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Abstract. The reduction of the soil cutting force through vibrating tools was the object of many 

studies during the second half of the last century. These studies initially focused on soil 

movement by bulldozers and then on soil tillage in agriculture. Over the past years, the field of 

tree-nursery mechanization has been employing this knowledge due to the use of equipment 

with oscillating tools for root-balling plants. Transportation and planting must be performed 

with the roots contained in a hemispherical ball of the original soil. This hemispherical root-ball 

is obtained by using a vibrating semicircular blade that cuts the soil underneath the plant. The 

blade oscillator is complex because the blade must oscillate and advance in the frame to cut the 

root-ball. For this reason, we correlated the oscillation and cutting movements with the oscillator 

features through a dynamic analysis using the Hong’s formulae for Coulomb friction with a 

harmonic forcing torque. The resulting periodic motion has a substantial phase lag with respect 

to the forcing torque generated by the rotation of eccentric masses; instead, the amplitude 

predicted with the Coulomb friction is 15 % lower than the amplitude calculated without 

friction. Experiments were also conducted to verify the value of these amplitudes and to 

determine the correlations between the cutting torque of the blade in typical tree-nursery soil and 

the blade diameter. All the correlations proposed in this article, together with the performed 

literature survey, were useful for drafting new design guidelines for mechanical oscillators. 
 

Keywords: mechanical oscillator, vibrating tools, soil cutting, root-balling machine. 

 

Nomenclature 

 

A0 (mm) 
Linear amplitude of oscillating blade 

(zero to peak) 
Mme (Nm) 

Torque of the eccentric masses 

(harmonic forcing torque) 

B (m) Blade width MR (Nm) Friction torque 

bG (m) Mass lever arm Mt (Nm) Cutting torque in soil 

bm (m) Lever arm of the springs n Number of masses 

D (m) Root-ball diameter r Contact ratio 

Fo (N) Oscillating tool force St (mm) 
Total space available between the 

coils of the springs 

Fno (N) Non-oscillating tool force tt (s) Root-ball cutting time 

J (kgm2) Moment of inertia of oscillator+blade va (m/s) Tool feed velocity 

k (Nm/rad) Torsional spring rate vu (m/s) Peak oscillating tool velocity 

kl (N/m) Linear spring rate vu/va Velocity ratio 

m (kg) Eccentric mass yG (m) Eccentricity 

Z Number of springs σ Standard deviation 

α0 (rad) Angular amplitude of oscillating blade φ (rad) Phase displacement 

µ External friction coefficient ω (rad/s) 
Angular velocity of the eccentric 

masses (angular frequency) 

ρ (kg/m3) Soil density ωn (rad/s) Natural angular frequency 
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Introduction 

 

The first investigations on cutting soil through vibrating tools were made in the 1950s, 

initially aimed on soil movement by bulldozers and then on soil tillage in agriculture. In both 

cases the vibration reduces the cutting force on the soil. 

Eggenmuller [1] discovered that the ratio (Fo/Fno) (the cutting force of an oscillating tool 

over the cutting force of a non-oscillating tool) is influenced by the amplitude and frequency of 

the oscillation and especially by the ratio of the oscillation peak velocity to the feed velocity 

(vu/va) (tool peak velocity vu during the oscillation over the feed velocity va). In particular, he 

demonstrated that the force ratio decreases with increasing velocity ratio, reaching a minimum 

of 0.4 for vu/va equal to 6. Moreover, he showed that if the amplitude (zero to peak) of the blade 

motion is greater than 6 mm at all of the frequencies, then the decrease in the force ratio is small. 

Other authors, [2] and [3], also reported that the force ratio considerably decreases for 

velocity ratios ranging from 1 to 3 and moderately for ratios ranging from 3 to 8, while the force 

ratio decrease is more modest with higher velocity ratios. 

Narayanarao [4] investigated, both theoretically and experimentally, the effects of oscillation 

on a tool, such as a chisel, by verifying that an increase in the velocity ratio vu/va up to 8 causes a 

reduction in the ratio of the required force (Fo/Fno) to reach the value of 0.4, confirming 

Eggenmuller’s values. 

Szabo [5] conducted experiments with an oscillating tool, pushing the velocity ratio beyond 

the limit of 8, concluding that a minimum force (Fo/Fno = 0.3) can be obtained by employing 

velocity ratios that are equal to or greater than 17. 

