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0. Introduction. There is a wide literature on the so-called Cauchy problem. Let
us recall in particular the following papers.

(i) In 1976, Hamada, Leray, and Wagschal solved the initial value problem for
a linear partial differential equation when the data are ramified along the
characteristic hypersurfaces. Their proof of this result relies essentially on the
precised Cauchy-Kowalevski theorem of Leray. (See [HLW].)

(ii) In 1978, Kashiwara and Schapira proposed a new proof and an extension of
the previous work to general systems, when the data are of logarithmic type.
This time microdifferential operators and complex contact transformations
were involved. (See [KS1].)

(iii) In 1988, Schiltz showed how the holomorphic solution for the Cauchy
problem can be expressed as a sum of functions which are holomorphic in
domains whose boundary is given by the real characteristic hypersurfaces
issued from the boundary of a strictly pseudoconvex domain where the data
are defined. (See l-Sc].)

The aim of this paper is to propose a new approach to the Cauchy problem based
on sheaf theory, or more precisely, on its microlocal version. By this method we
shall, in particular, recover the above results and even extend (i) and (iii) to general
systems of partial differential equations (i.e., to -modules).
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452 D’AGNOLO AND SCHAPIRA

Let us describe our work with some details.
Throughout this paper we shall systematically use the language of derived cate-

gories and sheaves. (E.g., see [KS4, Ch. I, II].)
Let f: Y X be a morphism of complex analytic manifolds. Let /’ be a left

coherent module over the ringx ofholomorphic differential operators and assume
f is noncharacteristic for /’. Our starting point is the Cauchy-Kowalevski theorem
as stated by Kashiwara (see I-KI-], I-K2, Th. 2.5.16]):

(0.1)

the natural morphism"

f-xRorgx(/# (gx) __. RNe%("/r,

is an isomorphism.

Here, //r denotes the induced system on Y, and (gx is the sheaf of holomorphic
functions on X.

Let K be an object of Db(X), the derived category of sheaves on X. By an
appropriate choice of K to be explained in 3, the complex Rffo(K, (gx)
is a complex of x-modules representing a sheaf of "ramified" holomorphic
functions.

Next, let L be an object of Db(Y), let : L f-lK be a morphism, and set
F RCgx(///, (gx). Due to (0.1), theorems like those given in (i), (ii), or (iii), may
be stated as follows.

(0.2)

the morphism induced by :
f-IR,’ego(K, F)lz RNF(L, f-XF)lz

is an isomorphism on some subset Z of Y.

Hence, we are reduced to the following sheaf theoretical problem.

PROBLEM 0.1. Give conditions on f, F, K, L, and as above so that (0.2) holds.

Our answer (Theorem 2.1.1 below) relies on the microlocal theory of sheaves as
developed in [KS4]. We shall apply it to the Cauchy problem using (0.1) and the
inclusion (see [KS4, Th. 11.3.3]):

(0.3) SS(R,mx(.///’, (-gx)) = char(’)

where SS(F) denotes the microsupport of the object F of Db(X) (see [KS4, Def.
5.1.2]) and char(#) denotes the characteristic variety of /.
We now summarize the plan of this paper.
In 1 we make a short review on the theory of sheaves, mainly to fix the notations.

In particular we recall the notion of microsupport, the functor/hom, the category
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Db(X’, Px) that is the localization of the derived category of sheaves on X at

Px e T*X.
In 2 we state and prove our main theorem, namely Theorem 2.1.1, on the

well-posedness for the Cauchy problem, in a sheaf theoretical frame.
In 3, as an application of Theorem 2.1.1, we show how to recover the results

obtained in the papers cited at the beginning of this introduction.
Let us put the emphasis on the fact that all of our proofs rely only on the follow-

ing tools: the Cauchy-Kowalevski theorem in the precised version by Leray [L-I
from which the inclusion (0.3) is deduced, the isomorphism (0.1) which is deduced
by Kashiwara i-K] from the classical Cauchy-Kowalevski theorem by purely alge-
braic tools, and, of course, the techniques of [KS3], [KS4]. We never use pseudo-
differential operators and quantized contact transformations nor any estimates.
Of course, our purely sheaf theoretical methods do not allow us to treat holo-

morphic functions with growth conditions (e.g., meromorphic solutions). For these
questions we refer to [H], [MF], [La].
The results of this paper were announced in our note [D’A-S].
Let us mention that further developments ofTheorem 2.1.1 allow us, in particular,

to recover a result of [KS2] on the hyperbolic Cauchy problem in the frame of
hyperfunctions. (See [D’A].)

1. Review on sheaves. For what follows refer to l-KS4].
Until 3 all manifolds and morphisms of manifolds will be real and of class C.
1.1. Geometry. Let X be a manifold, Zx: TX X its tangent bundle, and nx:

T*X X its cotangent bundle. We will identify X with TX, the zero section of
T*X. Set 7*X T’X\TX and denote by Ztx the projection 7*X X.

Let M be a closed submanifold of X. One denotes by Tu*X the conormal bundle
to M in X. If A is a subset of X, one denotes by CM(A) the normal cone of A along
M. This is a closed conic subset of TMX, the normal bundle to M in X. More
generally, if B is another subset of X, one denotes by C(A, B) the normal cone of A
along B, a closed conic subset of TX. (See I-KS4, Def. 4.1.1].)

