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1. Introduction. Let IP be a complex n-dimensional projective space, IP* the
dual projective space, and & the hypersurface of IP x IP* given by the incidence
relation

_
{(z, () IP x IP*; (z, () 0}. We shall consider the correspondence

IP - & IP*, where f and g are the natural projections.
f 7
It is well known that the conormal bundle to & in IP x IP* is the Lagrangian

manifold associated to a contact transformation between *IP and P*IP*, the
cotangent bundles to IP and IP*, respectively, with the zero-section removed. This
contact transformation induces an equivalence of categories between construc-
tible sheaves on IP modulo locally constant sheaves and the similar category on
IP* (cf. Brylinski [5]), or between coherent -modules on IP modulo fiat con-
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454 D’AGNOLO AND SCHAPIRA

nections and the similar category on IP* (cf. [5] and [6] in which we treat the
case of general correspondences, not necessarily associated to contact trans-
formations; cf. also [3] for an interesting study of flag correspondences in the
language of representation theory).
Our aim here is to show that a kernel introduced by J. Leray [21] allows us to

quantize this transformation, and for an appropriate twist by a line bundle to
extend this quantification across the zero-section. More precisely, for k Z, we
denote by (.9,(k) the -kth tensor power of the tautological line bundle, and
we set ,(k) r (R)p 6r(k). If F is a sheaf on IP, and ’ is a coherent ,-
module, we set

OaF Ro!f-lF[n- 1],

The main result of this paper is that the projective duality can be "quantized" to
give an isomorphism of ,.-modules for -n 1 < k < 0

p, (-k*) ; _O(p(-k)), (1.1)

where k* =-n- 1- k. In particular, taking holomorphic solutions we get an
isomorphism (of sheaves)

(1.2)

We shall give two different proofs of (1.1). The first one is rather abstract and
deals with general contact transformations globally defined outside of the zero-
section of complex manifolds, relying on the work of Sato-Kawai-Kashiwara
[24]. The second one is more computational and is an adaptation in the lan-
guage of -modules of classical results which go back to Leray (loc. cit.).

Let F be a sheaf on IP. By (1.2), and using classical adjunction formulas, we get
the isomorphisms

Rr0P; F (R) 6or(k)) - Rr0P*;F (R) 6Or, (k*)),

ar(; R/tom(t, 6op(k))) RFOP ;Rom(F, 6O.(k*))).
(1.3)

Moreover, assuming F is lR-constructible and using adjunction formulas of [19],
we get the isomorphisms

w w
RFOP; F (R) (9(k))

_
RF(*; OaF (R) 6o, (k*)),

RFOP; 7"hom(F, 6o(k))) - RFOP*; 7"hom(OF, 6op. (k*))),
(1.4)

w
where (R) and .Y-horn are the functors of formal and moderate cohomology intro-
duced in [14] and [19].
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Formulas (1.3), (1.4) allow us to recover many classical integral formulas for
various choices of F. We only treat here a few examples.
As a first application, we generalize Martineau’s isomorphism (cf. [22]) as fol-

lows. Let U c IP be an open neighborhood of the origin in an affine chart E c IP,
and assume that its hyperplane sections are cohomologically trivial. Denote by
K c E* the set of complex hyperplanes which do not intersect U. Then formulas
(1.3) entail the isomorphisms

RF(U; C%)In] - RF(K; Ce. ),

RF(U;) - RFr(E*; Ce.)[n],

which show in particular that all these complexes are concentrated in degree zero.
Using (1.4), we also obtain similar isomorphisms using the functors of temperate
and formal cohomology mentioned above. Moreover, from these isomorphisms we
recover in the lines of 12] or [29] various vanishing theorems for local cohomology.

Another example is real projective duality. Denote by P and P* a real projec-
tive space of dimension n > 1 and its dual, and consider IP and IP* as complex-
ifications of P and P*. Denote by zgp (resp. ff, bp, ip) the sheaf of real
analytic functions on P (resp. c-functions, distributions, hyperfunctions). For
k Z, e Z2, we denote by cg(k, e) the locally constant sheaf of rank 1 over
qg whose global sections are represented by c-functions f on IR"+I\{0) sat-
isfying the homogeneity condition

f(2x) (sgn 2)2kf(x), for ]R\{O}.

Using explicit integral formulas, Gelfand et al. [9] proved the isomorphisms for
-n- 1 < k < 0, and e* -n- 1 e mod 2:

F(P; c(k, e))
_

F(P*; c,(k *, e*)).

We recover here these isomorphisms (and the similar ones with ffoo replaced by
z’ b or ) by applying (1.3) (or (1.4)) to the case where F is either the constant

W
sheaf tl2p or thewcanonical line bundle Kp. In fact, c(k, 0) - tl2p (R) 60e(k) and
(k, 1) - Kp (R) (.%(k).

These two examples (Martineau’s isomorphism and the Gelfand-Radon trans-
form) show that isomorphism (1.1), and its corollaries (1.2), (1.3), and (1.4), allow
us to reduce many problems of integral geometry to purely topological prob-
lems, namely the computation of (F) for various constructible sheaves F on lP.
The authors wish to thank Jean-Pierre Schneiders for useful discussions dur-

ing the preparation of this paper.

2. Review on correspondences for sheaves and -modules. Here, we recall
some results of [6] on correspondences for sheaves and -modules in the par-
ticular case where the manifolds X and Y (see below) have the same dimension.
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2.1. Notations. References are made to [18] for the theory of sheaves, and
to [24] and [13] for the theory of and g-modules (see [25] and [27] for a
detailed exposition).

2.1.1. Geometry. Let X, Y be real analytic manifolds. We denote by ax the
map from X to the set consisting of a single element, by r: X x Y x X the
map r(x, y) (y, x), and by ql, q2 the first and second projection from X x Y to
the corresponding factor.
We denote by zrx" T*X X the cotangent bundle to X, by /rx" 5/’*X X

the cotangent bundle with the zero-section removed, and by TtX the conormal
bundle to a submanifold M c X. We denote by pl and p2 the projections from
T*(X x Y)_ T*X x T’Y, and by p the composite of P2 with the antipodal
map of T* Y.

2.1.2. Sheaves. We denote by Db(x) the derived category of the category of
bounded complexes of sheaves of C-vector spaces on a topological space X. If
A = X is a locally closed subset, we denote by A the sheaf on X which is
the constant sheaf on A with stalk , and zero on X\A. We consider the "six
operations" of sheaf theory Raf’om(.,.), (R)., Rf!, Rf,, f-, f!, and we denote
by the exterior tensor product. Recall that RHom(.,-) Rax,R/gom(.,.).
For F e Db(x) we set D’F Rgegom(F, x).

If X is a real analytic manifold, we denote by SS(F) the microsupport of F, a
closed conic involutive subset of T*X. We denote by Db_c(tEx) the full triangu-
lated subcategory of Db(x) of objects with lR-constructible cohomology. If
X is a complex manifold, one defines similarly the category D_c(X of -constructible objects.

2.1.3. -modules. In the rest of this paper, unless otherwise stated, all mani-
folds and morphisms of manifolds will be complex analytic.

Let X be a complex manifold. We denote by (gx the structural sheaf, by fx
the sheaf of holomorphic forms of maximal degree, and by x the sheaf of
rings of linear differential operators. We denote by Mod(x) the category of left
x-modules, and by Modcoh(SOx) the thick abelian subcategory of coherent x-
modules. Following [26], we say that a coherent x-module ’ is good if, in a
neighborhood of any compact subset of X, ’ admits a finite filtration by coher-
ent 5x-submodules k (k 1,..., l) such that each quotient lk/lk-1 can be
endowed with a good filtration. We denote by Modgood(X) the full subcategory
of Modeoh(X) consisting of good x-modules. This definition ensures that
Modgood(SOx) is the smallest thick subcategory of Mod(x) containing the
modules which can be endowed with good filtrations on a neighborhood of any
compact subset of X. Note that in the algebraic case, coherent -modules are
good. We denote by Db(x) the derived category of the category of bounded
complexes of left x-modules, and by b b (X)) its fullDeola(x (resp. by Dgood
triangulated subcategory whose objects have eohomology groups belonging to
Modeoh(x) (resp. to Modgood(x)). We consider the operations in the derived
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category of (left or right) 9-modules: RgCgOmx(. ), (R)x ", _f-l, _f,. In partic-
ular, if ’ e Db(gx) and e Db(r),

_f,U= Rf,(x-r (R)r ff),

where Y-X and x-Y are the transfer bimodules associated to f: Y X. We
denote by the exterior tensor product, and we also use the notation

....DxJl/l R,omx (J//l, Ux),

where x denotes the dualizing complex for left x-modules, defined by gx
x (R)x t2x-[dim X].

