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[1] The ability of a particular model to accurately predict how a system responds to
forcing is predicated on various model parameters that must be appropriately identified.
There are many algorithms whose purpose is to solve this inverse problem, which is often
computationally intensive. In this study, we propose a new algorithm that significantly
reduces the computational burden associated with parameter identification. The algorithm is
an extension of the quasilinearization approach where the governing system of differential
equations is linearized with respect to the parameters. The resulting inverse problem
therefore becomes a linear regression or quadratic programming problem (QP) for
minimizing the sum of squared residuals ; the solution becomes an update on the parameter
set. This process of linearization and regression is repeated until convergence takes place.
This algorithm has not received much attention, as the QPs can become quite large, often
infeasible for real-world systems. To alleviate this drawback, proper orthogonal
decomposition is applied to reduce the size of the linearized model, thereby reducing the
computational burden of solving each QP. In fact, this study shows that the snapshots need
only be calculated once at the very beginning of the algorithm, after which no further
calculations of the reduced-model subspace are required. The proposed algorithm therefore
only requires one linearized full-model run per parameter at the first iteration followed by a
series of reduced-order QPs. The method is applied to a groundwater model with about
30,000 computation nodes where as many as 15 zones of hydraulic conductivity are
estimated.
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1. Introduction
[2] Simulating the dynamics of real-world groundwater

systems requires the use of accurate numerical models.
Even though these models may be based on the underlying
physical processes of a system, intrinsic model parameters
must be identified in order for the model response to be suf-
ficiently accurate. A multitude of algorithms exist whose
purpose is to adjust the parameter values of a model such
that the model output matches its associated measured val-
ues as closely as possible. This type of problem is com-
monly referred to as the inverse problem. Yeh [1986], Sun
[1994], and Oliver and Chen [2011] provide comprehensive
reviews on the inverse problem as it applies to groundwater
hydrology. Currently, the most popular methods are based
on the output error criterion, where a starting estimate of
the parameter vector is updated such that the norm of the

difference between observed states and their corresponding
model-predicted values is minimized. Cooley [1985] pro-
vides a comparison of four different nonlinear regression
methods of parameter identification; the most efficient
methods were found to be the Marquardt [Marquardt, 1963]
and quasilinearization [Yeh and Tauxe, 1971a, 1971b] meth-
ods. Some current, popular software include PEST [Doherty,
2002] and UCODE [Poeter et al., 2005]. These software
applications employ algorithms that are largely based on
the Gauss-Marquardt-Levenberg methods [Levenberg, 1944;
Marquardt, 1963].
[3] Methods based on the output error criterion require a

significant number of model runs in order to evaluate pa-
rameter updates from one iteration to the next. Therefore,
the computational demand associated with a forward run
of the numerical model has a large impact on the overall
CPU requirement of the parameter estimation algorithm.
Reducing the computational demand associated with the
numerical model can significantly reduce the computa-
tional demand of the parameter estimation algorithm. A
method known as proper orthogonal decomposition (POD)
has become very popular recently for achieving significant
model-order reduction [Cazemier et al., 1998; Willcox and
Peraire, 2002; Vermeulen et al., 2004; McPhee and Yeh,
2008; Siade et al., 2010]. This method of model reduction
essentially projects the original full-model solution from
the space of functions where it resides into a subspace
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(e.g., via Galerkin projection) generated from only a few
model runs, such that the number of equations that need to
be solved is greatly reduced. The resulting loss in accuracy
remains small or controllable. This is achieved by develop-
ing a specific set of basis functions such that time-varying
linear combinations of these basis functions can adequately
approximate the original full-model solution for all times
and with any forcing. Since the number of POD basis func-
tions is much smaller than the number of computational
nodes, the magnitude of model reduction can be very sig-
nificant. Siade et al. [2010] reduced a basin-scale ground-
water model, using POD, resulting in a reduced model that
ran approximately 1000 times faster than its corresponding
original full model with a negligible loss in accuracy.
[4] The accuracy of the reduced model via POD is de-