The total energy and consequently the total power required by an oscillating machine tool, 

which is the sum of the power of the thrust and the power of the oscillation, turned out to be 

equal or greater to that of a non-oscillating tool [6] and [7]. This result depends on the values of 

the ratio (vu/va). 

Using an inclined blade, [7] and [8] compared different kinds of periodic motion. They tested 

traditional harmonic motion, square-wave motion and saw-tooth motion; they did not find any 

difference regarding the required force. 

To obtain the maximum efficacy in reducing the traction force, [9] and [10] have shown that 

the oscillations must occur lengthwise along the direction of motion. Lateral or vertical 

vibrations are not very useful. 

This knowledge has been employed in the field of tree nursery, where the transportation and 

planting must be performed with the roots contained in a hemispherical ball of the original soil. 

This hemispherical root-ball is obtained by using a vibrating semicircular blade that cuts the soil 

underneath the plant. The vibrating tool is connected to a mechanical oscillator installed in a 

“root-balling machine” (Fig. 1). 

 

 

Fig. 1. The semicircular blade and frame of a root-balling machine 
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As the blade must oscillate and advance in the frame to cut the root-ball, the blade oscillator 

is relatively complex. For this reason, the correlations between the dynamic features of the 

oscillator and the oscillation and cutting movements were investigated through theoretical 

analyses [11]. In this last work, the motion equation of the oscillator-blade system was 

integrated under the following hypothesis for the friction torque: the Coulomb formulation 

(square wave) was replaced by a viscous law (sinusoidal wave) in phase with the derivative of 

the blade angular position dα/dt, hence a velocity, energetically equivalent as far as concerns the 

friction work. 

The present work wants to overcome the approximation introduced in [11] and therefore 

aims at: 

1) performing a better dynamic analysis by using the results of Hong´s mathematical model 

[12] to describe oscillating systems which keep in account the Coulomb friction; 

2) making an experimental assessment of the presented model and, afterwards, giving new 

design guidelines concerning these mechanical oscillators. 

 

Materials and methods 

 

The oscillating system 

The oscillator (Fig. 2) is composed of a train of five gear wheels: the power is supplied to the 

central wheel, while the two outer gear wheels transmit the motion to two eccentric masses
1
. 

When these eccentric masses are placed opposite each other (Fig. 2), the respective centrifugal 

forces are balanced, but when they are rotated by 2π±  from the initial position, they cause the 

gear housing to oscillate. This causes a forced oscillation of the gear housing that is transmitted, 

by the shaft, to the horizontal butterfly bush that is connected to the semicircular blade. 

 

 
Fig. 2. Three-dimensional drawing of the oscillator-blade unit: 1) gear; 2) eccentric masses; 

3) gear housing; 4) shaft; 5) horizontal butterfly bush; 6) semicircular blade; 7) springs; 

8) vertical butterfly bush; 9) worm screw; 10) worm gear housing 

 

This unit, composed of the gear housing, horizontal butterfly bush and blade, which is forced 

to oscillate, is then elastically connected, by four springs, as shown in Figure 2, to the vertical 

butterfly bush. This bush is not fixed but can rotate because it is connected to a worm gear. The 

                                                           

1 The total number of masses can be greater than two, but it must be even (four, six, etc.). 
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worm screw is fed by a hydraulic motor, driven by an operator. In other words, the action of the 

worm screw rotates the worm wheel rigidly connected with the vertical butterfly bush. Thus, this 

bush rotates bringing with it, through the spring, the “gear housing-horizontal butterfly-blade” 

unit, to push the blade in the soil. As the gear housing oscillates and rotates, it is enclosed in a 

protective covering. 

The blade oscillating in soil 

When the blade vibrates in the soil without cutting, hence without the hydraulic motor 

pushes on the blade through the worm screw, the worm wheel, the vertical butterfly bush and the 

springs (Fig. 2), the motion equation can be obtained from the equilibrium between the moment 

of inertia 
2

2
,

d
J

dt

α
 the torque of the elastic forces kα, the torque of the eccentric masses 

Mmesin(ωt) and the friction torque of the blade in the soil MRa. 