If - is a holomorphic vector bundle on X, we set

g’* 9gOmx (g’, (_gx)

Note that- is a left x-module. We shall also need the right x-module:

If Z is a closed complex submanifold of codimension d of X, we shall consider
the holonomic left x-module zlx of [24]. Recall that zlx H(z]((Px) (alge-
braic cohomology) is a subsheaf of zlx Hdz((gx).

2.1.4. g-modules. Since the proof of Theorem 3.3 below will make use of the
theory of microdifferential operators, we recall here some definitions. We refer to
[24] for the theory of g-modules, and to [25] for an exposition.
Let gx denote the sheaf of microdifferential operators of finite order on T’X,

and let U be a subset of T*X. We denote by Mod(gxlv) the category of left
xlu-modules, and by Modeoh(X]U) the thick abelian subcategory of coherent
gxlu-modules. We denote by Db(gx[v) the derived category of the category of
bounded complexes of left x[u-modules, and by bDeon(gx[v) its full triangulated
subcategory whose objects have cohomology groups belonging to Modon(gxlu).

If ’ e Db(x), we set

gl gx @,?’x rcl,

an object of Db(x), and if - is a holomorphic vector bundle on X, we set

If Z is a closed complex submanifold of codimension d of X, we shall consider
the holonomic left gx-module Cdzlx gzlx.
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2.2. Correspondencesfor sheaves and -modules. We recall here some results
of [6] that we shall use in this paper.

Let X and Y be two complex manifolds of dimension n, and let S c X x Y be
a closed submanifold of eodimension c. Let S r(S) Y x X. Set

A T(X x Y)m (’*X x J’*Y),

and consider the correspondences

S A

X Y, #*X #*Y,

where we set f ql]s, 9 q2]s. We shall consider the hypotheses

(b)

f and 9 are smooth and proper,

Pl[A and P[A are isomorphisms.
(2.2)

Note that (2.2) implies that A T](X x Y) is the Lagrangian manifold
associated to the graph of a contact transformation globally defined outside of
the zero-sections:

Z. j’*X + j’* Y

p PlA(Plxl(p)).
(2.3)

Definition 2.1. For A X, F Db(x), ’ Db(x), and B Y, G Db(r),
din 6 Db(r), we set. g(f-l(A)), =f(9-(B)),

PsF Re! f-1Fin c], PgG Rf! 0-1G[n c],

If B {y}, we write y instead of {y}.

Remark 2.2. With the notations introduced in Appendix B, tI)s is the integral
transform associated to the kernel Es[n- c], and s to the kernel slxY.
One easily deduces the next proposition from classical formulas of sheaf and

-module theory (see [6] for details).
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PROPOSITION 2.3. Assume (2.2) (a). For F Db(x) and G Db(ly) there
are natural isomorphisms

s(DxF) -- Dys(F), (2.4)

RF(X; F (R) tgG)
_
RF(Y; sF (R) G), (2.5)

RF(X; R,om(F, OgG)) - RF(Y; R;’om(dsF, G)) (2.6)

bFor /1 Dgood(X). there are natural isomorphisms

(2.7)

tDsR.om x .J[ (gx RM’om r tDs.///[ (_g y (2.8)

bFor G Db(ly) and /[ Dgood(X),. there are natural isomorphisms

Rr(X; Rtomx(/l, gG (R) (x)) - RF(Y; Rom,(_s/l, G (R) (gg)), (2.9)

RF(X; Rrtomx(/l (R) gG, (gx)) - RF(Y; Rtom,(_s’ (R) G, (gr)). (2.10)

Moreover, in (2.5), (2.6), (2.9), or (2.10), we may replace RF by RFc.
As a particular case of (2.9), if - is a holomorphic vector bundle on X and

y Y, one deduces the germ formula

RF(p;)
_
R,omr(O_s* (gr)y[c n]. (2.11)

w
In Appendix A we describe the functors (R) and -hom of formal and moder-

ate cohomology, and recall the corresponding formulas to (2.9) and (2.10) for
these functors assuming G is lR-constructible (see [19]).

Set

SlXr q-{lX (q-ltOx SIXxY.
PROPOSITION 2.4. There is a natural isomorphism of (.y, x)-bimodules on S:

Y,--S (L ffrS_X 6r(n,0)
s SIXx Y" (2.12)

In particular, r-s (R)s s-x is concentrated in de#tee zero, andfor [ Db(x)
we have the isomorphism

.(n,o)tS[/[ Rq2 S Xx Y
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Since the analog of (2.12) holds for g-modules, we give the following
definition.

Definition 2.5. For alP/’ Db(6x) we set

a /’fl(n,0) L[ RP2!,SlXx Y (pi-lxPl

This is an object of Db(y).
An important tool is given by the isomorphism below (see [26, Corollary 7.6]).

b (x), we have the followingPROPOSITION 2.6. Assume (2.2). For all/ Dgood
isomorphism in

In [6], using the germ formula (2.11) and Proposition 2.6, we established the
following properties of s’. (Notice that the hypotheses of [6] are actually
weaker than (2.2).)

PROPOSITION 2.7. Let # Modgood(X), and assume (2.2). Then, for j # O,
the module HJsg is associated to a fiat connection (i.e., its characteristic
variety is contained in the zero-section).

Proof. Since char(s/) supp(g_Osdg), by Proposition 2.6 it is enough to
prove that:

HJ(*t’)[7,r 0 for j # 0.

Since A T(X x Y) is the Lagrangian manifold associated to a contact trans-
,(n,0) is flat over p-lx, and PIA is finite. The statement follows. [--Iformation, slx Y

PROPOSITION 2.8. Let be a holomorphic vector bundle on X, and assume
(2.2). Then

(i) for every j < n- c, there exists a locally constant sheaf offinite rank G on
Y such that

GJy - H (; -) Vy Y;

(ii) the complex_s is concentrated in degree > O;
(iii) assuming that Y is connected, the complex O_s is concentrated in degree

zero if and only if there exists y Y such that HJ()3;-*)= 0 for every
j<n-c;

(iv) assuming that Y is connected, the complex __Dr_s[-n is concentrated
in degree zero if and only if there exists y Y such that HJ(; (R)x fx)

0 for every j < n- c.
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Proof. (i) follows from Proposition 2.7, and from the germ formula (2.11).
(ii) follows from Proposition 2.4, since - is flat over x.
(iii) Recall that Y is connected, and let y e Y. Set z _s for short, and

consider the distinguished triangle

H(X) - V >or.__,
+1

which gives rise to the distinguished triangle

R3’omr(z>V, (Py) Rom,(r, (9y) RCtomr(H(V) (Py) --. (2.13)
+1

Notice that since char(z>Q c TY, one has

HJRfom,(z>o/V, y) 0 Vj > 0, (2.14)

and

z>V 0 : R,omr(z>V, (Py) 0

: HJRgrgaomr(z>V y) 0 Vj <O

HJRdg’om r z> 4r, (y y 0 Vj<O

, HJRomr(4/’, r)y 0 Vj<0,

where the last equivalence comes from the distinguished triangle (2.13), and the
fact that HJRomr(H(r), (9y) 0 for j < 0. To conclude, it remains to apply
the germ formula

HJR,omr(W, gr)y - H"-C+J(; *).

(iv) Note that (-* (R)x "X@-1) Dx"[-/1]" Using (iii), we have

HJ(:; " (R)ex fx) 0 /j<n--c

: HJ(C_s@( ()tpx X-I))--0

: HJ(dPsDx[-n]) 0 vj#o

Hi(__DydPs[-n]) 0 Vj#O.
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Remark 2.9. In [6] we study general correspondences, without assuming
dim X dim Y. Assuming PllA is surjective, PIA is a closed embedding on a
smooth regular involutive submanifold V c T’Y, and the fibers offare connected
and simply connected, we prove that there is an equivalence of categories

Modgood(X; *X) MOdRs(v)(-y; Y),

where d dx- dy, Modgood(X; *X) denotes the localization of Modgood(X)
by the subcategory of fiat connections, and MOdRs(v)(y; ’*Y) denotes the
localization of the category of good y-modules with regular singularities along V
by the subcategory of fiat connections. As a particular case, assuming (2.2), we
recover a result of [5], namely, the equivalence

n_s
Modgood(X; *X) Modgood(y; *Y).