pendent on the quality of the basis functions that span the
reduced model subspace. Siade et al. [2010] provides a
methodology for evaluating a good set of basis functions
when considering changing values of forcing, e.g., ground-
water extraction/injection rates. However, when one is
changing the values of the parameters, such as hydraulic
conductivity, these basis functions begin to lose accuracy.
This loss of accuracy is due to the nonlinear relationship
between model parameters and model states. This presents
a problem for reduced-order parameter estimation, which
requires iterative updates of the parameter values. Park
et al. [1998] and Vermeulen et al. [2005] present methodol-
ogies for dealing with this issue. In both articles, the
authors use the method of snapshots to develop the basis
functions that span the reduced model space. Snapshots are
samples of the original full-model state variable at specified
instants in time. A snapshot set is collected for each well,
individually, given a constant unit forcing and a specific
set of parameter values. Snapshot sets are collected over
a specific range of parameter values that adequately cap-
ture parameter variability around their current estimates.
Throughout the parameter estimation algorithm, the current
estimate of the parameters may ‘‘move’’ outside this range,
requiring the re-evaluation of the reduced model using a
new range of parameter values. However, many snapshot
sets are needed in order to adequately capture all possible
combinations of parameter ranges each time the reduced
model is evaluated. For example, a snapshot set for each
extraction/injection well is needed when one of the parame-
ters is at the upper end of its range and the others are at
their lower ends. Additional snapshot sets are required for
each of these combinations at each extraction/injection
well. In particular, in the case of one well and two parame-
ters, four snapshot sets are needed; in the case of two wells
and three parameters, 16 snapshot sets are needed, etc.
Additionally, snapshot sets may be required for parameter
values within their ranges rather than at the upper and
lower bounds only. Each snapshot set requires an original
full-model run. Therefore, for highly parameterized sys-
tems with a large number of extraction wells, the computa-
tional gain of the model reduction is overcome by the
computational burden of developing snapshot sets.
[5] In this paper, we propose a methodology that no lon-

ger requires the development of a ‘‘moving’’ parameter
range when developing snapshots. The reduced model must
be developed once only; the resulting basis functions are
accurate for the entire parameter estimation procedure. The

parameters under investigation are zonal hydraulic conduc-
tivity values. The parameter estimation procedure employed
is based on quasilinearization and quadratic programming.
Bellman and Kalaba [1965] originally developed quasilinea-
rization for parameter identification in a system of nonlinear
ordinary differential equations. It involves solving a series of
linearized initial value problems such that the sequence of
solutions converges to the solution of the original nonlinear
problem. Yeh and Tauxe [1971a, 1971b] applied quasilinea-
rization to parameter estimation in groundwater modeling
while Park et al. [1998] applied it to flow reactor modeling.
Yeh [1975] combined quasilinearization and quadratic pro-
gramming for parameter estimation in a partial differential
equation. The algorithm essentially consisted of solving a se-
ries of sequential quadratic programming (QP) problems.
However, in practice this algorithm suffers from the fact that
each QP problem is so large that the computational burden
of solving it is near the same magnitude as that of current
Gauss-Newton type approaches. In this study, we show that
POD model reduction can dramatically reduce the computa-
tional requirement of the individual QP problems, resulting
in a drastic increase in overall inversion efficiency. The
method requires the evaluation of one snapshot set for each
hydraulic conductivity zone in order to build the reduced
model. Snapshots are collected from the linearized full
model (where changes in conductivity become the forcing
term) rather than the original full model (where groundwater
extraction/injection is the forcing term). The proposed
method can handle highly parameterized systems with a
large number of extraction/injection wells and still achieve
significant reductions in CPU time.

2. Confined Aquifer Groundwater Flow Model
[6] The following partial differential equation (PDE)

describes two-dimensional groundwater flow for a con-
fined, anisotropic aquifer with pumping [Bear, 1979]:
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with initial and boundary conditions:
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where h is the hydraulic head (L); Kxðx; yÞ;Kyðx; yÞ are
spatially varying hydraulic conductivities in the x and y
directions, respectively (L/T); Ss is the specific storage
(L"1); b(x,y) is the thickness of the aquifer (L); q is the
specific volumetric pumping rate (LT"1) ; G2 is the flux
boundary; G1 is the fixed head boundary; and h0; hd; and qn
are known functions. For simplicity and without loss of
generality, we assume isotropic behavior of the aquifer,
i.e., Kx ¼ Ky ¼ kðx; yÞ.
[7] The application of the superposition principle to

equation (1) followed by spatial discretization of the result-
ing PDE (e.g., by finite differences, finite elements, etc.)
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yields a system of linear ordinary differential equations
(ODEs) for the drawdown, s :

B
ds
dt

¼ Asþ q ¼ fðs; kÞ; (2)

where A is the n& n stiffness matrix; B is the n& n mass
matrix; s and q are the n-dimensional vectors of nodal (cell)
drawdowns and source/sinks, respectively; fðs; kÞ ¼ Asþ q
is a vector-valued function depending on drawdown s and
hydraulic conductivity k ; and n is the number (generally
very large) of spatial computational nodes (cells). The
nz-dimensional vector k represents the spatially varying hy-
draulic conductivity, which is assumed to be discretized into
nz material zones. Drawdown is the difference between the
initial head and the head after pumping, i.e., s ¼ H " h,
where H is the initial head (e.g., steady state or the natural
system dynamics). In the majority of cases of practical inter-
est, matrices A and B are large, sparse, symmetric, and posi-
tive definite. Upon the application of an implicit Euler
scheme, equation (2) can be approximated as

A" 1
!tj

B
! "

sj ¼ " 1
!tj

Bsj"1 " qj; (3)

where sj and qj are vectors of nodal drawdown and extrac-
tion rate values at time j, respectively; and !tj is the length
of the j-th time step.