Now, the differential equation of motion for the system with the blade only vibrating in the 

soil, can be written: 

 
2

2
sin( )Ra me

d
J k M M t

dt

α
α ω+ + =  (1) 

 

where J is the moment of inertia of the gear housing and bush blade system (kg m
2
); α is the 

angular position (rad), with zero as the static equilibrium of the system; k is the torsional spring 

rate (Nm/rad), which is correlated to the linear spring rate kl (N/m) of the helicoidal springs  

(Fig. 2) by 2 ;l mk z k b= ⋅ ⋅  z is the number of springs (four in this case); bm is the lever arm of the 

springs (m); Mme is the torque produced by the eccentric masses (Nm) and is 
2 ;me G GM n m y bω= ⋅ ⋅ ⋅ ⋅  ω is the angular velocity of the eccentric masses and hence the angular 

frequency of the torque produced by the eccentric masses (rad/s); n is the number of eccentric 

masses (two in this case); m is the mass of an eccentric weight (kg); yG is the mass eccentricity 

(m); bG is the lever arm of the mass, which is the distance between the rotation axis and the 

blade oscillation axis (m); t  is the time (s); and MRa is the friction torque. 

According to Coulomb’s law, MRa is constant with regards to the velocity dα/dt, but changes 

its sign with the velocity (Fig. 3). Therefore, MRa is a square wave periodic function, and it is 

dephased by the angle ψ from the sinusoidal function of the forcing torque Mme because the 

velocity 
d

dt

α
 is dephased by the same angle ψ. 

 

 
Fig. 3. Friction torque MR and velocity dα/dt vs. angle ωt. MR is in phase with the velocity dα/dt 
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Thus, MRa is: 

 

R

Ra

R

M

M

M




= 

−

    

if 0

if 0

d

dt

d

dt

α

α


> 





< 


  (2) 

 

It is assumed that J, k and MR are positive constants. 
Using Coulomb’s law, the amplitude of the friction torque MR is: 

Friction force Lever 2 ,R

D
M Gµ

π
= ⋅ = ⋅ ⋅  where D is the root-ball diameter (m) that, divided by 

π, represents the lever arm of the friction force arising from the friction interactions of the 

semicircular blade; µ is the external friction coefficient; and G is the weight on the blade (N), 

which passes from a null value when the blade meets the soil at the beginning and at the end of 

the cutting movement to a maximum value when the blade stands vertically at the maximum 

depth. 

The factor of 2 appears because there is a weight G on the upper side of the blade, along with 

an equal and opposite reaction to G that acts on the lower side of the blade. 

The contribution of the epigean part of the plant is known [11], so it is easy to describe the 

weight G as twice that of the soil that is directly on the blade: 3 31
2

4 6 12
G D g D g

π π
ρ ρ≅ = , 

where ρ is the density of the soil (kg/m
3
) and g is the acceleration due to gravity (m/s

2
). Thus: 

 
4

6
R

D
M gµ ρ≅ ⋅

 

(3)

 
 

Following the modelling approach of Hong [12], properly modified to the present case of a 

blade vibrating in the soil, the angular amplitude α0 is therefore: 

 

( )

2

2 1
0 0

1

sin

1 cos
wf

B π
α α

π

 
= −   Ω − 

 (4) 

 

where: 

 

0 2

me
wf

M

k J
α

ω
=

−
 (5) 

n

k

J
ω =  (6) 

me

R

M

M
β =  (7) 

n

ω
ω

Ω =  (8) 
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( )2

01 wf
B

α

β

−Ω
=  (9) 

 

in which: 

• α0wf (rad) is the angular amplitude of oscillating blade without friction; using                            

k ≈ 20000 Nm/rad, J ≈ 1 kgm
2
 and ω ≈ 400 rad/s (because the eccentric masses rotate at 

approximately 4000 rpm), we obtain negative values of α0wf (eq. 5), meaning that α0wf  has a 

phase opposite to the forcing torque Mme;  

• ωn (rad/s) is the natural angular frequency; 

• β is the torque amplitude ratio; 

• Ω  is the angular frequency ratio; 

• 1

π
π =

Ω
;  

• B (rad) may be viewed [12] as a virtual friction angular displacement at which the blade just 

sustains enough spring torque to overcome the friction bound on to start the sliding. 

From the Hong’s model [12] we can obtain the phase lag φ between the wave of angular 

position α and the sinusoidal wave of the forcing torque Mme when the blade is in soil and, 

hence, in presence of Coulomb friction: 

 

0

0

arccos
wf

α
ϕ

α
=  (10) 

 

This angle ranges between 
2

π
 and π because, based on typical values for the quantities of ω, 

k and J, previously indicated, n

k

J
ω ω> =  and hence α0wf is negative. 