If 7 is a conic subset of TX, one notes 7 --7" One says that 7 is proper if its
fibers contain no lines. One denotes by 7 the polar cone to 7, a convex conic subset
of T*X. Recall that its fibers are given by 7, {0 e T*X; (v, O) > 0 Vv 7x}.

Let f: Y X be a morphism of manifolds. One denotes by f’ and f, the natural
mappings associated to f:

T* Y Y x x T*X
Y" T*X.

One sets

TX y’-X T’ Y

Let N (resp. M) be a closed submanifold of Y (resp. X) with f(N) c M. One denotes
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by and fN, the natural mappings associated to f:

T Y ’-. N xu TtX -- TtX.

Let A be a closed conic subset of T*X. One says that f is noncharacteristic for
A if TX cf-X(A) Y xx TX. Let V be a subset of T* Y. We refer to [KS4,
Def. 6.2.7] for the intrinsic definition of f being noncharacteristic for A on V.
Let (x) (resp. (y)) be a system of local coordinates on X (resp. Y) and let (x; )
(resp. (y; r/)) be the associated coordinates on T*X (resp. T* Y). We recall that f is
noncharacteristic for A on V ifand only if for every (y; r/) V there are no sequences
{(y., (x,; ,))} in Y A such that

Yn, Y,

x, 7 T(Y)’

tf,(yn).n n rl’

Ix. f(y.)l I.l 7 0,

1.2. The cateoory Db(X). We fix a commutative ring A with finite global dimen-
sion (e.g., A ;).

Let X be a manifold. One denotes by Db(X) the derived category of the category
of bounded complexes of sheaves of A-modules on X.
To an object F ofD(X) one associates the microsupport SS(F) of F, a closed conic

involutive subset of T*X. (See [KS4].)
Let M be a dosed submanifold ofX. One associates to F the Sato’s mierolocaliza-

tion of F along M, denoted by/m(F). (See [KS4, Def. 4.3.1].) This is an object of
D(TX). More generally, if G is another object of D(X), the microlocalization of
F alon9 G, denoted by #horn(G, F), is defined in [KS4] as

#hom(G, F) #aRgrgo(q-x G, q F)

where A is the diagonal of X x X and where qx, q2 denote the projections from
X x X to X. By identifying T(X x X) to T*X by the first projection T*X x
T*X T’X, one has that #hom(G, F) belongs to Db(T*X). Concerning this func-
tor, one proves that

(1.2.1) Rnx,#hom(G, F) Rcgo(G, F),

(1.2.2) #hom(At, F) #t(F),

(1.2.3) supp(#hom(G, F)) c SS(G) c SS(F).
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Here, for Z a locally closed subset of X, one denotes by Az the sheaf which is 0 on
X\Z and is the constant sheaf with stalk A on Z.

Let f: Y X be a morphism of manifolds. One defines the relative dualizin#
complex cOr/x by cOr/x f:Ax. One sets COx a"xA, where ax: X {pt}. Recall
that one has an isomorphism COr/x (R) f-lcox COt. Recall, moreover, that COx
orx[dim X] where orx is the orientation sheaf and dim X is the dimension of X. If
there is no risk of confusion, when working on T*X we shall write COx, orx, COx/z,
etc. instead ofr COx, rr10rx, nl COx/z, etc.

Let F be an object of Db(X) and let V be a subset of T* Y. One says that f is
noncharacteristic for F on V iff is noncharacteristic for SS(F) on V.

1.3. The category Db(x; Px). Let X be a manifold and let f be a subset of T*X.
One denotes by Db(X; ) the localized category Db(X)/D(X), where D(X) is the
null system: D(X) {F e Ob(Db(X)); SS(F)c f }. Recall that the objects of
Db(X; f) are the same as those of Db(X) and that a morphism u: F G in Db(X)
becomes an isomorphism in Db(X; f) if f2 c SS(H) , H being the third term of

+1
a distinguished triangle: F G --+ H . Such a u is called an isomorphism on f2. If
Px T’X, one writes Db(X; Px) instead of D(X; {Px}).

Let f: Y X be a morphism of manifolds. Take a point p Y xx T*X and set

Px f(P), Pr f’(P). The functors Rf., Rfi. (resp. f-i, f!) are not microlocal, i.e.,
are not well defined as functors from D(; Pr) (resp. D(X; Px)) to D(X; Px) (resp.
D(Y; Pr)). To give a microlocal meaning to these functors one may enlarge the
category Db(X; Px) and work with ind-objects and pro-objects. This is what has
been done in [KS4, Ch. 6-1, but there is another way to attack this problem. In this
section we will give the definition of microlocal images for complexes with some
prescribed conditions on the microsupport, and to this end we need the following
result on the cutting of the microsupport.

Let X be a vector space and let Xo X. In what follows we will often identify X
with TxoX.

Let ? be a (not necessarily proper) closed convex cone of ToX. Let CO be an open
neighborhood of Xo in X with smooth boundary. We shall denote by ql and q2 the
projections from X x X to X and by s the map s(xl, x2) Xl x2. The following
definition is a slight modification of that of [KS4, Prop. 6.1.4, 6.1.8].