HdO_

3. Globally defined contact transformations

3.1. Main theorem Consider the correspondences (2.1). Let - and ( be
holomorphic line bundles on X and Y respectively, let be a xy-module
(e.g., slxxY), and set

.a(n,O) (, () ql ()qlra (q.(lxq-l.( ((_9x ’X).

LEMMA 3.1. Assuming g is proper, there is a natural isomorphism

" r(X Y;J’SlS(’)y(-, (.))
_
Homi)(v)(@,s- (3.1)

Proof. It is enough to apply H(.) to the following chain of isomorphisms:

ra(,) r(-,RaxxY,.-slxx ))

O-(n,O)Ray,Rq2,R3C,Omq_Etr(ql,..SlXxY (q_{l(9x q-l-)

Rav,R3etomr(c, Rq2, .,.slx Y (q_{1(9X q-l))

Rar,RComr(@, s’).

Here, in the first isomorphism we used the fact that ff is y-coherent, and in the
last one we used the fact that q2 is proper on S. [-]
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Definition 3.2. (i) Assuming # is proper, and using Lemma 3.1, we associate
(n,0) (, fg*)), the r-linear morphism:tosF(Xx Y;

(ii) We refer to [24] for the notion of a nondegenerate section of cCSlXY on
an open subset of A Ts*(X x Y). We shall say that a section of SlXY is
nondegenerate in a neighborhood of p A if the section of the sheaf of micro-
functions CCslxy that it defines is nondegenerate. This definition extends to

r(-, ,SIX since this sheaf is locally isomorphic to slx Y.

TI-IEOREM 3.3. Let and c be holomorphic line bundles on X and Y respec-
tively, and choose a section s F(X v. (n,0) (’, (*)). Assume (2.2), and’ ’SIXY

(a) s is nondegenerate on A.
Then

(i) the induced morphism H(0(s)): (# H(ds) is a r-linear isomor-
phism.

Assume, moreover that Y is connected, and
(b) there exists y Y such that HJ(; -*) 0 for every j < n- c.

Then,_s is concentrated in degree zero, and
(ii) 0(s): ( _s is an isomorphism in Db(y);
(iii) 0(s) induces an isomorphism s* c. in Db(IEr).
Proof. Hypothesis (a) and the theory of [24] ensure that (s) is an isomor-

phism "outside of the zero-section," and we shall show that this isomorphism
extends to the whole space. More precisely, it follows from Proposition 2.6 that
0t(s) induces a morphism

For conic objects of Db(T,y), we have Sato’s distinguished triangle

Rnr!( ---+ Rnr,(. ---+ Ry,(. ---.
+1

Applying it to the morphism (s), we get the morphism of distinguished triangles

+1

Rr,(_()) Rnr,(()) Riy,(_())
+1 ’"

(3.2)

Notice the following.
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(1) There are natural isomorphisms

Rlry oaJ

In particular, Rzrr.(g is concentrated in degree zero.
(2) a(s) is an isomorphism all over *Y by [24], and hence &(s) is an

isomorphism.
(3) Considering the diagram

PlT’X, T(X x Y)
P; T* Y

X S Y,

,(n,0)and using the isomorphism Rzr,.,SlSx Y ,.,xxYls[-C], we have

Rrg,(_)
_
Rrr,Rp,r(n,)SIXx Y (P’lldgx p]-l,l-)

((n,O) -1f-1-)-- Rg! Rzr!. SlXx Y (u-,f -ld?x

([o(n,O f-l’) [_C]Rg, ’xxgls @f-’e;x

and similarly,

’Yx YI Y )(gr

Summarizing, we have the following morphism of distinguished triangles:

+1

+1

(3.3)

Since c, n > 0, H((s)) is the morphism 00. Taking the cohomology
groups in (3.3), we get the commutative diagram in which the horizontal lines
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are exact:

0 0(_Os())

First, assume n, c > 1. Then Hl((s)) is the morphism 0 0.
Next, assume n 1. In such a case c 1, and the contact transform (2.3)

comes from an isomorphism X
_

Y, since P*X -X, P(X x Y)_ S, and
P*Y Y. Moreover, the nondegenerate section s H(X v. ,,(,o)-, x r: is locally
a multiple of the fundamental class of S in X x Y. Then Hl((s)) is clearly an
isomorphism.

Finally, assume n > 1, c 1. In this case, H-n+lr:o(n’O)lk,YxYIY ()r () =0, and
hence, the diagram being commutative, fl 0. This proves (i).
As for (ii), by Proposition 2.8(ii) and hypothesis (b), the complex _s- is

concentrated in degree zero. The claim follows.
(iii) follows by applying the functor Rgomy(., (gy) to (ii), and by using iso-

morphism (2.8) for dg= ’. V]

Remark 3.4. Hypotheses (a) and (b) in the theorem above imply that

HJ(; (R)x fx) 0 Vj < n c.

In fact, by Proposition 2.8(iv) this is equivalent to saying that Dr_s[-n is
concentrated in degree zero. This is the case since _s#-

Combining the above theorem and Proposition 2.3 or Proposition A.1, we get
the following corollary.

COROLLARY 3.5. Let G Db(IEr), let and f be holomorphic line bundles on
v. (n,o) :n AssumeX and Y, respectively, and take a section s F(X x _,..,slxrt.,

(2.2), that Y is connected, and that hypotheses (a) and (b) of Theorem 3.3 are

verified. Then, a(s) induces the isomorphisms

Rr(X; sG (R) -*)
_
Rr(Y; G (R)

RF(X; RM’om(gG,:*)) - RF(Y; Rfom(G, (g*)),
w

and similarly with RF replaced by RFc, or (R) replaced by (R), or Rf’om replaced by
oq-hom.

3.2. Another approach, using kernels. In this section we will make use of
Kashiwara’s functor ’hom (see Appendix A), and of the notations and results of
Appendix B.
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Consider two correspondences

S T

X Y, Y Z,

satisfying (2.2) (a) (i.e., f, g,h,k are smooth and proper), and set dx dim* X,
cs codimCxy S, and similarly for dr, dz, cr.
Our first aim is to discuss the compatibility of the isomorphism in Lemma 3.1

with the composition

o" HOmDb(@z)(J, (I) T(-.-.-) () HOmDb(@z)((I)Tqj __T__$")

- HOmDb(z)(f __T__S,’),

where -, (, f, are holomorphic line bundles on X, Y, Z, respectively.
Recall that slxY - .’hom(Es[-cs], (gxy), and. consider the morphisms

(I)T. HOml)b(r)(c, (I)s-) Homi)(z) (I)T (I)T (I)s.."),

 o(n,O)as H THom(IEs[-cs],...xxY HmD(r)
(,,o) (c ., (,aT" H THom(CT[--cT], 60rz., )) ; Homi)(z)

aST H THom(Cs o CT[dr cs CT], ’XxZ

m HOmD(z)(-,(YT(S,),

eo (n,o) (c W.o(n,o) (., c*))(R) Uo THom(T[--CT] .rz-, ))o H THom(Cs[-cs],,xxr

H THom(s o T[dr cs CT], ’’XZ

The first morphism expresses the functoriality of (I) T. The isomorphisms as and aT
are those introduced in Lemma 3.1. The isomorphism aST is similarly obtained
using Proposition B.6. The last morphism is constructed using Proposition B.6
and the integration morphism

e0(0,n,0)Rql3!,XxVxZ (gxxz[-dr].

For a proof of the next proposition, we refer to 18, Proposition 11.4.7], where
a similar result is obtained for H THom replaced by Hom.
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PROPOSITION 3.6. With the same notations as above, let

ol,o> (, ,))Sl H THom(Cs[-cs], "xxr

(,,0) (, g,)).S2 - H THom(ffT[--CT], (9rxz

Then we have the equality in HOmDb(z)(JCf T(S)"

(IT(OT(S2)) o OS(Sl) OST(S2 o Sl).

Consider now the correspondences

s

X Y, Y X,

and denote by Ax the diagonal of X x X.
(d,0) (, ,)Definition 3.7. We denote by 3f the global section of "axIXX cor-

responding to the identity of" via the isomorphism:

(dx,0) (-,-.))
_
HORF(X;RWomx(,)).F(X x X; ’AxlXX

THEOREM 3.8. (i) Assume (2.2) (a). Let

(,,o) r(, ,)sl e F(X x Y;"slx )’ .(_,o)(, ,)),s e F(Y x X;_
slYX

and assume that there is a distinguished triangle

+1es[-cs] o IEg[-cs] IEx [-dx dr] Mxxx[-dr] (3.4)

for an object M Db(Mod(IE)) satisfying

(x,O)(, ,)) o,Hj THom(Mxx,xx for j O, 1.