The blade vibrating and cutting the soil 

During the soil cutting, the vibrating blade is moved by the cutting torque Mt (generated by 

an hydraulic motor acting on the blade by the worm screw, the worm wheel, the vertical 

butterfly bush and the springs; Fig. 2). Therefore, the springs present a static angular 

deformation, equal to ,tM

k
 in addition to the angular displacement α due to oscillation. 

Therefore, the springs maximum deformation is the sum of tM

k
 and the angular amplitude α0. 

The cutting torque Mt was found experimentally by measuring the torque reaction of the 

support of the root-balling machine. These supports are the tracks; they were placed on four 

weight platforms linked to a data logger (accuracy class: 1). 

The feed velocity of the blade, in its semicircular motion, was constant because the hydraulic 

pump and motor had constant volumetric capacity and operated at constant speed. 

In the case that the blade meets an obstacle, such as a large stone or root, the cutting torque 

increases to such a value that the pressure of the oil reaches the relief pressure (17 MPa). The 

cutting torque Mt then stabilizes itself at a maximum value, and the blade, by its vibration, 

slowly breaks the rock or cuts the root and then continues its run at the constant speed 

determined by the gear ratio of the worm gear and the hydraulic motor speed. 

The experiments were conducted on soil without asperities, such as stones or roots; for this 

reason, a constant velocity of the blade was verified. 
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The cutting tests were performed using a root-balling machine with an oscillator having the 

features given in Table 1 and a blade 0.9 m in diameter. The cut, repeated five times, was made 

on a typical tree-nursery soil, that is a medium-textured soil with 20.2 % moisture, an external 

friction coefficient µ with the steel blade of 0.52 and a soil density of 1610 kg/m
3
. 

 
Table 1. Geometric and dynamic features of the oscillator 

Linear spring rate kl (N/m) 572000 

Number of springs Z 4 

Lever arm of the springs bm (m) 0.087 

Torsional spring rate k (Nm/rad) 17318 

Moment of inertia of oscillator+blade J (kg m2) 1.4 

Number of masses N 4 

Mass m (kg) 1.27 

Eccentricity yG (m) 0.0212 

Mass lever arm bG (m) 0.163 

Torque of the eccentric masses Mme (Nm) 2775 

Angular velocity of the eccentric masses (angular frequency) ω (rad/s) 398 

Root-ball diameter D (m) 0.9 

Blade width B (m) 0.25 

 

In addition, for each of the five repeated cutting tests, Mt was also measured when the blade 

was moving rearward in previously-cut soil. The torque Mt was then measured when the blade 

was moving forward in previously-cut soil. 

Finally, cutting tests similar to the tests done with the 0.9 m diameter blade were performed 

also with blades of 0.6 m, 1.1 m and 1.2 m in diameter, to determine the influence of the root-

ball diameter D on the cutting torque Mt. 

 

Results and discussion 

 

Table 2 shows the results of the cutting tests with the 0.9 m diameter blade. The Table 2 

includes the cutting time of the root-ball tt and the cutting torque Mt when (a) the blade was 

moving forward in un-cut soil, (b) the blade was moving rearward in previously-cut soil and    

(c) the blade was moving forward in previously-cut soil. 

In Table 2, the values of the external friction coefficient µ are listed as well as the calculated 

friction torque using the equation (3). 

 
Table 2. Results of the cutting tests with the root-balling machine with the 0.9 m diameter blade  

Experimental case Un-cut soil 
Previously-cut soil 

(rearward) 

Previously-cut soil 

(forward) 

Cutting torque Mt (Nm) 
Value 3297 2359 2251 

St. dev. 192 164 161 

Cutting time tt (s) 
Value 11.3 

St. dev. 0.5 

External friction coefficient µ 0.52 

Calculated friction torque MR (Nm), eq. (3) 898 

 

In the comparison between the blade moving rearward and forward in previously-cut soil, the 

torque Mt shows a difference that is not statistically significant. However, the obtained values 
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are higher than the friction torque MR obtainable from (3), which could be explained because, 

when the blade moves in the already cut soil, it has to overcome friction but also has to strain the 

soil. It should be recalled that, after the first cut, the root-ball rests entirely on the hole. 