Definition 1.3.1. Let and CO be as above and let F be an object ofD(X). We set

’*x(7, CO; F) Rq2,(s-lA q;1F,o),
,tPx(y, CO; F) Rq2!RF-,<o)(q] RFo(F)).

Notice that for 7’ , o’ = 09, one has natural morphisms in Db(x)

(1.3.1)
tI)x(% CO; F) tI)x(7’, CO’; F),

(Vx(y’, CO’; F) Vx(, CO; F).
L

In particular, recalling the isomorphisms Rq2,(s-lA{o} (R) q[1F) - F, F
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Rq2!RF-,to)(q F), we get natural morphisms

09; F) F,
(1.3.2)

.F Vx(’, 09; F).

After [KS4, Prop. 6.1.4] we give the following definition. (Here, Xo 0.)

Definition 1.3.2. Take o J’o*X, 09 c X, such that
(i) , is a closed proper convex cone,

(ii) c3\{0} is Cx,
(iii) o e Int yOu,
(iv) 09 is an open neighborhood of 0,
(v) 309 is C1,
(vi) 09 c (x; Ixl < e} for some e > 0, and
(vii) t309 and t3, are tangent at their intersection.

We will call a pair (, 09) satisfying (i)-(vii) a refined cuttin# pair on X at (0; 0)-

Remark that, if #(x) < 0 (resp. h(x) < 0) is a local equation for 09 (resp. ) at
x 009 Oy, condition (vii) means that -d0(x) e +dh(x).
One has the following sharp result.

PROPOSITION 1.3.3. (See [KS4, Prop. 6.1.4, 6.1.8].) Let K be a proper closed
convex cone of T’X and let U K be an open cone. Let F Ob(Db(X)) and let W
be a conic neighborhood of K c (SS(F)\ {0}). Then

(a) (refined microlocal cutoff lemma) there exists F’ Ob(Db(X)) and a morphism
u: F’ F satisfying
(1) u is an isomorphism on U and
(2) z (0) c SS(F’) c W {0},

(b) (dual refined microlocal cutoff lemma) the same as (a) with u: F F’.

Sketch of the proof. Keep the same notations as in Definition 1.3.1, 1.3.2. It is
not restrictive to assume U c {0} w Int K. Take o U and choose a refined cutting
pair (,, 09) on X at (0; o) with Ka c = Ua. Then it is possible to show that
x(, 09; F) (resp. qx(Y, 09; F)) satisfies the requirements. Q.E.D.

We can now define microlocal inverse images.
Let F Ob(Db(X; Px)) and consider the condition

(1.3.3) f’-(Pr) c f-:(SS(F)) = {p} in a neighborhood of p.

LEMMA 1.3.4. (See [KS4, Prop. 6.1.9].) Let F Ob(Db(X; Px)) satisfy (1.3.3); then
(a) there exist F’ Ob(Db(X)) with

(1.3.4) f’-(Pr) f(SS(F’)) {p}, f is noncharacteristic for F’

and a morphism F’ - F (resp. F - F’) in Db(x) which is an isomorphism at Px,
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(b) for F Ob(Db(X; Px)) satisfying (1.3.3), the object f-iF’ (resp. f!F’) of
Db(Y; Pr) does not depend (up to isomorphism) on the choice of F’.

Definition 1.3.5. Let F e Ob(Db(X; Px)) satisfy (1.3.3). We define the microlocal
inverse image (resp. extraordinary inverse image) of F by fuSp F := f-iF’ (resp.
f,pF := fF’), where F’ is the complex constructed in Lemma 1.3.4.

fu-p (resp. f,p) is a functor from the full subcategory of Db(X; Px) whose objects
verify (1.3.3) to Db(y; Pr)-

Note that the definition of fu, F, f2,pF is coherent with the definition given in
[KS4, 6.1].

Proof ofLemma 1.3.4. Since the proofs for f-1 and f! are similar, we will treat
only the statement concerning f-1. If Px TX, then f is noncharacteristic for F,
and we may take F’= F. Assume then that Px J*X. Following the proof of
Proposition 1.3.3, we may choose a refined cutting pair (% 09) on X at Px so that
F’ Ox(’, co; F) satisfies (1.3.4). This proves (a). As for (b), we must show that, if
F’ F" at Px, F" satisfying (1.3.4), then f-F’ - f-F" at py. It is not restrictive to
assume the isomorphism F’ F" being induced by a morphism u: F’ F" in Db(X).
Embedding u in a distinguished triangle F’- F" Fo L, we see that f is non-
characteristic for Fo and that f’-(pr)cf-x(SS(Fo))= . Then f-IF’ -f-F"
at pr. Q.E.D.

2. An inverse image theorem for sheaves

2.1. The main theorem. In this paragraph we will give an answer to Problem 0.1.
Let X be a real analytic manifold. We say that K Ob(Db(X)) is weakly cohomo-

logically constructible (w.c.c. for short) if

(i) for any x X, "lim" RF(U; K) is represented by Kx, and
Ux

(ii) for any x e X, "lim" RFc(U; K) is represented by RF{xK.
Ux

Here, U ranges over an open neighborhood system of x, and we make use of the
notion of "lim" and "lim". (E.g., see [KS4, 1.11].)