Then

(gx,O) (Sl 0 S2 e F(X x X; o.,,Ax[XxXk, *)). (3.5)

(ii) Assume, moreover, that there is a distinguished triangle

+1IEg[-cs] o es[-cs] - ear [-dx dr Nyr[-dx]
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for an object N Db(Mod(tE)) satisfying

,,(,,o) f,H THom(Nrx y, y r )) O, for j O, 1,

and that the equalities sl o s2 ( and S2 o Sl t(g hold. Then, the morphisms

(s). --,_,
are isomorphisms.

Proof. One has

Sl o S2 H THom(lls o lg[dy 2cs],,xxxr(ax’)(, *))

H THm(ll2Ax[-dx], xx

(x,O (, ,))F(X X; ’AxlXX

where the first isomorphism follows by applying the functor

THom(., "xxrddx’) (, ’*))

to the distinguished triangle (3.4). This proves the first statement.
The second statement follows from Proposition 3.6.

bTrlEOREM 3.9. Let [ Dgood(!x). Assume (2.2), assume that X is connected
and simply connected, and assume that RF(X;RgOmx(//[ (gx))= O. Then, the
adjunction morphism

g - _(_s(a))

is an isomorphism.

Proof. Combining Proposition B.6 and Corollary B.3, we obtain that the
adjunction morphism is induced by a natural morphism tgg[-cs] o IEs[-cs]
tEax[-dx]. By hypothesis (2.2), the third term N of a distinguished triangle

g[-cs] o Cs[-cs] -. x[-dx] - --,
+1

satisfies SS(N)c Txx(X x X). Applying the functor -hom(., (-9xxx)o__ ’, we
get a distinguished triangle

.q-horn(N, (-gxxx) o_ g l g(s(g)) ----+1
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If N 0, the claim follows. If N 0, then for all j, Hi(N) is a constant sheaf, since
it is locally constant and X is simply connected. Moreover, X is compact. In fact,
consider the commutative diagram

Sx---Lh

XxX q2 X,

where the arrows are the natural ones. Since there exists j with H(N) constant
and nonzero, is surjective. Since h and f are proper, q2 o is proper. It follows
that X x X ?(y-l(ql(X))), is compact. Hence X is compact.
We shall prove that _v(’)x 0. Arguing by induction on the amplitude of

N, we may reduce to N xx. In such a case,

(7"hom(N, (9xx) o_ )x - q2!( (gx)x

- RqE,(q-{lfx (R)_,x( (_gx))_
Rr(X; tx (R)x ) (R) Cx,,.

In the last isomorphism, we used the Kiinneth formula (cf. [26]), which holds since
X is compact and ’ is good. Since RF(X; RCfomx([, (gx))= O, we have by
duality RF(X; fx (R)xt’) 0, which completes the proof.

4. Projective duality

4.1. Main theorem. Let IP be a complex n-dimensional projective space, IP*
the dual projective space, and & the hypersurface of IP x IP* given by the inci-
dence relation

((z, ) ’ x *; <z, > o}.

Let us consider the correspondence:

]P ]P*o

Denote by P*IP *IP/x the projective cotangent bundle to IP, and notice
that P*IP

_
& c IP x IP*. Since & is a hypersurface, & - P(IP x IP*), and we
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have the diagram

In particular, setting A 7(IP x IP*), the associated microlocal correspondence

A

*IP T*IP*

induces a globally defined contact transformation

Hypothesis (2.2) is thus satisfied for the correspondence (4.1).
For k, k’ 7z., denote by (9,(k) the -kth tensor power of the tautological line

bundle, and set for short

,(k) , (R)o, (_%,(k),

("’) ((9,(k), (gr (k’)).N(n’)(k,k’) ’-t’xr’

Set

k*=-n-l-k,

and recall that fh, - (9,(-n 1), so that fh, (R)o,(6%(k))* - (,%(k *).

Notation 4.1. Let [z] [z0, z’] [z0,..., zn] be a system of homogeneous co-
ordinates on IP. Let E - n be the affine chart of IP defined by z0 0, endowed
with the system of coordinates (t) (zl/zo,... ,zn/zo). Set O [1,0,..., 0] E.
Let [(] be the dual system of homogeneous coordinates in IP*. Let E* c IP* be
the affine chart given by (0 0, endowed with the system of coordinates (z)=
((1/0,’’’, (n/(O)" Set O* [1,0,..., 0] e E*.

Remark 4.2. Note that, using the identification T*E - E x E*, the restriction
of the contact transformation (4.3) to the affine chart E is the Legendre trans-
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form, defined for (t, z) O:

7,: T*E ---} T*(E*)

(t; :) (z/(t, z);-(t,

Following Leray [21, p. 94], we set

to(t) d tl A A dtn,

og*(z) Z (-1)izi dzo A A zi A A dzn.
i=0

Notice that, in the affine chart E, one has

gO*(Z) Z+1

The form

o9" (z) (4.4)Sk Sk(Z, )
(Z, )n+l+k

is thus a well-defined section of ro (n,0),re,(-k, k on IP x IP*\&.
If n + 1 + k > 0 (i.e., if k < 0), Sk has meromorphic singularities on &, and its

image via the natural morphism

F(IP x IP*\A; ro(n’) ’v(n’) (-k,k*))"er* (-k, k )) - H] (IP x IP*; ,,.
defines a section (that we denote by the same symbol)

Sk e F(IP x lP*; (n’)(-k, k*)),

which is nondegenerate on (IP x IP*).
THEOREM 4.3. (i) Assume k > -n- 1. Then

HOa(sk) .(-k*) ---} H_((-k))

is an isomorphism in Mod(e,).
(ii) Assume -n- 1 < k < O. Then

e(Sk) N,. (-k *) -. _(N,(-k))
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is an isomorphism in Db(ip,), and it induces an isomorphism in Db(l)

%(9(k) 2; doe, (k*).

Proof. We shall apply Theorem 3.3 with - 6%(-k), f (9,(-k *), s sk.
Since Sk is nondegenerate for k* < 0, it remains to check hypothesis (b). By the
following Lemma 4.4, hypothesis (b) is verified if and only if k < 0.

LEMMA 4.4. Let IP*, and consider c IP. Then

F((;(gr(k))-0 fork<O, n>l

nonzero and finite-dimensional for k > 0, n > 1,

Hn-l((; (9(k)) is infinite-dimensional for every k, and for n > 1,

Hi((; (9(k)) 0 for every k and for j O, n 1.

Proof. First, recall the following result of Serre:

FOP; (gr(k)) - rE[z0,..., zn] as graded rings,

(IP; (9,(k)) 0 for 0 < j < n and for every k,

(lP; (9,(k))’ - r(e;
(4.5)

where (.)’ denotes the dual of a finite-dimensional vector space.
We have a distinguished triangle

RFc0P\(; (ge(k)) - RF(P; 6O(k)) RF((; (gr(k)) ----.
+1

The subset is a hyperplane of IP. Identifying IP\ to an affine chart e - tEn, we
thus have an isomorphism

RFc(IP\(; 6%(k))[n] - RFc(E;

Recall that Hn(E; (gE) is isomorphic to the space F(E; fE)’ of analytic functionals
of Martineau. Using (4.5), we are reduced to prove the surjectivity of the map

-,

Since the right-hand side is finite-dimensional, by duality it is equivalent to show
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the injectivity of the natural restriction map

r(e; ,(k*)) - r(E; ),

which is obvious, l’-]

Applying Corollary 3.5 with " (gv(-k), f (.0.(-k*), we get the follow-
ing result.

COROLLARY 4.5. Assume -n-1 < k < O, and let F Db(t). Then a(Sk)
induces isomorphisms

Rr(lI’; F (R) (,9(k))
_

Rr(le*; %F (R) (gr,(k*)),

RF(IP; Rom(F, 60,(k)))
_
RF(IP*;Rom(F, (P,(k *))).

Moreover, waSSuming F is lR-constructible, similar isomorphisms hold with (R) re-
placed by (R) and R/’om replaced by ’hom.

4.2. Another approach, using kernels. In this section, we will use Theorem 3.8
to give an alternative proof of Theorem 4.3. In particular, we shall explicitly
construct an inverse (up to a nonzero constant) for the isomorphism in Theorem
4.3 (ii). The arguments that we shall use here are very classical, and go back to
Leray [21] (see also [28]).
We begin with a geometric lemma.

