structure of the Riemann surface C.

Another result in [1] is that Z[J ] can be expressed in terms of the building blocks of

the Mumford forms Fg,k. In particular,

Z[J ] =
|Fg,2|2

(det τ2)13

∏

k∈I

(

|Fg,k|2 detMk

(det τ2)ck

)nk

| ∧3g−3 φ2j |2 , (2.6)

which also provides the expression of Z[J ] in terms of theta functions.

Let us shortly illustrate the Mumford forms. Let φn1 , . . . , φ
n
Nn

be a basis of H0(Kn
C),

Nn = (2n− 1)(g − 1) + δn1 .

Following Fay, we set [13]

κ[φ1] =
detφ1i (zj)σ(y)

∏g
1E(y, zi)

θ
(
∑g

1 pi − y −∆
)
∏g

1 σ(zi)
∏g

i<j E(zi, zj)
,

– 3 –
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and, for n > 1

κ[φn] =
detφni (zj)

θ[δ]
(
∑Nn

1 zi − (2n− 1)∆
)
∏Nn

1 σ(pi)2n−1
∏Nn

i<j E(zi, zj)
,

where the above notation about theta functions, prime form and the g/2-differential σ is

the standard one. Note that we added a dependence on the theta characteristic. Similar

expressions hold for more general cases such as non-integer n [14]. Consider the univer-

sal curve Cg, that is the (3g − 2)-dimensional complex space built by placing over each

point of Mg the corresponding curve C. Let π be the map projecting Cg to Mg, and

Ln = Rπ∗(K
n
Cg/Mg

) the vector bundle on Mg of rank Nn with fiber H0(Kn
C) at the point

of Mg representing C. Denote by λn = detLn the determinant line bundle. It turns out

that, for each n, the form associated to the Mumford isomorphism is

µg,n = Fg,n[φ
n]

φn1 ∧ · · · ∧ φnNn

(ω1 ∧ · · · ∧ ωg)cn
, (2.7)

where

Fg,n[φ
n] =

κ[ω](2n−1)2

κ[φn]
. (2.8)

Such quantities naturally appear in describing the geometry of curves in Pg−1 and in

characterizing the Jacobian locus [10–12, 15]. These also appear in the string measures.

In [3, 4, 14, 16] it has been shown that

(

det′∆0

N0 detN1

)−cn
det′∆1−n

detN1−n detNn
=

∣

∣

∣

∣

∣

κ[ω](2n−1)2

κ[φn]

∣

∣

∣

∣

∣

2

. (2.9)

Eq. (2.9) expresses determinants of laplacians in terms of theta functions whereas eq. (2.7)

establishes the relation between determinants of laplacians and the Mumford forms. Let

us note that there is a lot of literature on string determinants, loop amplitudes and b-c sys-

tems, see for example [19]–[35]. In the following we will consider n such that h0(K1−n
C ) = 0

and drop the term detN1−n in (2.9).

The above prescription of absorbing the zero modes is essentially the only well-defined

recipe on any Riemann surface. Nevertheless, there is a related approach which is de-

fined on the compact Riemann surfaces of genus two and on the non-hyperelliptic compact

Riemann surfaces with g > 2, these are called canonical curves. Instead of integrating

with B1−n(zj , z̄j) each pair b(zj)b̄(zj) of the zero mode insertions, one may divide them

by the determinant of B(n)(zj , z̄k), denoting the n-fold Hadamard product of B(zj , z̄k). In

particular, it turns out that

Vn =

∫

DXDbDb̄DcDc̄

∏

i b(zi)b̄(zi)

detB◦n(zj , z̄k)
exp(−S[X]− 1

2π

∫

C

√
gb∇z

1−nc+ c.c.) , (2.10)

where S[X] is the Polyakov action in 2cn dimensions, is a well-defined prescription on

canonical curves. This implies that
∫

Mg

V [J ] =

∫

DgDXDΨexp(−S[X]− S[Ψ]) , (2.11)

– 4 –
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where now the Polyakov action is in D = 26+2
∑

k∈I nkck dimensions, is a Weyl anomaly

free partition function. We have

V [J ] = ZPol

∏

k∈I

V nk

k , (2.12)

which are volume forms on Mg. In particular, [1]

Vn(τ) =
K

(2n−1)2

1

Kn

1

(det τ2)2n(n−1)
, (2.13)

which are a (0, 0)-form on Mg. Here

Kn =
detB◦n(zi, z̄j)

| detφnj (zk)|2
∣

∣κ[φn]
∣

∣

2
, (2.14)

where the determinant of B◦n(zj , z̄k) is taken with the indices j, k ranging from 1 to Nn.

Note that

K1 =
|κ[ω]|2
det τ2

.

One may check that Vn(τ) is obtained from the modulo square of the Mumford forms by

a non-chiral mapping [1].