Note that weakly R-constructible complexes on a real analytic manifold are w.c.c.
(See [KS4, 8.4].)

Let f: Y X be a morphism of manifolds. Let Z be a subset of Y (e.g., Z { y}
for y Y).

THEOREM 2.1.1. Let F and K be objects of Db(x) and let L be an object of Db(y).
Assume to be given a morphism : L- f-iK. Let V be an open neighborhood of
{i(Z). Assume that

(i) f is noncharacteristic for F on V and
(ii) f is noncharacteristic for C(SS(F), SS(K)) on tf’-X(V).
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Assume that for every Pr e 1(Z) there exist Pl, Pr in f’-l(pr) with
(iii) ’-l(pr) c f,--I(SS(F)) c {Pl Pr},
(iv) f noncharacteristic for K on V and Pl,. Pr isolated in f’-l(pr)cfl(SS(K)),

and
-1 K(v) the morphism induced by , L fu., an isomorphism in Db(y; Pr) for

j= 1,...,r.
Finally, assume

(vi) K and L are w.c.c, and
(vii) the morphism induced by , RF(y}(L (R) cot) RF(x}(K (R) COx), is an isomor-

phism for every y Z, x f(y).
Then the natural morphism induced by :
(2.1.1) f-1Ro(K, F)lz RCgz(L, f-lF)lz,

is an isomorphism.

Recall that f.lK in (v) has been defined in Definition 1.3.5.
Before going into the proof, let us explain how the morphism in (vii) is con-

structed. From and the natural morphism f-lK (R) COr/x fK, we obtain the
arrow L (R)COr/x f!K and hence the arrow L (R) COt "* fK (R) f-lcox -f(K (R) COx). Applying the functor RF/y}, we obtain

RF(y}(L (R) COt) - RF(y}f’(K (R) COx)

COx).

Proof. We shall adapt to our situation the proof of [KS 1, Theorem 3.3]. Recall
that one has a distinguished triangle in D/(T*X):

+1
Rrr!(’) Rnr,(’) "* Rrr,(’) -’*.

(Here, D+(T*X) denotes the full subcategory of Db(X) whose objects have locally
constant cohomology along the orbits of the action of R+ on T*X.) If we apply this
triangle to the morphism

R.,’f-1 #hom(K, F) #hom(L, f-1F),

we get the morphism of distinguished triangles

(2.1.2)

+1R:r!A Rrcr,A Rrr,A

Rrr!B --- Rrr,B Rr,B +1

where A tc, -1
j! j,, #hom(K, F) and B #hom(L, f-F).
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Recall that Rrr,#hom(L, f-*F) Rcf(L, f-*F). On the other hand, con-
sider the diagram

T* Y Y x x T*X - T*X

Y . Y J" X.

Since f is noncharacteristic for F, f’ is proper on f(SS(F)) and hence on
f-l(supp(/hom(K, F))). Then one has the isomorphisms

Rrr, atr’,.J!j-1 #hom(K, F) "= Rnr, Rt r’r-J,J#hom(K, F)

Rr,fX/thom(K, F)

f-t Rnx,#hom(K, F)

- f-R,(K, F)

where the third isomorphism follows from the fact that, #hom(K, F) being in
D+(T*X), Rnx,#hom(K, F) -:#hom(K, F), denoting the immersion of the
zero-section X in T*X.

Thus, the second vertical arrow in (2.1.2) is nothing but the morphism (2.1.1), and
it is enough to prove that the first and third vertical arrows in (2.1.2) are isomor-
phisms at every y e Z.

A. First vertical arrow. Consider the following diagram, where fir, fix denote
the diagonal embeddings and t5 the graph embedding:

Yx Y YxX ’. ,XxX

y y I X.

We shall denote byf the composite f fl o f2 and by ql, q2 the first and second
projections defined on a product of two spaces.

Recall (see [KS4, 4.3]) that

Rnr,#hom(L, f-F) ttRf(q L, q’if-F) (R) cot-On the other hand, one has the chain of isomorphisms



460 D’AGNOLO AND SCHAPIRA

Rrrr, r# ,,.
j J,r-1 #hom(K, F) Rn!f #hom(K, F). f-Rnx!#hom(K, F)

The map f being noncharacteristic for F, we get

f-R3’(qIK, qF) (R) cox@- f-lflR3C’z(ql(K (R) cox), q F)

f2-Rz(q(K (R) cox), qf-F).

It is enough then to prove the isomorphism for every y Z, x f(y):

(2.1.3) R’(qI(K (R) cox), qf-F)t,x RCg(q(L (R) cot), qf-tF)t,r.

For an open neighborhood V c Y of y and for U c Y ranging over an open
neighborhood system of y, by (vi) we have

(2.1.4) "lim" RF(V x U; RCt(q(L (R) cot), qf-IF))

"lim" RHom(RFc(U; L (R) or), RF(V; f-F))

RHom ("lim",__ RFc(V; L (R) o,), RF(V; y-’f))
Uy

RHom(RF{}(Y; L (R) cot), RF(V; f-F)).