LEMMA 4.6. Let A,, be the diagonal of IP x lP. Then there is a natural iso-
morphism in Db(llx)

CAp

0

for j 2n 2,

for j 0, 2,..., 2n 4,

otherwise.

Proof. By definition, . o , Rql3!(lxp,,).

Recall that for z IP, the set is a hyperplane of IP*. Since

x,. b.= {(z, ’,)m x m* x m; " zr,},

it follows that

f ]pn-1,
q--31 (z, )

]pn-2,

if z= ,
otherwise,
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and hence,

Rql3 ff2xr.)(z,e -
n-1

( e[-2j],
j=O

n-2

(R)
=0

if z=,

otherwise.

Moreover, the locally constant sheaves HJ(Rq13t(r,) are constant since
IP x IP and Ar are simply connected.

Remark 4.7. One could prove that in fact o / splits as the direct sum of
its cohomology groups, but we shall not need this stronger result here. (This is
also a very special case of the results of Beilinson-Bernstein-Deligne-Gabber
[4] .)

THEOREM 4.8. Assume -n-1 < k < O. Then (Sk) is an isomorphism, the
inverse bein# #iven by (Sk.), up to a nonzero constant.

Proof. The fact that t(Sk) is an isomorphism was proven in Theorem 4.3 (ii).
In order to show that an inverse of o(Sk) is given by o(Sk,) (up to a nonzero con-
stant), we will apply Theorem 3.8 to the present situation, using the results of
Appendix B.
To complete the proof using Lemma 4.6 and Theorem 3.8, it remains to show

that Sk o Sk, and Sk, o Sk are nonzero multiples of the canonical sections 6k
(,,,o) (,,,o) ,di of k k and ktdgr(k) and ilk* (_Or (k) ArIIPxlP(-- At, It x’ (-- k*), respectively,

introduced in Definition 3.7. Since the arguments are identical, we will just treat
the first composite.

Consider the projections

We have the morphisms

[0(n,n,O) (_It--, Rq!hom(,,,,, ,, O, k))
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where the last isomorphism follows from a theorem of [14], and is induced by the
residue map

m(n,n,0) re(n,0)Rq13 !"lP* xlP n] -+ ’lPxl

Applying the functor RF(IP x IP;.), and using Lemma 4.6, we see that Sk o Sk. is
the image of Sk (R) Sk. by the maps

m(n,) t.* k))[1]:o(n’) (-k, k*))[1] (R) THoE((E/, ,r.m-,THom((12, ,m*

r(n’n’) (-k, 0, k))[2]THm(Cx,g,

m(n’) (-k, k)) In].-+ THom(tEap,

Denote by _c the complementary set of & in IP x IP*, and set for short

(4.6)

F[Akc] H THom(Cc m (n,o)r,(-k, k*)),

/o(n,n,O)F[(& x IP) c (IP x c)] H0 THom((r)(ek),,mr.(_k, 0, k)),

m (n’)(-k, k*))H[](]P x IP*) H THom(tE, vrx,

,,o(n,,o)HI[( xm’ )c]_ H THom((E(x,..)c, ...xll,,xm(_k, O, k)),

m(n,n,0)H2 (IP x IP* x IP) H2 Tnom((12./ ,mxm.xm(-k, 0, k))[xr.,]

m(n,o)H,](IP x IP) Hn TSom(g, ,rm(-k, k)),

(IP* x IP) Note, for example, that F[c] is theand define similarly F[ and H[/]
set of those sections of ro (,,,o) k* c,rm.(-k, on which extend as distributions to the
whole space IP IP*. Taking the zeroth cohomology of (4.6), we get the commu-
tative diagram

(R)

x m) (m

(iPx m)(R) (IP*xIP)H[] H[/]

/-/ (IP x lP* x IP)[Axr, A] (4.7)
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where a is the coboundary map, and fl is the composite of the coboundary maps
and di below

ft. r[( x ) ( x/)] ,, [( x./)]

H (IP x IP* x IP)[,xr. ,]

Recall Notation 4.1, and denote by ([z], [], []) the coordinates on IP x IP* x IP.
We have

Sk o Sk, Iq Sk ( Sk,

-I o,(z)o,()

in Hp] (IP x IP). Since the above equalities are local in IP x IP, in order to calculate
explicitly the last integral we will restrict to the affine chart E x E, endowed with
the system of coordinates (t, ).

Set

’o* ,*\{o*},

and notice that/ lPo*. Consider the maps

ExlP*o xE

E x lPo* E x IP’* x E lPo* x E

ExE,

where q is induced by the map lPo* - IP’* given by [(0, (’] [(’], and q3 is the
natural projection. Hence, q13 q3 o q. Let

z (. x,..) (.e x m* x

{(t, [(], ) x ,* x e; (0 (t, (’) (0 (, (’) 0},
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Notice that B c E x IPo* x E (and, hence, q13 is proper on B over E x E), and that
q induces a bijection between B and B. Hence,

Set for short

[o(n,n,O)F[(c x E)n (E x c)] no THom((CxE) n(x/C),.ex,:j,

F[(B’)c] H THom((s )c
,’o (n’n-l’)
"ExlP*xEI

[o(n,n- l,O)H](E x lPo* x E) H2 THom(ll3n, ’-’e’*o),

Hn,](E x IP’* x E) H THom(n, [O(n’n-l’O)
"ExIP’* xEJ

H](E E) nn THom(IIa, "EE)"

The bottom diagram in (4.7) factorizes in the commutative diagrams

r[( e) n ( c)]

F[(B’)

(x x)H[s] lPo*

z,l(E x ’* E)

H](EE).

(4.8)

It follows that

SIc ( Sk*IExE
(0 -+- <t, t>)n+l+k(0 -1

t- <: t>)-k13 13

in HE](E x E). As explained in [15, 3.1], the arrow .[q is a contour integral on a

loop surrounding the only singular point ofsk (R) Sk, in the complex line q- (t, [(’], ).
To explicitly compute it, let [(] [(0, (", (,] be a homogeneous coordinate system
on IP*, and consider the affine charts F c IP*, F’ IP’* defined by (n 0,
endowed with the systems of coordinates (a)= (ao, a")= ((O/(n,(tt/(n), (trtt),
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respectively. For (t) (t", t,), ({) (P’, [), we have

((0 -t- (t, (t))n+l+k((0 + ( (t))-k ExFxE

(ao + (t’, a’) + t)++k(ao + (’, a’) + f)-k

(_l)n+k(n--1 )n+ k ((t’- P,a’) + tn- ?n) n

(_ 1)+ (n 1 ) 2(t)2"(’)
n + k (t- , ’)n

in F[(B’)]. To complete the proof, we have the following proposition, analogous
to the classical plane wave decomposition of the delta function in the framework of
hyperfunctions.

PROPOSITION 4.9.
constant C

With the same notations as above, we have for a nonzero

o)(t)o2* ((’)
(t-,r’)"=C

13

eo(.,0)where 6 denotes thefundamental class ofHEI(E x E;

Proofi This is just a reformulation of the first Cauchy-Fantappi6 formula
(56.1) of [21]. In fact,

(t- , (’)"

is precisely the kernel of the Cauchy-Fantappi transform.

5. Applications

5.1. On a theorem of Martineau. In this section we will show how the pre-
vious results allow us to recover and make precise Martineau’s isomorphism, as
well as some related results by Henkin, Leiterer, Tr6preau, and others.

Consider the correspondence (4.1). We begin with a geometrical lemma.

Definition 5.1. Let D be a locally closed subset of IP. We say that D is &-
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trivial if for any e/, one has

Rr( r D; D) -- .
LEMMA 5.2. Assume D is compact (resp. open) and R-trivial. Then

(resp. %ffD - [1 n]).

Proof. (i) Assume D is compact. Set 0 glf-l(o). The natural morphism id
RO,O-1 defines the morphism

’b Rg,f-I(D)

and this morphism is an isomorphism by the hypothesis. Hence, Cb -
(ii) Assume D is open.^Then O’f-l(D)/ is smooth, and by [18, Remark

3.3.10], we obtain that if c D # O, then

Rrc(( D; o) - [2 2n], (5.1)

since !(.) - -1(.)[2n-2]. The natural morphism R!! id defines the mor-
phism

Rg!(Ef-(D)[2n- 2] (Eb,

which is an isomorphism by (5.1).