3. Groundwater Parameter Estimation Via
Quasilinearization and Quadratic Programming
3.1. Problem Formulation
[8] The primary goal of parameter estimation is to iden-

tify the parameter vector that minimizes some norm of the
residuals, i.e., differences between the model-predicted
state variable(s) and those observed in the field. The most
commonly used objective for this class of problems is mini-
mizing the sum of the squared residuals. The parameter
vector of interest for this study consists of the zonal hy-
draulic conductivity values, k. The state vector of interest
consists of the nodal (cell) drawdown values, s. Note that
generally, matrix A in equations (2) and (3) is the only
term that explicitly contains the vector k. Therefore, the
general problem statement can be written as

min
k

Xnt

j¼1

Xnj

i¼1

#
sKjðiÞ; j " s

'
i; j

$2
;

subject to :

A" 1
!tj

B
! "

sj ¼ " 1
!tj

Bsj"1 " qj j ¼ 1; . . . ; nt

kmin ( k ( kmax ;

(4)

where nt is the number of time steps; nj is the number of
observation locations at time step j ; sKjðiÞ; j and s

'
i; j are the

drawdown values, for measurement location i and time j,
predicted by the model and observed in the field, respec-
tively; and KjðiÞ maps the position of the appropriate com-
putational node (cell) to its corresponding i-th observation
at time j.

3.2. Quasilinearization and Quadratic Programming
[9] The method of quasilinearization and quadratic pro-

gramming, as it applies to parameter estimation, consists
essentially of solving a series of quadratic programming
(QP) subproblems such that the solution to these problems
converges to the solution of the original nonlinear inverse
problem. Yeh [1975] provides a methodology in which the
governing equation is linearized about the current estimate
of the parameter vector and the state vector using a Taylor
series expansion. This linearized equation replaces the orig-
inal governing equation in the least squares parameter esti-
mation problem resulting in a QP problem. The solution to
this QP problem then becomes the current estimate for a
new Taylor series expansion resulting in a new QP. This
process is repeated in the linearized system until the solu-
tion converges to the solution of the original nonlinear least
squares problem.
[10] Consider the governing equations after spatial discre-

tization and before temporal discretization, i.e., the system
of ordinary differential equations (ODEs) in equation (2).
Applying a Taylor series expansion about some current
estimate of the drawdown, sm, and hydraulic conductivity,
km, retaining up to the first order terms only, results in the
following:

B
dsmþ1

dt
¼ fðsm; kmÞ þrsfðsm; kmÞðsmþ1 " smÞ

þrkfðsm; kmÞðkmþ1 " kmÞ;
(5)

where smþ1 is an approximation of the drawdown, given
some new parameter vector, kmþ1. The Jacobian matrix of
f with respect to s is

rsfðsm; kmÞ ¼ Am;

where Am is the A matrix in equation (2) composed of the
current estimate of hydraulic conductivity, km. The Jaco-
bian matrix of f with respect to k can be approximated
numerically via finite difference as

½rkfm*i; j ¼
df mi
dkj

+
fiðkmj þ!kjÞ " fiðkmj Þ

!kj
¼ ½Dm*i; j;

where !kj is some relatively small increment of hydraulic
conductivity for element j of km, and Dm + rkfm contains
the current estimate of sm. Substituting these Jacobian mat-
rices into equation (5) results in the following equation:

B
dsmþ1

dt
¼ Amsm þ qþ Amðsmþ1 " smÞ þ Dmðkmþ1 " kmÞ: (6)

[11] This equation can be rewritten such that it has the
same form as the governing equation for groundwater flow
(equation (2)), with an additional forcing term associated
with changes in hydraulic conductivity:

B
dsmþ1

dt
¼ Amsmþ1 þ Dmðkmþ1 " kmÞ þ q: (7)
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[12] At the m-th iteration, the implicit Euler scheme can
be used to approximate the solution to equation (7) in time
as follows:

"Am þ 1
!tj

B
! "

smþ1j ¼ 1
!tj

Bsmþ1j"1 þ Dmj ðk
mþ1 " kmÞ þ qj: (8)

[13] Note that Dm is a function of time because it con-
tains the current estimate sm, which is a function of time.
The QP subproblem now can be solved using the linearized
equations of the governing ODEs (equations (7) and (8)),
yielding the following algorithm:

Algorithm QQP:
Given the initial feasible estimates k0 and s0 :
For m ¼ 0, 1, . . . , until convergence, do:
find kmþ1 such that:

min
kmþ1

Xnt

j¼1

Xnj

i¼1

#
smþ1KjðiÞ; j" s

'
i; j

$2

subject to:

"Amþ 1
!tj
B

! "
smþ1j ¼þ 1

!tj
Bsmþ1j"1 þDmj ðk

mþ1"kmÞþqj

j¼ 1; . . . ;nt

kmin (kmþ1(kmax : ð9Þ

[14] We can consider convergence achieved if the
change in conductivity is small, i.e., jkmþ1"kmj< ! , where
! is a predefined tolerance, or if an insignificant change in
the objective of equation (9) is observed. For convex pro-
gramming problems, this process will converge to the global
optimum of the original nonlinear inverse problem (equation
(4)). However, it is important to note that, in general, this
algorithm only guarantees convergence to a local optimum
for nonconvex problems [Bellman and Kalaba, 1965].
[15] The algorithm presented thus far has not been used

widely in practice due to the difficulty of solving each
successive QP problem for real-world large-scale models.
Depending on the QP algorithm employed, the successive
QP problems (equation (9)) can be highly computationally
demanding and become impractical or even infeasible.
Therefore, Gauss-Marquardt-Levenberg methods (e.g., PEST
[Doherty, 2002] and UCODE [Poeter et al., 2005]) have
become more popular for solving inverse problems in
groundwater flow. However, the linearization of the gov-
erning equations does, in fact, result in a linear model
whose order (i.e., number of equations) can be reduced sig-
nificantly with the application of modern POD technology.
With a much smaller set of equations in the constraint set,
the optimization problem (equation (9)) can be solved very
efficiently resulting in a more efficient and tractable overall
estimation procedure.

3.3. Model Reduction Via Proper Orthogonal
Decomposition (POD)
[16] In order to apply POD as accurately as possible to

the linearized equations (equation (6)), the natural system
dynamics must be removed [Siade et al., 2010; Vermeulen

et al., 2004]. In other words, the model must be one in
which the state variable remains at rest, i.e., zero every-
where, unless some forcing is applied. This is naturally true
for models of drawdown where the superposition principle
is used to remove the natural system dynamics from the
governing equations of groundwater flow. However, in the
case of parameter estimation, we are not interested in opti-
mizing pumping rates. Here we are interested in the manner
in which drawdown changes given a change in the hydrau-
lic conductivity distribution. Accordingly, we must develop
a linearized model that relates changes in drawdown, "s,
with changes in hydraulic conductivity, "k . This model
must remain at rest, i.e., "s ¼ 0, when there is no forcing,
i.e., "k ¼ 0. We obtain such a model by rewriting equation
(6), using the superposition principle, to yield

B
d"s
dt

¼ Am"s þ Dm"k ; (10)

where "s ¼ smþ1 " sm and "k ¼ kmþ1 " km. This equation
has the same general form as equation (2); however, the state
variable is now "s and the forcing term is now Dm"k . Hence,
the linearized model relates changes in drawdown ("s) to per-
turbations in zonal hydraulic conductivity values ("k).
[17] We use POD to approximate the linearized full-

model solution (equation (10)) via a reduced model devel-
oped by means of the method of snapshots. A snapshot vec-
tor, "s, is the linearized full-model solution for all spatial
nodes at some instant in time. We can approximate the state
vector in space and time as a linear combination of linear-
ized full-model snapshots:

"sðtÞ + "̂sðtÞ ¼
Xns

i¼1
"siwiðtÞ;

where wiðtÞ are some unknown weighting functions and ns
is the number of snapshots considered. This approximation
can be written more generally in matrix form as

"̂sðtÞ ¼
Xns

i¼1
ui"sri ðtÞ ¼ U"sr ðtÞ;

where U is the n& ns matrix of spatial basis functions
(which can differ from the snapshot vectors) that span the
reduced model space and "sr is the vector of weighting
functions which is considered the state vector in the
reduced model space. The optimal matrix, U, given some
snapshot set can be determined using principal component
analysis (PCA). To achieve this aim, the following eigen-
value problem is solved [Siade et al., 2010; McPhee and
Yeh, 2008; Vermeulen et al., 2004]:

XXT ¼ U"UT ;

where matrix X is formed by the normalized snapshot vec-
tors as columns; matrix U contains the principal vectors
(eigenvectors) as columns; and " is a diagonal matrix
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whose diagonal elements consist of the eigenvalues of each
principal vector. The spectral decomposition of XXT (an
n& n matrix) is obtained by calculating the eigenpairs of
XTX (an ns & ns matrix), which are related to the eigen-
pairs of XXT . Each eigenvalue represents the ‘‘amount’’ of
variability captured by the corresponding principal vector
(i.e., eigenvector). Using this quantitative measure, insig-
nificant principal vectors can be identified and discarded.
First, the normalized eigenvalues are obtained from

#i ¼
$i

Xns

j¼1
$j

:

[18] These eigenvalues are organized in decreasing order

and summed until
Pnp

i¼1
#i , #, where # is user-specified

[Siade et al., 2010; McPhee and Yeh, 2008; Vermeulen
et al., 2004]. The choice of # depends on the desired level
of accuracy of the reduced model; larger #’s result in
larger but very accurate reduced models (more principal
vectors) and smaller #’s result in smaller but less accurate
reduced models (less principal vectors). The principal vec-
tors corresponding to the top np normalized eigenvalues are
retained for building the reduced model and the remaining
ns " np principal vectors are discarded. As a result the orig-
inal n& ns matrix, U, is replaced by a smaller n& np ma-
trix, P, containing these np eigenvectors.
[19] The Galerkin projection of the linearized full-model

equations onto the subspace spanned by the np eigenvectors
yields the system of np, linearly independent, ODEs and np
unknowns formulated as

PTBP
d"sr
dt

¼ PTAmP"sr þ PTDm"k :

[20] Letting ~B ¼ PTBP; ~Am ¼ PTAmP and ~Dm ¼ PTDm,
we obtain:

~B
d"sr
dt

¼ ~A
m
"sr þ ~D

m
"k :

[21] This reduced system of ODEs can be solved by any
stable time-stepping technique, such as implicit Euler:

"~A
m þ 1

!t
~B

! "
"sr ; j ¼

1
!t

~B"sr; j"1 þ ~D
m
j "k : (11)

[22] However, because of equation (11)’s drastically
reduced size (np - n), often by several orders of magni-
tude, the system also can be solved very efficiently by ana-
lytical methods via matrix exponential [Bellman, 1960;
Willis, 1979].

3.4. Reduced Order Quadratic Programming
Formulation
[23] The reduced linearized model now can be used to

solve each successive quadratic programming problem.

Noting that smþ1i; j ¼ smi; j þ pTi "sr ; j, substituting equation (11)
into equation (9) results in the following QP problem:

min
kmþ1

Xnt

j¼1

Xnj

i¼1

#
pTKjðiÞ"sr ; j þ s

m
KjðiÞ; j " s

'
i; j

$2

subject to :

"~Amþ 1
!tj

~B
! "

"sr ; j ¼
1
!t

~B"sr; j"1 þ ~D
m
j "k

j ¼1; . . . ; nt
"k ¼ kmþ1 " km

kmin ( kmþ1 ( kmax ;

(12)

where pKjðiÞ is the KjðiÞ
th row of the P matrix. The constraint

set has therefore been reduced from ðn ' ntÞ to ðnp ' ntÞ equa-
tions (not including the upper and lower bounds on parame-
ters), where np - n. It is important to note that from one QP
problem to the next (i.e., between outer iterations of the over-
all algorithm) the principal vectors must be re-evaluated in
order for the reduced model to achieve the greatest accuracy.
This is a result of changing values of hydraulic conductivity
between successive QPs (i.e., A is a function of k). The
reduced basis (i.e., principal vectors) requires one linearized
full-model call per parameter to evaluate, which is exactly
the same number of original full-model calls required by the
Gauss-Levenberg-Marquardt method (e.g., PEST and
UCODE) to evaluate the corresponding Jacobian matrix.
However, as we show in this study, if the principal vectors
are evaluated using a reasonable initial guess, subsequent
inaccuracies produced by the reduced models throughout
the algorithm become negligible. It is also important to
note that the limitation on the number of parameters to be
estimated is no different from that of a quadratic program-
ming problem, which can be quite large.

4. One-Dimensional Test Case
[24] In this section, we apply the method proposed in this

study to a one-dimensional test problem to illustrate the algo-
rithm mechanics. This test problem is similar to that explored
in Siade et al. [2010] and is displayed in Figure 1. The model
has 101, equally spaced, computational nodes and has
Dirichlet boundary conditions at nodes 1 and 101 of 0 m.
There is a pumping well at node 51, with a constant extrac-
tion rate of 1 m3 d"1. There are two equally sized zones of
hydraulic conductivity (5.0 and 15.0 m d"1, respectively)
and a specific storage of 10"5 m"1 is used throughout.
[25] First we investigated the performance of POD

model reduction as applied to the linearized model (equa-
tion (10)). Figure 2 illustrates the solution to the original
full model along with the results of both the linearized full
model and linearized reduced model given a change of hy-
draulic conductivity in each zone of 1.0 m d"1 (the initial
values are those displayed in Figure 1). For this test case,
the errors between the linearized full model and the linear-
ized reduced model are on the same order of magnitude as
those shown for the one-dimensional original full model by
Siade et al. [2010]. We, therefore, conclude that the solu-
tions obtained from the linearized full model and the linear-
ized reduced model are essentially identical.
[26] The parameter estimation algorithm we present was

applied to this one-dimensional test case. The algorithm
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was tested under three scenarios: using the linearized full
model only, using POD model reduction of the linearized
model where the reduced basis is updated at each iteration
of the quasilinearization procedure, and using POD model
reduction for the linearized model without updating the
reduced basis, i.e., the reduced basis is determined using
the initial values or the initial ‘‘guess’’ of hydraulic conduc-
tivity and never updated. A flowchart of the overall algo-
rithm employed in this study is shown in Figure 3.
We generated observations of drawdown using the true