(Recall that the first equality follows from the Poincar6-Verdier duality). Similarly
to (2.1.4) we get

"lim" RF(V x W; R3Ctz(q(K (R) cox), qf-F))

RHom(RF{x}(X; K (R) COx), RF(V; f-IF))

where now V Y is an open neighborhood of y and W c X ranges over an open
neighborhood system of x. Recalling the hypothesis (vii), (2.1.3) follows.
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B. Third vertical arrow. We have to prove that the natural morphism

r- #hom(K, F) #hom(L, f-F),J! Jt

is an isomorphism for every Pr tr(Z).
This will follow from the following Proposition 2.1.2. Q.E.D.

PROPOSITION 2.1.2. Let F and K be objects of D’(X) and let L be an object of
Db(y). Assume that a morphism k: L f-lK is #iven. Let V be an open nei#hborhood
of pr and assume that

(i) f is noncharacteristic for F and for g on V and
(ii) f is noncharacteristic for C(SS(F), SS(K)) on f’-(V).

Assume, moreover, that there exist Pa,..., P, in f’- (Pr) with
(iii) f’-(Pr) f-(SS(F)) {PI,..., P,},
(iv) p p isolated in f’-(Pr) ff(SS(K)), and
(v) the morphism induced by , Lfu,g, an isomorphism in Db(Y; Pr) for

j= 1,...,r.
Then the natural morphism (2.1.5) induced by / is an isomorphism.

For the proof of this proposition we will need the following lemma which is an
immediate consequence of [KS4, Prop. 6.7.1].

LEMMA 2.1.3. Let F, K be objects of Db(X). Let V be an open neiohborhood of Pr
and assume

(i) f is noncharacteristic for F and for K on V and
(ii) f is noncharacteristic for C(SS(F), SS(K)) on f’-(V).

Assume that there exists p f’-(Pr) with
(iii) f’-(Pr) f-I(SS(F)) c (p} and
(iv) f’-(Pr) c f-(SS(K)) c {p}.

Then the natural morphism R.,’f-#hom(K, F),-/hom(f-K, f-lF)p is an
isomorphism.

Proof of Proposition 2.1.2. Following the proof of Proposition 1.3.3 and due to
assumptions (iii) and (iv), we can find refined cutting pairs (t, cot) (i 1, r) on
X at Px such that, setting Fi x(i, cot; F), K q)x(t, cot; K), and for Ko being
the third term of a distinguished triangle (= Ki K - Ko , we have

f- SS(F,) c y,-l(py) {Pt},
f- SS(K) c f’-(Pr) c {p} and p SS(Ko) for 1, r,
F g ).= F in Db(X; ff’-X(Pr)).

Moreover, since f is noncharacteristic for the F’s, we have
f-F (=f-F in D(Y; Pr).

We get the chain of isomorphisms

{R f (=1 #hom{K, Ft)),,w,,,j! J,,r- #hom(K, F)v -
(R,.’f,"-a (=x #hom(K,, 8)),
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- ,’.= #hom(f-xKi, f-

- (),".=/hom(L, f-lFi)t,

#hom(L, f-1

Here, the second isomorphism follows from the fact that/hom is a microlocal
functor, the third one follows from Lemma 2.1.3, and the fourth from assumption
(iv). Q.E.D.

2.2. A particular case. Let f" Y X be a morphism of manifolds. Let Z be a
closed subset of Y. Let F be an object of D(X) such that

(2.2.1) f is noncharacteristic for F.

Assume that for every pr ./i:-I (Z) there exist Pl, P, in f,-l(pr) with

(2.2.2) ’-x(pr) n fn-’l(SS(F)) {p, Pr}.

Let Ki (i 1, r) be objects of D(X) such that

(2.2.3) Ki is w.c.c.,

(2.2.4) f is noncharacteristic for K, and

(2.2.5) a morphism z: K Ax is given.

Assume that for every Pr -1(Z) and for Pl,..., P, as in (2.2.2)

(2.2.6) f’-l(Pr) c f-(SS(K,)) {p,}.

Let L be an object of Db(Y) such that

(2.2.7) an isomorphism : L f-K is given

and

(2.2.8) f-l(z) o induces an isomorphism RFzL RFzAr

Assume, moreover, that for an open neighborhood V of (Z)

(2.2.9) f, is noncharacteristic for C(SS(F), SS(K)) on y’- (V).
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We shall give here a way to build up a complex K Ob(D(X)) in order to satisfy
the hypotheses of Theorems 2.1.1.

Let h be the composite of the map @),"-1 j: )’--1K @’--1Ax and the map
@=t Ax --* (Z Ax, given by (at, a,) -* (a2 at,..., a, a,-t).

Let K be defined by embedding h in a distinguished triangle

(2.2.10) +1K @),":t K, (’;2_ Ax -*.

It is now straightforward to verify the following lemma.

LEMMA 2.2.1. K is w.c.c, in Db(X) and the following estimate holds:

SS(K) , SS(K,) T:X.

By completing the morphism ofdistinguished triangles (where the vertical arrows
are the natural ones)

(2.2.11)

we get a morphism

(2.2.12) O: L --. f-lK.
LEMMA 2.2.2. The morphism induces an isomorphism

RFzL RFzf-1K.