We say that a subset D c IP is affine if it is contained in an affine chart. We
introduce the notation:

D#

and we keep these notations for subsets of IP*. Note that

D# {(e IP*; (cD 0},

and that

D # 0 = D# is affine,

D affine = D# =fi 0.
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Using Notation 4.1, let K c E c IP be a compact convex subset. Then, it is
easy to check that K## K. More generally, recall that Martineau [22] calls
"lin6ellement onvexe" those subsets D c E such that D## D. We have a cri-
terion for such a convexity.

PROPOSITION 5.3. Let D IP be either compact or open. Assume that D is non-
empty, affine, and dk.trivial. Then D# is nonempty, affine, -trivial, and D## D.
Moreover, if n > 1, we have RF(O; o)

Proof. Assume D is compact (the proof when D is open is similar). We have
already noticed that D# is nonempty and affine. Applying Lemma 4.6 and
Remark 4.7, we find that

where N ())n__-( tE,[-2j]. Applying Lemma 5.2, we obtain

$(IEb) IEo[1 n] E) (N’ (R) RF(D; )),

where N’ N[1 hi. On the other hand,

Writing IEo# as the complex [IE,, - feb] we find that

where M is the complex IN’ N’ (R) RF(D; o)]. Since

supp M c supp /(0#) C D#^ IP,

we find that M 0, and if n > 1, this implies RF(D; o) - IE. Hence, we get

For z z IP, set Dz D# c k c ({z} x D#). This is an open subset of , and

Rrc(Dz; Cn,)[2n- 2] [ 0, if IP\D,, if z elP\D.

Since (RFc(Dz; iEo,)[2n- 2])’ - RF(Dz; IEo,.), we find that D#^ IP\D, and hence
D## D, and D# is k-trivial. [:]

Remark 5.4. Much work has been done on the geometry of "lin6ellement
convexe" sets. Beside Martineau [22], let us quote in particular [1] and [30].
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THEoarM 5.5. Let U c IP be open, K c IP* be compact, and assume one of the
following equivalent conditions:

(a) U is affine, nonempty, &-trivial, and K U#
(b) K is affine, nonempty, k-trivial, and U K#.

Then, assuming 0 U Efor simplicity (hence K E*), there are isomorphisms

RF(U; C0)[n] - RF(K; .), (5.2)

RF(U; o)
_
RFr(E*; .)[n], (5.3)

and these four complexes are concentrated in degree zero.

Proof. By Proposition 5.3, conditions (a) and (b) are equivalent. Let us apply
Lemma 5.2 together with Corollary 4.5 to the sheaf F v. For -n 1 < k < 0,
we find that

RF(U; o)
_
RFc0P*\K; 60r. (k))[1 n],

Rr(U; o)_ RFOP*\K; (9,. (k))[n 11
Using the fact that RF(IP*; (9.(k))= 0 for -n-1 < k < 0, the isomorphisms
(5.3), (5.2) follow.

Finally, since the complex RF(U; (9z) is concentrated in degree > 0 as well
as RF(K; 0e,), and RFr(IP*; 60,)[n] is concentrated in degree < 0 as well as
RFc(U; (9)[n], all these complexes are in degree zero. [

Remark 5.6. It is important to distinguish between IP and IP*. For example,
when n 1, one may identify IP to IP* and IP\K to K#, but (5.3) cannot be iden-
tified to the morphism

RF(IP\K; ,) --, RFr(IP; )[1]

associated to the inclusion K IP, since the zeroth cohomology of this last mor-
phism has nonzero kernel.

Remark 5.7. If K is a compact convex affine subset of IP, then O(r)=
g,[n 1]. However, one shall take care that if K1 and K2 are two such sets, then
in general

(K1 K2)^ /1 c/2-

In particular, the distinguished triangle

+1

is not the Mayer-Vietoris sequence associated to/1 and/2.
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Remark 5.8. With the notations of Theorem 5.5, the isomorphism

H(K#; (9,)
_
H(E*; (9,)

is a theorem of Martineau [22]. Note that Martineau’s proof was essentially not
different from ours, since it is based on Leray’s Cauchy-Fantappi formula.

COROLLARY 5.9. For i= 1, 2, let Ui c lP be open (resp. let Ki lP* be com-
pact) and assume that they satisfy condition (a) (resp. (b)) in Theorem 5.5, and
that U1 c U2 (resp. K2 KI). Then, assuming U2 E (resp. K E*), the
natural morphisms

Hy(U;) --, Hcn(U2; 60E),

Hn (E*; 60n,) Hn (E*; 60,)K2 K1

are injective.

Proof. We may assume Ki U#i. Then Theorem 5.5 interchanges the mor-
phisms in the statement with the morphisms

F(K1; (.gg,) F(K2; (gE,),

r(u:; F(U1; (s),

which are injective by analytic continuation.

Using the formalism of formal and temperate cohomology introduced in 14],
[19] (and reviewed in Appendix A), we obtain the following results, analogous to
Theorem 5.5 and Corollary 5.9.

IP is open and subanalytic, and K c IP* is compact andRecall first that if U
w

subanalytic, then Cv (R) (.F is the Dolbeault complex with coefficients in the
sheaf of -functions on U vanishing up to infinite order at the boundary of U,w
K (R) (gE. is the Dolbeault complex with coefficients in the sheaf of Whitney
functions on K, -hom(ffu, (9) is the Dolbeault complex with coefficients in the
sheaf of temperate distributions on U, and RF[K](E*; 60.) is the Dolbeault com-
plex with coefficients in the sheaf of distributions supported by K.

THEOREM 5.10. Let U lP be open and subanalytic, and let K IP* be compact
and subanalytic. Assume one of the equivalent conditions (a), (b) in Theorem 5.5.
Then, assuming 0 U Efor simplicity (hence K E*), there are isomorphisms

w w
RF(IP; Ct (R) %)[n] - RF(E*; Cr (R) e.), (5.4)

RF(IP; -hom(v, (gn,)) - RF[rI(E*; e.)[n],

and these four complexes are concentrated in degree zero.
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Proof. The proof is the same as that of Theorem 5.5, replacing Proposition 2.3
w w

by Proposition A.1, and noticing that RF(IP; {Ere (R) (9,(k))
_

RF(IP; {Eu (R) (9,). In
w w

fact, RF(IP; IEu (R) (9,(k)) is the Dolbeault complex with coefficients in F(IP; {Eu (R)
cd(k)), and this space is the completion of Fc(U;Cd(k)) - Fc(U;C) for the
topology induced by F(IP; cg(k)). This topology is the same as that induced by
r0P; e ).
By duality, one also has Rr0P; -hom(u, (9,(k)))

_
RFOP; -hom(ffu, (9)).

COROLLARY 5.11. Let Ui c IP and Ki c IP* (i-- 1,2) be as in Corollary 5.9.
Assume that they are subanalytic subsets of IP and IP*, respectively. Then, the nat-
ural morphisms

ww
Hn (IP; Eu2 (R) (9,)Hn(Ip; IEu1 (R) (9)

are injective.

Concerning local cohomology, we have the following result.

COROLLARY 5.12. Let U E be an open subset with real analytic boundary,
let to e cU, and assume that U is strictly pseudoconvex at to. Then

HJ(IEu (9)to 0 for j n, (5.6)

HJ(RF(9),o 0 for j :# n, (5.7)

HJ(RFtolCOe),o 0 for j # n. (5.8)

Proof. Since the proofs of these formulas are similar, we will only show (5.6).
The problem being local at to, it is not restrictive to assume that U is strictly

convex. Let E be the real underlying affine space to E, and denote by (.,.)
the scalar product on E. In the identification T*E

_
E x E*, let (to, Zo) be an

exterior conormal to U at to. For e > 0, let

u, (t e u; (t- to, <

and let V be a fundamental system of neighborhoods of to such that V c U U,.
Consider the complex L F(V,; {Eu 3 cd’(")). We have

w
lim HJ(L).HJ(Eu (R) (9 )to
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On the other hand, consider the complex L’, F(E;eu\u8 ) cge’(")). It enters
the short exact sequence of complexes

w w
0- F(E; v, (R) cg(o,.))_ F(E; *v (R) c(o,.))__ L, O,

or, equivalently, it is the third term of a distinguished triangle

w w

+1

Using Theorem 5.10 and Corollary 5.11, one gets that HJ(L’,) 0 for j # n. To
conclude, one notices that the two complexes L’ and L are cofinal. I-q

Remark 5.13. (i) Corollary 5.12 was obtained in [12] (in a different language)
by explicit integral formulas.