parameter values of k1 ¼ 15:0 m d "1 and k2 ¼ 5:0 m d"1

and recorded at each time step at nine locations
(x ¼ 20; 30; 40; 45; 51; 56; 61; 71; 81m). The observa-
tions were also corrupted with normally distributed random
noise to test the effects of measurement noise. Ten snap-
shots were selected optimally using the exponential func-
tion presented by Siade et al. [2010]. Figure 4 illustrates
the convergence results for these three scenarios using an
initial guess of k1 ¼ 0:1 m d "1 and k2 ¼ 0:1 m d "1. The
rate of convergence for the three scenarios was nearly iden-
tical until the least squares objective had fallen below 10"6.
After this point, the algorithm using scenarios 1 and 2
proceeded to converge superlinearly, whereas the algorithm
employing scenario 3 appeared to converge linearly. Sig-
nificant differences in convergence rates between scenarios
1 and 2 were not observed until the least squares objective
was very small. However, if a different initial estimate of
hydraulic conductivity were used, the relative rates of con-
vergence for the three scenarios could be quite different ;
‘‘good’’ initial guesses could result in very little difference
in convergence between the three scenarios. In the case
where measurement noise was added, there were negligible
differences between the convergence rates of the three sce-
narios. This is due to the fact that errors associated with
measurement noise dominated those associated with model
order reduction via POD.
[27] Aside from convergence rates, it is also important to

evaluate whether or not the algorithm actually converges
(oscillatory behavior is possible for scenario 3) or if it con-
verges to the global optimum. Table 1 lists convergence
results for a series of initial estimates of hydraulic conduc-
tivity (without measurement noise); the algorithm was con-
sidered to have converged when the least squares objective
had fallen below 10"16 or diverged when more than 80 iter-
ations were realized without convergence. The upper and
lower bounds for each parameter were set to 103 m d"1 and
10"8 m d"1, respectively. Although scenario 3 has some
potential for oscillation, the initial guess must be very poor
for nonconvergence to occur. In all cases tested, including
those listed in Table 1, the global optimum was achieved;
however, this cannot be guaranteed in the presence of
insensitive and/or correlated parameters.

5. Two-Dimensional Application: Oristano, Italy
[28] The algorithm presented in this study was used to

solve the inverse problem for a two-dimensional represen-
tation of a groundwater flow model in Oristano, Italy. The
plain of Oristano is located in west-central Sardinia. The
morphology of the territory is predominantly flat sur-
rounded by the Monti Ferru and the Monti Arci hills on the

Figure 1. One-dimensional groundwater flow model.

Figure 2. One-dimensional test model results for (a) the
full, original flow model, (b) the linearized full and reduced
models with k1 increased by 1.0 m d

"1, and (c) the linearized
full and reduced models with k2 increased by 1.0 m d

"1.
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Figure 3. Flowchart of the algorithm presented in this study for all three scenarios.
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east and by the sea on the west. A heavily exploited multia-
quifer system provides the source of water for agricultural
and industrial uses. Approximately 25,000 wells are esti-
mated to exist in the study region, although the number of
wells that are actively withdrawing water from the aquifer
system for agricultural and industrial uses is not known. Of
these, 500 wells (some located also in the confined aquifer)
have been monitored during recent years. The thickness of
the multiaquifer system ranges from a minimum of .28 m
close to the hills and a maximum of .218.5 m close to the
sea. Three major units can be identified: a phreatic aquifer
with an average thickness of .12 m, a confining layer with
an average thickness of .4 m, and a confined aquifer with
an average thickness of .110 m [Cau et al., 2002]. In this
study, we concentrate on the confined aquifer, where most of
the groundwater withdrawals take place. Since we are mainly
interested in testing the algorithm proposed in this study for
models with a large, realistic number of computational
nodes, synthetic, simplified data was assumed for pumping,
recharge, and boundary conditions.

[29] The numerical model for groundwater flow is dis-
cretized using the finite element method. The model con-
tains 29,197 nodes and 57,888 elements and contains local
grid refinement in 11 regions (Figure 5). For the purposes
of this study, the model forcing was simplified such that
there are six extraction well clusters (with a constant rate of
5000 m3 d"1 each) and the entire outer boundary of the

Figure 4. Convergence results for the one-dimensional test case, with and without measurement noise,
using an initial estimate for hydraulic conductivity of k1 ¼ 0.1 and k2 ¼ 0.1 (note that the vertical scales
may differ).