Proof. One has the morphism of distinguished triangles

RFzf-tK ’ =t Rr’zf-tK) @: RFzf_tAx

+t

The third vertical arrow is the identity, and the second one is an isomorphism by
(2.2.7) and (2.2.8). Hence, RFzf-IK - RI"zAr - RFzL. Q.E.D.

We can then state the following proposition.

PROPOSITION 2.2.3. Let f, F, Ki, and L be given satisfying the hypotheses (2.2.1)-
(2.2.9). For K and constructed in (2.2.10) and (2.2.12), the hypotheses of Theorem
2.1.1 are satisfied.



464 D’AGNOLO AND SCHAPIRA

The proof is immediate if one just notices that, due to (2.2.4), the hypothesis (vii)
of Theorem 2.2.1 reads as

(vii)’ RF{yIL & RF{y}(f-IK).

3. Applications to the Cauchy problem. In this section, as an application of
Theorem 2.1.1, we will show how to recover the results obtained in the papers cited
at the beginning of the introduction.

For our purpose, the base ring A introduced at the beginning 1.2 is now the field
C. In order to avoid confusion with the complex line, we still denote it by A.

3.1. Ramified solutions. (See [HLW].) Let Y be a complex analytic manifold
and let Z be a smooth complex hypersurface of Y. First, we shall construct a sheaf
L on Y such that, for (3 Ob(Db(y)), Rorgo(L, G) describes in some sense the
"ramified sections of (3 along Z". (See l-G] and l-D].)

Let p: * C be the universal covering of C* C\ {0}. Recall that one can
choose a coordinate e C - C* so that p(t) exp(2tit). Choose a complex analytic
function g" Y C such that Z g-1 (0). (This is possible locally.) Set * ,* x c
and consider the Cartesian diagram

(3.1.l)

Y* C*

Y C.

We will call the complex Rpr,p{1G the complex of ramified sections of G along Z.
Notice that prt is an exact functor and that p, p-l. By the Poincar6-Verdier
duality one gets

Rpr,p{lG Rz(pr!Af,, G)

R/Fm(g-lp!A:,, G).

Set L g-lpA:, and notice that, by adjunction, there is a natural morphism

(3.1.2) z" L- At.
Let us now describe what will be our geometrical frame.

(3.1.3) X is a complex analytic manifold, Y is a smooth hypersurface of X, Z is a
smooth hypersurface of Y, Zi (i 1,..., r) are smooth hypersurfaces of X
pairwise transversal, transversal to Y, and such that Z c Y Z for every i.
Let f: Y X be the embedding. Assume given complex analytic functions
g:YC, g:XC with dg:O, dgi:O, such that gif=g and Z=
g-1 (0), Z ]?1 (0).
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Let ’ be a left coherent x-module such that for a neighborhood V of Tz* Y

(3.1.4)
(i) f is noncharacteristic for C(char(’), J’z*, X)on f’-l(V),

(ii) char(’)c f’-l(Tz* Y) c ,TX w TcX

where char(’) denotes the characteristic variety of ’.
Note that (3.1.4), (ii), implies that f is noncharacteristic for ’. (I.e., f is non-

characteristic for char(/).)
Set K #f-lp!A,(i 1, r) and F Rrgx(/’, Cox). Of course, SS(Ki) c

T}*,X w Tx*X. One has L f-1K, and the natural morphisms z: K Ax may be
constructed as in (3.1.2).

LEMMA 3.1.1. The morphism z induces an isomorphism

RFzL - RFzAr

Proof. Since # is a smooth map, one has

RFzL
_
RFzO-lpA, o-1RF{o}pA,,

and, similarly,

RFzAr- RFzO-IA c 9 RF{o}Ac.

It is therefore enough to prove the isomorphism

RF{o}p!A, - RF{o}Ac.

Since pAr:, is +-conic for the action of R+ on C, one has

Rr’(c, RF{o}ptA, - RF(C, ptA,)

RF(C*, A.)

A[2],

and hence RFopAr:, Ao[2] RFo/Ac. Q.E.D.
The complex vZlg/Oram :.._ Rgt(L, C0r) is concentrated in degree 0, and its sections

are the holomorphic functions ramified along the hypersurface Z and similarly for
the complex/orm RCgo(K, (gx). For K constructed from the K’s as in (2.2.10),vglx

(9 R’(K, x). Applying Theorem 2.1.1 (see Proposition 2.2.3) we getseti Z,lX
the following theorem.
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THEOREM 3.1.2. Keeping the same notation as above, the natural morphism

(3.1.5) RCtzx (/’, E/ram )z,lx Ro,(r, ZlY/oram
Z

is an isomorphism.

Let us now explain how Theorem 3.1.2 gives an extension to x-modules of
[HLW]’s result.

Let X be an open subset of C with 0 X. Take a local system z (z, z’)
(z, z) of complex coordinates on X. Let (z; () be the associated coordinates in
T*X. Set D d/dz. Let P P(z, D) be a linear partial differential operator of order
m on X with holomorphic coecients for which the hyperplane Y {z X; z 0}
is noncharacteristic. Denote by f" Y X the embedding and set Z {z X; z
z2 0}. Suppose that P has characteristics with constant multiplicities transversal
to Y x x T*X at ’-(T Y) char(P).