(ii) Let M be a real C2-hypersurface of a complex manifold X of dimension n,
M+let p TmX and let be the germ of closed half-space at to c(p), with inte-

rior conormal p. Assume the Levi form of M has exactly q negative eigenvalues
in a neighborhood of p. A theorem of [17] asserts that

li__m HM+ n(f; 60x) 0, for j # q + 1 (5.9)

Tr6preau [29] has noticed that there exists a holomorphic chart in a neighborhood
of to in which a partial Legendre transform interchanges X\M+ with a pseudo-
convex open subset. He has then obtained a more direct proof of (5.9) using means
analogous to the result of [12] with parameters. It would be possible to adapt
Tr6preau’s method by using a generalization of Theorem 4.3 to a situation with
parameters.

5.2. Real projective duality. In this section, we shall apply Corollary 4.5 to
give an alternative approach to the results of Gelfand, Gindikin and Graev [9]
on the (real) Radon transform.
Denote by P a real projective space of dimension n, and assume for simplicity

that n > 1. Recall that there is a natural embedding P - IP (compatible with the
embedding of affine charts lRn-, tEn) by which IP is a complexification of P.
Set A & c (P x P*), and consider the embedding of the real projective corre-
spondence in its complexification

A &

P p* IP lP*.



LERAY’S QUANTIZATION OF PROJECTIVE DUALITY 485

First we need to recall some basic facts on the topology of P and A (references are
made to Ehresmann [8]).

Since Zrl(P) Z2, there are essentially two locally constant sheaves of rank 1
on P: the constant sheaf IEp, and the canonical line bundle that we denote by
Kp. Consider the universal covering of P:

q: S- P, (5.10)

where S denotes a real n-dimensional sphere. There is a split exact sequence:

0--* Kp q! (ES (Ip 0 (5.11)

(where tr: q!Es - q!q!p (lp is the natural trace morphism), from which one
deduces that

/ IE, for n even,
RF(P; Ep)

IE IE[-n], for n odd,
(5.12)

f
RF(P; Kp)

_
0,

for n even,

for n odd.
(5.13)

Moreover one has Kp
_
DpKp, Kp

_
orp if and only if n is even, and lp orp if

and only if n is odd.
Concerning the topology of A, one knows that there are essentially four

locally constant sheaves of rank 1 on A:
and Kp N1 K. IA. Moreover,

OrA/Pxp, Kp -] KF* IA. (5.14)

In order to calculate the Radon transform (i.e., O.(i!F)) of a sheaf F on P, we
need some preliminary results.
For e 7Z2, set

f (lp, for e- O,

Kp, for e-- 1.

We also set

e*=-n-l-e mod2.

PROPOSITION 5.14. Let el, 8,2 ,2. Then

RHom(O(tEp(el)), {lp, (82)) RF(A; [p(e7 + 1) N {P" (82 + 1)]lg).
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Proof. Let F and G be locally constant sheaves of rank 1 on P and P*,
respectively, (so that F - tEp or F

_
Kp, and similarly for G). One has the fol-

lowing chain of isomorphisms:

RHom(ap(i!F),i!G) - RHom((i!F ,.) (R) [n 1], , i!G[2n])

- RHom(i! ((F Cp.)(R) CA), [E] i! G)[n + 1]

= RHom(i! tEA, i! ((DF (R) orp) G))[1]_
RF(A; orA/pe. (R) [(DF (R) orp) [ G]IA

This completes the proof by (5.14), noticing that D,(p(el)) () orp p(e).

COROLLARY 5.15. For el,eL 7Z2, one has thefollowin9 isomorphisms

re, fore* =e2 l,
Hom(tI)(p (el)), CP*(e2))

O, otherwise.

PROPOSITION 5.16. We have

ff., for j 1 n,

K,, for j- O, n even,

,\e,, for j= -l, n odd,

O, otherwise,

f .\e.[l], for n even,
(K)

Kr,, for n odd.

Proof (a) First we calculate the stalks of (e), (Ke).
For *,

HJ(o()[1 n]) nJ(( P;

Note that every z P may be written as z Ix0,..., Xn] with xi R, and that it is
not restrictive to assume ( [1, (’]. It follows that

(P={[xlsP; x0+(x’,(’)=0}

{Ix] P; x0 + (x’, Re ’} 0, (x’, Im (’} 0}

= [Pn- forIm’=0,

P,-2 for Im(’ 0,



LERAY’S QUANTIZATION OF PROJECTIVE DUALITY 487

where Pk denotes a k-dimensional real projective space. Using (5.12), we then get

Hi(I)&(p)
_ C, for j- l-n,

C, for j=0, neven, (eP*,

C, forj=-l, nodd, elP*\P*,

0, otherwise.

(5.15)

In order to compute (Kp), consider the distinguished triangle

(I)&(Kp)( --..--r D&(q!s)( -- (I)&((Ip)( +_1

One easily checks that tr corresponds to the natural map

RF(q- (() c S; Cq-,(() s) --’ RF(( c P; lc p).

One has

q-1 (() S {(X) S; XO + (X’, (t> O}

{(x) e S; xo + (x’, Re (’) O, (x’, Im (’) O}

f Sn-1 for Im (’ O,

S"-2 forImO,

where Sk denotes a real k-dimensional sphere. Recalling that

HJ(s; s)
O,

for j 0,

for j n,

otherwise,

we get

C,

O,

for j= 1-n

for j O, eP*,

forj=-l, elP*\P*,

otherwise.
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It follows that

C,

HJ(&(Kp)()
O,

for j=0, P*, nodd,

forj=-l, IP*\P*, neven, (5.16)

otherwise.

(b) The sheaves HJO.(p), HJ.(Kp) are clearly locally free of rank 1 or
zero on IP*\P* and on P*. Moreover, IP* is simply connected as well as IP*\P*
for n > 2. Thus, by Corollary 5.15 it only remains to prove that

(I)&(Kp) ([lp*\p*[1] for n 2.

Let j: IP*\P* IP* be the open embedding, and set L H-l((Kv))llP,\p,, so
that tb(Kv) j!L[1]. Noticing that

n-1,(E,,) - @ ,[n 1 2j],
j=0

and using (5.13), we have (for n 2)

RHom(Er,, (Kp))
_
RHom(a(r,), Kp)

- RHom(r, Kp)[2j-1]
j-0_
[-1] [-3].

Applying the functor HRHom( O.(Kp)) to the exact sequence

we get

Hom(Er,\e,,j!L) - H-1 RHom(IEr,\e,, (Kp))

- H RHom(E., (Kp))

where the last isomorphism is obtained by adjunction from the second iso-
morphism of Corollary 5.15. Since L is locally constant of rank 1, this implies that
L - {llp*\p*. ["’[
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For k 7z, e 7Z.2, we consider the sheaves of twisted analytic functions,
functions, distributions and hyperfunctions given by

a/’p(k, e) - (E,(e) (R) (.%(k),

w

bp(k, e) - q-hom(D’p(e), (9,(k)),

,(k, e) R;fom(D’(l?.p(e), (_9(k))

Notice that, for example, the global sections ofc(k, e) are those -functions f
on IRn+l \{0} satisfying the homogeneity condition

f(2x) (sgn 2)2kf(x), for 2 IR\{O}.

Applying Corollary 4.5 and Proposition 5.16, we get the following result.

TI-IEOREM 5.17. For -n 1 < k < O, e 7Z.2, the section Sk introduced in (4.4)
induces the isomorphism

r(P; (g (k, e))
_

r(P*; (gv, (k *, e*)),

and similarly with c replaced by , b or 9.

Notice that this theorem was already obtained (in the c case) by explicit
computations in [9]. The case of hyperfunctions is treated in [16, Proposition
4.1.3] who also generalize it to the case of arbitrary homogeneity (i.e., k ).

5.3. Other applications. (a) It is well known (cf. [5]) that the transform
interchanges D_c(IP and D_c(IP*), and interchanges perverse objects with
perverse objects modulo constant sheaves (this is in fact an immediate con-
sequence of the microlocal characterization of perversity in 18, Chapter 10]).

Let us call "generalized holomorphic function" a section of HJRg’om(K, ’)
for K D_c(IP* and a holomorphic line bundle. Corollary 4.5 shows that

interchanges generalized holomorphic functions on IP* and IP.
It would be interesting to study more precisely the transform of the sheaf

of ramified holomorphic functions on a hypersurface of IP*. Related results are
obtained in [28].