Table 3 refers the 0.9 m diameter blade and compares the angular amplitude without friction 

α0wf, calculated using equation (5), with the same quantity measured in the air, supposing 

negligible the viscous friction due to air. This evaluation was performed thanks to stroboscope. 

The experimental value was lower by about 4 %, probably due to the viscous friction of the 

lubricant within the worm gear housing (Fig. 2). Table 3 also shows the measured angular 

amplitude in the soil and those calculated using equation (4), with the first lower by about an 

acceptable 6 %, partly explained by the viscous friction of the lubricant and partly by the slight 

underestimation of the phenomena of friction between the blade and the soil. The same table 

also show the relative phase lag φ calculated using equation (10) through the calculated angular 

amplitudes ratio and those experimental. The difference between them is negligible (0.1 %). The 

phase lag φ, with a value of about 2.6 rad, confirms the discussion presented after equation (10). 

 
Table 3. Calculated and measured amplitudes and phase lags for the 0.9 m diameter blade 

in the air and in soil 

 Quantity Calculated Experimental 

No 

friction 

(in air) 

Angular amplitude α0wf (rad) 
-0.0135 

eq. (5) 
-0.013* 

Phase lag φ (rad) 3.14  

With 

friction 

(in soil) 

Angular amplitude  α0 (rad) 
0.0117 

eq. (4) 
0.011* 

Phase lag  φ (rad) 
2.583 

eq. (10) 

2.580 

eq. (10) 

Linear oscillation amplitude of blade A0 = α0D·103/2 (mm) 5.3 5 

Velocity ratio vu/va = α0ωtt/π 16.6 15.8 

Maximum compression of the springs (Mt/k + α0)bm103 (mm) 17.6 17.5 

* using stroboscope 

 

Table 3 also reports the linear amplitude of the oscillation of the blade, 0 0 / 2A Dα=  and the 

velocity ratio of the peak velocity of oscillation over the feed velocity of the blade, which is 

calculated by 0 / .u a tv v tα ω π= ⋅  

The phase lag φ can be useful in determining the power Po required by the oscillator. This 

value Po can be obtained by using the expression: ( ) ( ) cos ,o me effeff
P M d dtα ψ= ⋅ ⋅  where the 

effective values of the quantities, equivalent to the amplitudes multiplied by 2 2,  are used; 

0d dtα α ω=  and the phase displacement ψ is the phase lag between the forcing torque Mme and 

the velocity .d dtα  Because this velocity is ahead by π/2 in comparison to the oscillation α, the 

oscillation lags behind by φ in comparison to Mme, resulting in 2.ψ ϕ π= −  

This power required by the oscillator, 00.5 cos ,o meP M α ω ψ= ⋅ ⋅ ⋅ ⋅  is supplied to the centre 

gear wheel (Fig. 2). It must be added to the cutting power supplied to the worm screw to obtain 

the total power. 

The Po term disappears at ω=0, i.e., when the blade does not vibrate. It is also not present 

when the blade vibrates in the air where the friction can be neglected; in this case the equation 

(5) is valid where the phase lag is ϕ π=  (in fact, 2 2,ψ ϕ π π= − =  which gives cos 0ψ = ). 



 

902. DYNAMIC ANALYSIS AND DESIGN GUIDELINES OF MECHANICAL OSCILLATORS FOR CUTTING SOIL THROUGH VIBRATING TOOLS. 

DARIO FRISO, MARCO BIETRESATO 

 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2012. VOLUME 14, ISSUE 4. ISSN 1392-8716 
1783 

On the contrary, when the blade vibrates in soil 2 2.58 2 1.01ψ ϕ π π= − = − =  rad and Po 

is the power required by the damped system (i.e. the blade in the soil), to overcome the Coulomb 

friction in the oscillating motion. The value of this term increases with the vibration frequency 

and thus with the velocity ratio: 0 .u t

a

v t

v

α ω
π
⋅ ⋅

=  

If the velocity ratio increases, then the contact ratio 2 1 ,
t t

r
T

−
=  defined as the time for the 

oscillating cycle that the blade is in contact with the soil divided by the period T of oscillation, 

decreases. [8] showed theoretically that the extreme condition of 0r =  (then u av v = ∞ ) 

implies therefore that the total power .totP = ∞  This total power is the sum of the power required 

by oscillator and by the cutting blade, where the latter is always a finite number. The results 

obtained by [8] are here confirmed. In fact, the power required by the oscillator is 

00.5 coso meP M α ω ψ= ⋅ ⋅ ⋅ ⋅ = ∞  because, with ,u av v = ∞  even .ω = ∞  

At the end of Table 3 appears the maximum compression of the springs, ( )0/ ,t mM k bα+  

that is a very important quantity and must be compared to the total space St available between 

the coils. If the coils come into contact, they will transmit the vibration to the drive of the blade 

rotation and to the whole chassis of the root-balling machine. This situation must be avoided for 

ergonomic and machine-durability reasons. 