PROPOSITION 3.1.3. Under the previous hypotheses there exist smooth hyper-
surfaces Z, Z, of X as in (3.1.3) and satisfying (3.1.4) for x/xP.

This result is classical. For the reader’s convenience we recall its proof
IS, Prop. 2.2.2].

Proof. Let p(z; ) be the principal symbol of P(z, D). Decompose it as a product
of irreductible polynomials p(z; )==p(z; ()a’, and set q(z; )==p(z; ).
One has char(P) q-(0). The fact that P has characteristics with constant multi-
plicities transversal to Y x x T*X at ’-(T Y) char(P) means that the Poisson
bracket {Zl, q} does not vanish at any point of ’-(TY) char(P). Since dq(z;
()/d( -{z, q} and q(z; 1, 0, 0) # 0 for z the equation q(z; , 1, O,
0) 0 has r distinct roots for z Z. Hence, A’ ’-(T Y) char(P) is the disjoint
union of r isotropic smooth manifolds A, A’, of T*X. The Hamiltonian vector
field H is transversal to Y xx T*X at A’, and, therefore, the union of the integral
curves of H issuing from A’ is a Lagrangian manifold A of T*X contained in
char(P). Let Zi nx(A). Since the projection on X of the vector field (H)Ia, is a
vector field transversal to YZ is a smooth hypersurface ofX transversal to Y,.and,
A being Lagrangian,A T}X. Finally,f is noncharacteristic for C(char(P), TX)
on ’-(T Y) since X char(P). Q.E.D.

Consider the Cauchy problem

(3.1.6)
P(z,D)u(z) v(z),
Dhu(z)lr wh(z’), 0 < h < m.

In [HLWi, Hamada, Leray, and Wagschal proved that the Cauchy problem (3.1.6)
has a unique solution u(z) tpi(z) for any v(z)= i(z), where Wh is a ramified
holomorphic function on Y along Z and where tpi (resp. ) is ramified on X along
z,.
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We can then apply Theorem 3.1.2 to ’ x/xP.
One has ’r g ()m, and hence R,(’r, (9?) - (60)m represents the

sheaf of ramified Cauchy data. The complex Rox(’, (gx)lr is concentrated in
degree zero. From (2.2.10) we get a distinguished triangle

(3.1.7)

/ ram/ +1

/’0ramBy (3.1.5) the complex R(/, ,z,lxylz is concentrated in degree zero, and
by (3.1.7) its sections may be expressed as a sum cpi, where the cpi’s are holo-
morphic functions ramified along Z, satisfying the equation P 0. That is to
say, by taking the zeroth cohomology group in (3.1.5), Theorem 3.1.2 ensures the
existence and the uniqueness for the solution of the Cauchy problem (3.1.6) with
v 0, the solution being a sum z, where c# is a holomorphic function on X
ramified along Z.

/0ramMoreover, the vanishing of Hl(Rffcn (’, ,z,lx,lz, which follows from
(3.1.5), ensures the solvability of the equatio

(3.1.8) P(z, D)u(z) v(z)

for u and v of the form o as above.

Remark 3.1.4. In [Le-I Leichtnam solves the Cauchy problem Pf 9, where f
and 0 are ramified on X\w Z (with the above notations). Theorem 2.1.1 does not
allow us to treat Leichtnam’s result, but, nevertheless, we hope to recover it by
similar geometrical methods in the future.

Remark 3.1.5. Other interesting results concerning this kind of problems are
announced in [NSS].

3.2. Ramified solutions of looarithmic type. In [KS1] a theorem on the existence
and uniqueness for the solution of (3.1.6) is given when the ramifications involved
are of logarithmic type. We will give here a new proof of their theorem.

Let z C be a coordinate and set D O/Oz. Consider the left coherent c-module
c/cDzD.

R3Ctzcn(Lo }1 c,For Lolc:= R3rtnc(A/, (.0c)set (.9{o1c := 0c)= V. This
represents a complex of holomorphic functions with logarithmic ramifications.
Take ’c to be a left coherent c-module.
If one makes the choice F Rc(’c, (9c), then

RWc(’c, (-9o}1c) - RWn(Lo}lc, F).

Moreover, one has the following lemma.
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LEMMA 3.2.1. (a) There is a natural map

z" L{o}l c Ac.

(b) The morphism induced by z

RF{o} RF(o}AcL{o}lc

is an isomorphism.

Proof. To prove (a) notice that Lo)lc Rrfzc(r, (9c) is concentrated in
degree 0 and is represented by the complex

DzD
0 (9c (9c O.

A section of Lolc is then represented by a function p c with DzDtp 0. We
define z by z(qg) zDtp.
As for (b), consider the exact sequence of c-modules

0 c/cD c/cDzD c/czD --, O.

Here, for P c the second arrow is given by [P] [PzD] and the third by
[P] , [P], [P] denoting the class of P modulo the corresponding ideal.
Applying RF{o} Rfzc(’, 60c) to this exact sequence, we get the distinguished

triangle

R,ffzc(c/czD RF(o}60c RF(o}L
+1

{o}lc - RF{o}Ac .
Recall that RF{o}(9c is concentrated in degree 1. One concludes by observing that
the first term of the triangle is 0 due to the fact that zD is an automorphism of
a{) (OC). Q.E.D.