(b) Let Z c IP be a complete intersection subvariety of codimension d, and
denote by (z the quotient of (9, by the defining ideal z. Note that 60

_
A result of Henkin [11] asserts that the transform interchanges holomor-

phic functions on Z with holomorphic functions on IP* satisfying a system of
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constant coefficient differential equations associated to Z. This can be rephrased
by the isomorphisms

t((gz) O(Rf’omp ((gz, 6,)[d])

Romp ((gz), (9,,)[d].

Moreover, let fl fa 0 be a system of globally defined equations for Z
with j) homogeneous of degree mj. For k >> 0, the sheaf Cz(k) is quasi-isomorphic
to the complex

0 ..oq’ L’2 (9r(k + mj) (_9r(k) -- O,

where the .aj are locally free. Applying the functor r (R) (’), we get a complex
quasi-isomorphic to (gz(k). Next, applying the functor

_
we find a complex

o#’}(k) quasi-isomorphic to O_((gz(k)).
One knows that HJ(’}(k)) is a flat connection for j 0. Moreover, by this

construction, we find that for k > -n- 1, H(’}(k)) is isomorphic to the co-
kernel of

Nr.(k*-mj)(f Nr.(k*),
J

where j is the constant coefficient differential operator homogeneous of degree d,
the Fourier-Radon transform of

APPENDICES

A. The functors of temperate and formal cohomology. Let us briefly recall
some constructions of [14] and [19].

First, assume X is a real analytic manifold, and let IR- Cons(X) denote the
abelian category of lR-constructible sheaves on X. Denote by bx, the sheaf
of Schwartz’s distributions on Xr’, and denote by xC the sheaf of functions of
class coo. There exists a unique contravariant exact functor

-hom(. bx. IR Cons(X)p - Mod(x.)

such that if Z is a closed subanalytic subset of Xr’, then

7-hom(z, bx.) Fzbx..
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Similarly, there exists a unique exact functor

w
(R) (gx IR- Cons(Xr’) Mod(x*)

such that for Z as above

w,x.\z (R) % z,x.,
where Jx denotes the ideal of co of functions vanishing to infinite order on Z.
These fu’tors being exact, they naturally extend as functors

..’hom(., bx)" Dbr._c(tEx)p --* Db(x),

( Cgx Db_c(x.) Db(x,).

Let X be a complex manifold. Denote by X the associated antiholomorphic
manifold, by X the underlying real analytic manifold, and identify X to the
diagonal of X . For F Db_c(tEx) one sets:

..ifhorn(F, (gx R.om (9 ..-hom(F, bx-)),

w w
F (R) (gx Rtomr: ((9, F (R) rgxC

In other words, one defines ..q-horn(F, (_gx) as the Dolbeault complex with coeffi-
w

cients in .q-hom(F, bx), and F (R) (gx as the Dolbeault complex with coefficients
w

in F(R)
For - a locally free (gx-module of finite rank, one sets for short

gThom(.,) .ahom(., (gx) (R) cx ,
THom(.,) RF(X, 7hom(., )),

w w
(R) (. (R) Cx) (R)gx .

If K c X is a compact subanalytic subset, one sets

Rr[rl(x) .-hom(ffK, (-9x)

In [19], the following adjunction formulas are established in a general setting
which apply in particular to our case.
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PROPOSITION A.1. Consider the correspondence (2.1), and assume (2.2). Let
b (x) G Dbr._c(g). Then[ Dgood

w w
Rr(x; R;CgOmx(/l, aG (R) (gx)) - Rr(Y; RCgomr(_s#, G (R) (gr)),

RF(X; Romx(l hom(OsG, Cx))) - RF(Y; Romr(_s#, 7-hom(G, 0r)),

and there are similarformulas by replacing everywhere RF by RFc.

B. Kernels. Most of the results of this section are well known from the spe-
cialists, and we shall present them here without proof. In particular, the formal-
ism of kernels for sheaves is discussed in [18, 3.6].
As general notations, we will consider three complex manifolds X, Y, and Z of

dimension dx, dy, and dz, respectively. For i,j- 1,2,3, we denote by qij the
projections from X x Y x Z to the corresponding factor (e.g., q23: X x Y x Z --,

YxZ).

Definition B.1. For K Db(xy) and L Db(yxz), we set

K o L Rq13!(q-21K (R) -1
q23 L),

’K

where r" X x Y Y x X is the natural map.

For K e Db(xxY), we shall consider the following hypothesis:

the projection P2: T*(X x Y) - T*Y is proper on SS(K). (B.1)

PROPOSITION B.2. Let K D_c(ffxxY),F e Db(zxx), G e Db(ffzxy).Assume
(B.1). Then

RHom(F o K, G) - RHom(F, G o tK)[2dx].

COROLLARY B.3.
natural morphisms

Let K e DR_c(tl]xxY) and assume (B.1). Then there are

IEAx --* K o tK[2dx]

tK o K[2dx] --* lEAr.

Proof. The first morphism is the one associated to idFoK by the isomorphism
of Proposition B.2, applied with Z X, F Ax, and G F o K. The second
morphism is similarly constructed. V]
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Definition B.4. For e Db(xxr) and .L.q’ e Db(.yxZ), we set

g" 9_ ql_._) q-{ (R)xrz q2-31"(’)

PROPOSITION B.5. Let 3 Db(xxY) and Db(yxz). Then, there is a
natural isomorphism in Db(xxz):

o_ G’
_

Rq13,(q-213U (O’dg) )qL2_,r q2-31Ga),

where t (O’dY is endowed with its natural (qi-lrx, qly).bimodule structure.

Proof. By definition,

oY o_ Rq r.x [] y [-l rz L 3 [’ (_9Z
L(R)xz (R)xzx)).

Moreover, one has the following chain of isomorphisms:

(X

___
’Y [] Z) L (O" -] (.0Z )L (9X [] )(r-XxYxZ XxYxZ

For the following result, we refer for example to [2, 1].

PROPOSITION B.6. Let K Dbc_c(Xy), L D_c(yxz). Assume that q2 is
proper on supp K. Then

-hom(K, (gxxY) 0_9_ ZThom(L, (.OyxZ) -- Thom(K o L, (-gxxz)[-dr].

Remark B.7. Consider the correspondence (2.1). It is then immediate to check
that for F e Db(x), one has

Ds(F) - F o s[n c].

Moreover, using Proposition B.5, it is easy to check that for/ Db(x)

S(#) 9_ SIXxY.
C. Final comments. In this paper, we have used adjunction formulas asso-

ciated to a submanifold S of X x Y, and this was enough for the applications we
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had in mind. However, more general kernels associated to perverse sheaves on
X x Y may be of interest.
For a regular holonomic xy-module, set K RCtOmxr(:,r,(xy).

Then, using the notations of Appendix B, formulas (C.3) and (C.4) below are well
known from the specialists: let us mention in particular M. Kashiwara and also
J.-P. Schneiders, with whom we had many discussions on this subject.

Assume that

(supp([) x Y)c supp(K) is proper over Y, (C.1)

(char([) x T,Y)c char() c Ty(X x Y). (C.2)

Then, we have isomorphisms

Rr(X; RY?’Omx(./# (K o G) (R) (gx))[dx]_
RF(Y; R’Om y # o__ :f G (R) (g r (C.3)

RF(X; Romx(# Rom(K o G, (x)))[dx]_
RF(Y; Rom,(# o__ :;if, Rtom(G, g)))[2dg] (C.4)

These formulas were recently extended to formal and moderate cohomology in
[19, Theorem 10.8] as follows.

Assume (C.1) and

(supp(G) x Y)c supp(K) is proper over X.

Then we have an isomorphism

w
Rr(x;R’Omx( (K o G) (R) (x))[dx]

w_
RF(Y; RJCtomr(# o_ , G (R) (gg)). (C.6)

Moreover, if (C.2) holds, then we have an isomorphism

RF(X;R;omx( 7-hom(K o G, (gx)))[dx]

- RF(Y; R3/’omr( o_ :r, 7"hom(G, (gg)))[2dg] (C.7)

In the case of projective dualitynthe subject we are concerned with in this
papernthe following kernels are remarkable. Let f IP x IP*\&, and let j" f
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IP IP* be the embedding. Set

K =t, :;f -hom(K, (gn,p,).

Then tK Rr,Rj, j-lfffl and Kashiwara (see [20]) has noticed that

K o tK[2n]
_

tK o K[2n] - b (n,) and bHence, gives an equivalence of categories between Dgood Dgood(,*).
(Compare with Lemma 4.6 and Remark 2.9.)
Note added in proof. See also A. Goncharov, "Integral geometry and -modules," Mathematical Research Letters 2 (1995), 915-935, for another ap-

proach to integral geometry via -module theory.
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