Table 1. Convergence Statistics for the One-Dimensional Test
Case Using Various Initial Estimates of the Parameters

Initial Estimate Converge Scenario?
Iterations Required
for Scenario

k1 k2 1 2 3 1 2 3

0.1 0.1 Yes Yes Yes 14 14 15
10 10 Yes Yes Yes 6 6 6
17 17 Yes Yes Yes 12 12 12
100 100 Yes Yes Yes 18 18 16
0.15 50 Yes Yes No 16 16 –
50 0.15 Yes Yes Yes 9 9 17
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model is represented with Dirichlet boundary conditions
(Figure 5). Specific storage is assumed constant throughout
the model at 10"5 m"1. Three different zonation patterns
containing three, seven, and 15 zones, respectively, were

considered for hydraulic conductivity (Figure 6). The
‘‘true’’ values of hydraulic conductivity (i.e., those used to
generate the observations) are listed in Table 2 for each of
the three zonation patterns. The initial values of each zone

Figure 5. The model grid used as a two-dimensional ‘‘slice’’ of the Oristano, Italy model.

Figure 6. Zonation patterns used for the Oristano, Italy model.
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were set to 1.0 m d"1. The same three algorithm scenarios
used in the one-dimensional test case also were employed
in the Oristano model. Using the true parameter values,
drawdown observations were generated at the locations
shown in Figure 6 for each time step.
[30] Figure 7 shows the comparison between the linear-

ized full model and linearized reduced model for the three-
zone hydraulic conductivity distribution (Figure 6). The
differences between the linearized full and linearized
reduced model are indistinguishable and differences at the
locations of the wells (maximum drawdown) are usually
<0.0001 m. The impact of changing the hydraulic conduc-
tivity value of a zone is largely dependent on whether or
not significant forcing resides in that zone. For example, in
Figure 7, changing the hydraulic conductivity in zone 1
resulted in large changes in drawdown at the locations of
the wells within zone 1; the same is true for zones 2 and 3.
[31] The three scenarios listed in section 4 were con-

ducted for the Oristano model using the procedure outlined

Table 2. True Values of Hydraulic Conductivity by Zone for the
Three Zonation Patterns Considered (m d"1)

Zone

Zonation Pattern

Three Zone Seven Zone 15 Zone

1 15.0 15.0 15.0
2 5.0 5.0 5.0
3 7.0 7.0 7.0
4 12.0 12.0
5 3.0 3.0
6 20.0 20.0
7 10.0 10.0
8 2.0
9 9.0
10 18.0
11 21.5
12 4.3
13 0.5
14 16.1
15 1.0

Figure 7. Changes in drawdown (m) given a unit change in hydraulic conductivity (1.0 m d"1) for
both the linearized full and reduced models.
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in Figure 3. The effects of measurement noise also were
explored; random Gaussian noise (. N ½0:0 m; 0:1 m*) was
added to the observation data. Figure 8 shows the conver-
gence of the three-zone model with and without measure-
ment noise. Similar to the convergence results of the
one-dimensional test case, all three scenarios converge sim-
ilarly (without noise) until the objective fell below 10"6,
where scenarios 2 and 3 began to deviate from scenario 1.
However, with measurement noise, the least squares objec-
tive cannot fall below .20.0; therefore, there was no signif-
icant difference in convergence between the three scenarios.
This is more realistic because, in practice, there always will
be noise present in measured data.
[32] The convergence results of the seven- and 15-zone

models are shown in Figure 9. For the seven-zone case, the
convergence of the three scenarios is similar to that of the
three-zone Oristano model and the one-dimensional test
model. However, the convergence of Scenarios 1 and 2 for
the 15-zone case decreases around the fifth iteration. This is
due to the fact that since the hydraulic conductivity of zone 7
is relatively insensitive to the least squares objective, this
value reaches its lower bound on the first iteration. Therefore,
the remaining zonal values must be adjusted to ‘‘compen-
sate’’ for this constraint. Here we observe the consequences
of over-parameterization and nonuniqueness, i.e., nearly the
same objective function value is achieved with entirely dif-
ferent parameter values (Figure 10). Because of the combina-
tion of the insensitivity of zone 7 and the presence of

nonuniqueness, the impacts associated with the lower bound
constraint are not noticeable until the ninth iteration, when
the objective starts to become small. At this point, the algo-
rithm convergence is reduced until the hydraulic conductivity
of zone 7 gets close to the true value, after which superlinear
convergence is obtained. The convergence of the hydraulic
conductivities of zones 2, 3, and 7, as shown in Figure 10,
confirms these observations.
[33] The results associated with scenario 3 do not dem-

onstrate the same impacts on convergence resulting from
the parameters being constrained by their lower bounds.
This is likely due to the fact that the Jacobian matrices (sec-
tion 3.3) are projected onto a subspace that is determined
using the initial guess of hydraulic conductivity, which
does not contain parameters residing on their lower bounds,
resulting in more robust or better-conditioned Jacobian
matrices. In other words, the proposed algorithm associated
with scenario 3 seems to overcome the problems of over-
parameterization and nonuniqueness present in the 15-zone
test case. This is not true for scenario 2 because the basis
functions, and hence the reduced-model subspace, are
updated at each iteration using the current parameter val-
ues. So, at the second iteration, the basis functions are recon-
structed using snapshots generated from a parameter set that
is constrained by its lower bound. In summary, the results of
scenario 3 may indicate a potentially unforeseen advantage
associated with the proposed algorithm for overparameter-
ized systems, in addition to computational considerations (of