The calculated and experimental values of springs maximum compression in Table 3 differ 

by a very small quantity (0.6 %), hence, negligible. 

As a convergence of the results obtained in this work with the literature data (an oscillation 

amplitude of the blade of about 6 mm to provide a substantial reduction in the cutting torque [1] 

accompanied by a velocity ratio vu/va ≥ 17 [5]), some guidelines for designing the oscillators can 

be outlined as follows. 

First, a maximum value of the angular frequency of the torque of the eccentric masses ω 

must be achieved, which requires the highest possible rotation speed that is compatible with the 

centrifugal forces and the structural strength of the rotating members (typically 400ω ≅  rad/s). 

Furthermore, it was considered [11] that the total space St between the coils must be larger 

than the maximum compression of the springs, that is: 

 

( )0t t mS M k bα≥ +  (11) 

 

Now, combining the equation (11), the oscillation amplitude of the blade A0 = α0D/2 that 

must be about equal to 6·10
-3

 m, the linear spring rate kl and the total space St between 

commercial spring coils (that are predetermined data) and the expression 2

l mk z k b= ⋅ ⋅  as derived 

after equation (1), the lever arm of the springs bm was calculated [11] as: 

 
2 2

2

0 00
4 216

t t t
m

l

D S D S M D
b

A A z kA

⋅
≥ − −

⋅
 (12) 

 

In this equation (12), the cutting torque Mt (Nm), which depends on the properties of the soil 

and the root-ball diameter and hence the blade diameter D (m), must be found. With the soil 

properties already discussed, the results of the influence of the diameter D are presented in 

Figure 4, which shows the cubic nature of the torque, well represented by the following equation 

(R
2
 = 0.99): 
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Fig. 4. Cutting torque Mt vs. root-ball diameter D 

 

The moment of inertia J of the entire oscillating structure can be easily calculated; therefore, 

the torque of the eccentric masses Mme can be determined by appropriately choosing the number 

of masses n, their mass m, the eccentricity yG and the lever arm of the masses bG, satisfying the 

following equation, obtained from equations (4) and (5): 

 

( )

2
2

2 2 2 0 1

2

1

4 sin

1 cos
me G G l m

A B
M n m y b z k b J

D

π
ω ω

π

 
= ⋅ ⋅ ⋅ = ⋅ − ⋅ +   Ω − 

 (14) 

 

Finally, the velocity ratio vu/va is set to be equal to at least 17. By knowing the velocity        

vu = α0ωD/2, it is possible to find the feed velocity of the blade va (therefore the hydraulic motor 

speed) and the gear ratio of the worm gear. 

However, the springs lever arm bm in eq. (12) is a function of the root-ball diameter D 

because the cutting torque Mt is a function of D according to eq. (13).  

Moreover, the oscillators parameters defining the eccentric masses momentum Mme 

according to equation (14) are also function of the blade diameter D because square-rooted and 

because D has a great influence on the moment of inertia J, approximately according to a cubic 

power law. Therefore, from (12) and (14) we obtain that each different blade diameter D needs a 

different oscillator. 

Several simulation of applying the calculation criterion represented by eq. (12) and (14) were 

executed to extend the criterion and couple a set of blades (typical diameter D: 0.6, 0.9, 1.2 m) 

with a single optimized oscillator. 

We therefore concluded that the best choice is to optimize the oscillator for the average 

diameter D = 0.9 m (see Table 1), even if the oscillator could be further improved by raising the 

linear amplitude A0 from 5 to about 6 mm. This can be achieved by increasing the linear spring 

rate kl (commercial data) from 572 000 to 1 080 000 N/m and keeping constant the eccentric 

masses momentum Mme. 