Let us adopt the notations (3.1.3) and take ’ as in (3.1.4). Set L g-Lo),c and
K g- Lo)lc. Let K be the complex defined by (2.2.10) with this choice of the K’s.
Setting (,91r Rz(L, (gr), 60,lx Rz(K, (gx), we recover the results of
[KS1, Prop. 4.2] by simply applying Theorem 2.1.1.

THEOREM 3.2.2. With the same notation as above, the natural morphism

is an isomorphism.

3.3. Decomposition at the boundary. In [Sc] Schiltz shows how the solution of
the noncharacteristic Cauchy problem may be expressed as a sum offunctions which
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are holomorphic in domains determined by the characteristic real hypersurfaces
issuing from the boundary of the domain where the data are defined.

Here, we are going to recover his result and extend it to general systems. Let us
describe our geometrical frame.

Let Y be a smooth complex analytic hypersurface of a complex analytic manifold
X and let f: Y X be the embedding. In what follows we will consider T*X
endowed with the underlying real symplectic structure. Recall that, if tr is the
symplectic two-form on T’X, the corresponding real two-form is given by tr R

2 Re tr. We consider the following situation.

(3.3.1) 09 is an open subset of Y with smooth boundary Z, and f (i 1, r) are
open subsets ofX with smooth boundaries Z such that f Y to and the
Z’s are pairwise transversal and transversal to Y.

Set To* Y SS(A,)c T* Y. Recall that SS(A,) is identified to the subset of Tz* Y
consisting of the conormals pointing outside to.

Let be a left coherent x-module such that for a neighborhood V of J’o,* Y

(3.3.2)
(i) f is noncharacteristic for C(char(/), 7X) on yt-l(v) and

(ii) char(#) c y’-l(To* Y) TX TX.

Note that (3.3.2), (ii), implies that f is non-characteristic for /’.
Let F RCtzx(t (gx), set K An,, an object of Db(X), and set L Ao,, an

object of Db(y). Of course, f-1K L, and, moreover, one has canonical mor-
phisms z: Ki--* Ax. We can then define K by (2.2.10) with this choice of the K’s.
Set , RFn, (gx Rctz,(K, (gx).

THEOREM 3.3.6. With the same notations as above, the canonical morphism

is an isomorphism.

Proof. It is enough to prove the isomorphism at each point y Y.
If y , both complexes are zero.
If y to, one has

RFo,Cr Io,

and hence the isomorphism (3.3.3) is nothing but the Cauchy-Kowaleski theorem
(0.1).
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If y Oco, we apply Theorem 2.1.1 (see Proposition 2.2.3) for Z { y}. The only
nontrivial property to cheek is

Rr(A) Rr(Ar).

Since co has a smooth boundary, A, Rg(A, At), and hence

RF{r}(A,o z RoCtz,(A{r}, ROf((A, At)

- Rrtm(A{r} (R) A, At)

RF{r}(Ar). Q.E.D.

Let us explain why Theorem 3.3.6 contains the result of [Sc].
Let X be an open subset of C" with 0 e X. Let z (zl, z,) denote the complex

coordinates in C" and let (z; () be the associated coordinates in T*X. Let co be an
open subset of Y {z e X; zl 0} with smooth boundary Z. Denote by f: Y X
the embedding. Consider a linear partial differential operator with holomorphic
coefficients P P(z, D) on X for which Y is noncharacteristic. Assume that P
has characteristics with constant multiplicities transversal to Y xx T*X at

f’- (Tz* Y) char(P). Let ’ x/xP.

PROPOSITION 3.3.7. Under the previous hypotheses there exist open subsets tai of
X as in (3.3.1) and satisfying (3.3.2).

Proof. Take q(z; ) as in Proposition 3.1.3. Set A’= f’-(Tz* Y)c char(’), a
disjoint union of r isotropic smooth manifolds A’, A’r of (T’X), the cotangent
bundle endowed with the underlying real analytic symplectic structure. From the
fact that cOq(z; ()/0(1 0 and that {z, q} 0 on f’-I (Tz* Y)c char(’), one easily
sees that the integral leaves of Hgeq, Hmq, are transversal to Y xx T*X at A.
Therefore, the union of these integral leaves issuing from A’i is a Lagrangian
manifold A of (T’X) a, contained in char(’). One constructs the hypersurfaces Z
of X similarly as in Proposition 3.1.3 and then chooses f as the half-spaces
delimited by Z and containing co. Q.E.D.

Consider the distinguished triangle

( )+’RCt%x ,/#, RFu,60x

and apply the functor RF(Y; "It). By the Cauchy-Kowalevski theorem (0.1) we find
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that, if Y is Stein, the sequence

is exact. Hence, by (3.3.3) we get that the holomorphic solution of the Cauchy
problem

P(z, D)u(z) O,
Dh u(z)l e F(o; 0<h<m,

may be written as a sum u Y’,[.= u,, where us e F(f, c V; (,0x) satisfies the equation
Pui O, V being an open neighborhood of Y in X.
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