Figure 8. Convergence results for the three-zone case with and without measurement noise.
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which is the focus of this study), and is a subject of further
research.
[34] Comparing, quantitatively, the computational im-

provements associated with the proposed method is not
straightforward. As shown previously, each scenario may
require a different number of iterations to achieve conver-
gence. Additionally, each scenario may arrive at different
parameter values throughout the inverse problem, which, in
turn, may lead to different computational costs associated
with iterative QP solvers. However, some comparisons are
required. The linearized full model for the 15-zone case, at
iteration 1, required .24.5 s of run time on an iMac quad-
core computer with an INTEL 2.93 GHz i7 processor
equipped with 12 GB RAM, 256 KB L2 cache (per core),
8 MB L3 cache, with no hyperthreading and no automatic
parallelization using a GNU GFortran compiler with O3
automatic optimization. The same simulation with the line-
arized reduced model required .10.3 s. The vast majority
of the principal vectors were retained for this reduced-
model simulation; truncation of principal vectors will yield
drastic reductions in the reduced-model run time. For
example, if # ¼ 0:99 (section 3.3), only 50 principal
vectors are retained on iteration 1 of the 15 zone case.
The eigenvalue decomposition required very little effort
(.1.4 s). Solving the QP problem at iteration 1 using the lin-
earized full and reduced versions of the quasilinearization
procedure (not including snapshot generation) required
37.7 and 15.35 min, respectively. This comparison will be

different for each iteration. The overall inverse problem (15-
zone case) for scenarios 1, 2 and 3 required 20 h 13 min, 7 h
12 min, and 3 h 51 min, respectively, yielding a speedup of
more than 5 times for the method proposed in this study.
Truncating principal vectors, exploiting the small size of the
QPs, and more efficient data storage will likely reduce the
computational expense even further.

6. Discussion and Conclusions
[35] The computational burden associated with solving

the problem of parameter estimation is dependent on both
the number of times the model under investigation must be
called as well as the computational expense associated with
calling this model. We have developed a new technique for
solving the inverse problem in which the computational
burden of solving the model is dramatically reduced. The
method proposed is an extension of the quasilinearization
technique where the governing system of differential equa-
tions is linearized with respect to the parameters, resulting
in a least squares regression problem or a quadratic pro-
gramming (QP) problem. The solution becomes an update
on the parameter set. This process is then repeated until
convergence takes place. Applying the proper orthogonal
decomposition (POD) method drastically reduces the com-
putational burden associated with these regression prob-
lems. This is achieved by reducing the dimensionality of
the linearized flow model embedded in the QP problem to
be solved at each iteration.

Figure 9. Convergence results for the seven- and 15-zone models.
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[36] The proposed algorithm was used to solve the
inverse problem for confined groundwater flow models.
First, a one-dimensional test case was used to illustrate the
algorithm mechanics. The methodology then was applied
to a two-dimensional, finely discretized version of a real
model in the Oristano region of the island of Sardinia, Italy.
The results obtained from numerical experiments indicate
that the convergence of the quasilinearization scheme was
nearly identical for the linearized full model and the POD
reduced model derived from the linearized full model. This
suggests that the proposed method may be feasible for solv-
ing real-world large-scale inverse problems (i.e., problems
with a large number of computational nodes).
[37] The implications associated with the reduced basis

updates also were explored. Through simulation, the results
have shown that this basis, i.e., the reduced model sub-
space, does not need to be updated between successive iter-
ations of the quasilinearization procedure, so long as the
initial estimate of the parameter values is within the region
of convergence, which may be slightly smaller than that of
the algorithm without POD model reduction. Removing the
need for updating the basis between iterations drastically
reduces the computational burden of solving the inverse

problem since the snapshot set needs to be developed only
once, at the first iteration. In other words, the algorithm
proceeds by calling the linearized full model once per pa-
rameter at the first iteration only. Then the algorithm con-
tinues such that, at each iteration, the original full model is
called once and a reduced-order QP problem is solved.
[38] Our numerical experiments indicate that without

updating the reduced basis between iterations, the parame-
ter estimation process may even become more stable and
efficient. For the 15-zone case of the Oristano model, one
of the parameter values was constrained by its lower bound
at the first iteration. This was likely a result of this parame-
ter being insensitive to the observation data. As a result,
only the reduced-order algorithm for which the reduced ba-
sis was not updated at every iteration continued to converge
superlinearly. This is likely the result of the subspace pro-
jection being based on the initial estimate and not on a pa-
rameter vector containing a parameter at its lower bound.
This phenomenon of added stability to the inverse problem
is beyond the scope of this paper and is a topic of further
research.
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