We now look at the Z[J ] which are free of singularities at the Deligne-Mumford bound-

ary. Following Fay [14], we consider their behavior at ∂Mg. Fay proved, using Bers like

basis φnt = {φni,t}i∈INn
for H0(Kn

C), that Fg,n has a pole of order n(n−1)/2 in the plumbing

fixture parameter t.

Let us consider the degeneration limits. First, by approaching the generic point on a

irreducible singular curve obtained by identifying two points a, b on a smooth genus g − 1

curve. In this case

Fg,n[φ
n
t , ω] ∼ t−n(n−1)/2 E(a, b)n−n2

(2πi)(2n−1)2
Fg−1,n[φ

n, ω] . (2.15)

In the case of degeneration corresponding to a reducible singular curve obtained by iden-

tifying points on two smooth curves of genus g1 and g − g1, we have

Fg,n[φ
n
t , ω] ∼ ǫt−n(n−1)/2Fg−g1,n[φ

nω]Gg1,n[φ
n, ω] , (2.16)

where ǫ is a fixed (2g− 2)th root of unity. We now consider rational functions of Mumford

forms

Fg[φ
k, ω,J ] =

∏

k∈I [F
nk

g,k[φ
k, ω] ∧max φkj ]

(ω1 ∧ · · · ∧ ωg)d/2
, (2.17)

nk ∈ Z. Note that

d = 2
∑

k∈I

nkck . (2.18)

– 5 –
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Since the Mumford forms on Mg are holomorphic and non-vanishing, imposing the ab-

sence of singularities for Fg on Mg is equivalent to require holomorphicity at the Deligne-

Mumford boundary. This gives

∑

k∈I

nkk(k − 1) =
1

6

∑

k∈I

nk(ck − 1) ≤ 0 . (2.19)

Eq. (2.18) and (2.19) imply

d ≤ 2
∑

k∈I

nk . (2.20)

We have

1. If
∑

k∈I nkk(k − 1) = 0, then

Fg[φ
k, ω,J ] = Fg[φ

k, φ1,J ] , (2.21)

with φ11, . . . , φ
1
g an arbitrary basis of H0(KC).

2.
∑

k∈I nkk(k−1) = 0 then at the non-separating node of the Deligne-Mumford bound-

ary

Fg ∼ 1

(2πi)d/2
Fg−1 , (2.22)

whereas at the separating node

Fg ∼ ǫFg−g1Fg1 . (2.23)

The invariance (2.21) follows by observing that if (2.19) is satisfied, then, due to the term

detφ1j (zk) at the numerator of κ[φ1]

Fg =
∏

k∈I

(

∧maxφkj
κ[φk]

)nk

,

where n1 ≡ −d/2. The factorization properties (2.22) and (2.23) follow by (2.15) and (2.16).

The previous analysis implies that the partition functions

Z[J ] ,

with
∑

k∈I

nk(ck − 1) + 12 ≤ 0 , (2.24)

are finite at the Deligne-Mumford boundary. In this case

D ≤ 2 + 2
∑

k∈I

nk .

The first partition function with D = 4 space-time coordinates which is finite at ∂Mg is

the one with n2 = 0, n3 = n4 = 1 and n5 = −1, that is

D = 2(c2 + c3 + c4 − c5) = 4 ,

– 6 –
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corresponding to

∫

Mg

Z[13, 14,−15] =

∫

DgDXDΨexp(−S[X]− S[Ψ]) . (2.25)

S[X] is the four dimensional Polyakov action, whereas S[Ψ] is the sum of the action of a

non-chiral b-c system of weight 3, another of weight 4 and a β-γ system of weight 5. Note

that in this case
∑

k∈I

nk(ck − 1) + 12 = 0 ,

so that Zg[13, 14,−15] satisfies the factorization properties like the ones in (2.22) and (2.23).

A similar analysis extends to V [J ]. However, since detB◦n(zj , z̄k) vanishes on the

hyperelliptic locus with g 6= 2, the above results can be extended to V [J ] in the case

of canonical curves. The extension to the full Mg requires some further condition when

considering the hyperelliptic loci of Mg. Let us stress that V [−12], that in [1] has been

shown to coincide with the volume form on Mg induced by the Siegel metric, corresponds

to a finite string in D = 0. It follows that

V olS(Mg) =

∫

Mg

Z[−12] , (2.26)

is the Siegel volume of Mg. This may indicate that, as discussed in [2] in the case of

the Polyakov and supersymmetric strings, even the above models can be obtained, by a

reduction mechanism, from volume forms on the Siegel upper half-space.

The partition functions Z[J ] and V [J ] represent an infinite class of volume forms on

Mg. Studying their symmetries and spectra may also lead to understand some of the more

recent questions of superstring perturbation theory [36]–[69].
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