If such an oscillator is coupled with a blade having a lower diameter (D = 0.6 m), eq. (12) is 

surely valid and eq. (14) gives a linear amplitude A0 that is 30 % greater than the suggested 

lower limit of 6 mm. 
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On the contrary, with a bigger blade (D = 1.2 m) the important condition expressed by       

eq. (12) is not yet satisfied: vibrations will be dangerously transmitted to the chassis and to the 

operator. Therefore, we suggest the adoption of a second set of four linear springs with a spring 

rate kl = 1 080 000 N/m and a leverage bm2 longer than that of the first set (bm = bm1 = 0.087 m). 

In this case the oscillator should operate compressing only the springs of the first set even for    

D = 0.9 m and 0.6 m. By doing so, eqs. (12) and (14) are still valid, but it is necessary to 

calculate the effective compression 1'S  of the first set of springs using the following equation, 

analogous to (11): 

 

(0.9)

1 0(0.9) 1

1

'
t

m

M
S b

k
α

 
= + 
 

 (15) 

 

This equations gives 10 mm if 2 2

1 1 4 1080000 0.087 32698l mk z k b= ⋅ ⋅ = ⋅ ⋅ =  Nm/rad, bm1 = bm 

and Mt are set at the values of Tables 1 and 2, α0 = 0.0127 rad as resulting from eqs. (4)-(9).  

Therefore, for a compression lower than 1' ,S  the only compressed springs belong to the first 

set. With 0.9 m and 0.6 m diameter blades, the intervention of the second set of springs is 

undesirable as this latter set is in parallel with the first one. The natural frequency ωn of the 

system would rise causing an excessive increase of the angular amplitude α0 according to       

eqs. (6), (5) and (4). In such a situation there is the serious risk to approach to the resonance 

condition for the system, especially for the smaller blade. 

For compressions greater than the value of 1'S  resulting from (15), the second set of springs 

has to begin operating. Only in this way it will be possible to overcome the high cutting torques 

occurring with the bigger blade diameter (D = 1.2 m) without the coils of the first spring series 

come into contact. 

Being the residual compression of the springs of the first set equal to 1 1'' 'tS S S= −  = 8 mm 

(e.g. for the spring with kl = 1 080 000 Nm/rad, St has a commercial value of 18 mm), it is 

possible to solve the following equation (dynamic balance) for the only unknown quantity 

concerning the second set, i.e. their leverage bm2. It is necessary to notice that, in this second set 

of four springs, only the two in compression are involved ( 2

2 22 l mk k b= ⋅ ⋅ ): 
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2 1
0 1

1
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2 2
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S

D

 
 − ≥ −
 

− 
 

 (16) 

 

This equation (16), to be satisfied together with (12) and (14), completes the new calculation 

method for an oscillator suitable for operating with 3 different blade diameters. E.g., using the 

same numerical values used for the quantities appearing in (16), this latter would be valid if 

adopting, for the second series of springs, a leverage 2 0.1mb ≥  m. 

 

Conclusions 

 

We performed a dynamic analysis of a system formed by a mechanical oscillator and a soil-

cutting blade, typically adopted in the modern root-balling machines used in the field of tree-

nursery. 
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Differently from [11], Hong’s model [12] for Coulomb friction under harmonic forcing 

torque was used, thus allowing a faster calculation of amplitudes and phase lag. The obtained 

results are however very close to that obtained in the approximate modelling in [11].  

The amplitude predicted with the Coulomb friction is 15 % lower than the amplitude 

calculated without friction. We also found an important phase lag φ (2.6 rad) of the blade 

periodic motion with respect to the forcing torque produced by a rotation of eccentric masses of 

oscillator. The experimental survey of these amplitudes confirmed the goodness of the adopted 

approach and the mean relative error was about 5 %. 

Another important experimental validation concerns the correlation between the blade 

cutting torque in a typical tree-nursery soil and the blade diameter, obtaining a 3
rd

 degree 

polynomial law. 

Starting from the knowledge of the cutting torque of the blade, it is possible to calculate the 

deformation of the springs. This quantity, added to the oscillation amplitude, allows predicting if 

the spring coils will come in contact, a situation to be absolutely avoided not to transmit the 

vibrations to the whole root-balling machine. This evaluation is essential to complete the 

knowledge and propose new design guidelines of mechanical oscillators for root-balling 

machines capable to operate with different blade diameters. 

These guidelines can be summarized by the solution of the system of equations (12), (14) 

and (16), providing the optimal characteristics of the springs, eccentric masses and their speeds 

varying the diameter of the root-ball and the inertia of the oscillating system. 
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