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On a complex manifold X of dimension �3, we show that coherent DX -modules
which are ``simple'' all over P*X are classified by Pic(X ), the family of holomorphic
line bundles on X. As a corollary, using the Penrose transform, we obtain that on
the complex Minkowski space M, simple DM -modules along the characteristic
variety of the wave equation are classified by (half) integers, the so-called helicity.
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INTRODUCTION

Consider a complex manifold X of dimension �3 and a regular involutive
submanifold V of P*X, the projective cotangent bundle to X. A natural
problem is to classify all systems of linear PDEs (i.e., coherent DX-modules)
with simple characteristics along V. In the extreme case where V=P*X, we
solve this problem by showing that such modules are classified��modulo
flat connections��by Pic(X ), the family of holomorphic line bundles on
X. Starting from this result, the theory of integral transformations for
D-modules allows us to treat the case of other involutive manifolds, such
as the characteristic variety of the wave equation in the conformally com-
pactified Minkowski space or, more generally, the case where X is a
Grassmannian manifold Gp(Cn), and V is identified by the natural projec-
tion with the conormal bundle to the incidence relation in G1(Cn)_Gp(C

n).
We show in particular that on such a space, simple modules along V are
determined, up to flat connections, by an (half) integer corresponding to
the so-called helicity.

In [5] it was shown that the Penrose transform allows one to obtain the
whole family of massless field equations. By the results of this paper, one
gets that there are no other simple modules than those of this family.
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1. SIMPLE D-MODULES

We shall use the classical notations concerning D-modules. References
are made to [6], [10].

Let X be a complex manifold. We denote by dX its dimension, by
? : T*X � X its cotangent bundle, and by OX its structural sheaf. The sheaf
DX of linear holomorphic partial differential operators on X is naturally
endowed with a structure of filtered ring, the filtration being given by the
subsheaves DX (k) of operators of degree at most k. The associated graded
ring GDX is identified to �k # N ?

*
OT*X (k), where OT*X (k) denotes the

subsheaf of OT*X whose sections are homogeneous of degree k in the fiber
variables.

Let M be a coherent DX-module. A filtration on M is an increasing
sequence [Mk]k # Z of OX-submodules of M, such that M=�k Mk , and
DX (l )Mk/Mk+l . A filtration [Mk]k # Z is called good if the Mk 's are
OX-coherent and, locally on X, Mk=0 for k<<0, and DX (l ) Mk=Mk+l for
any l�0 and for k>>0. If M is endowed with a good filtration, we set

G� M=OT*X �?&1GDX
?&1GM,

where GM=�k Mk �Mk&1 is the associated graded module. This is a
coherent OT*X -module. Recall that any coherent DX-module locally admits
a good filtration, that supp(G� M) does not depend on the choice of the
good filtration, and that char(M)/T*X, the characteristic variety of M,
is defined as the support of G� M.

Let us denote by Mod(DX) the abelian category of DX -modules, and by
Modcoh(DX) its full abelian subcategory consisting of coherent DX-modules.
We denote by Db(DX) the bounded derived category of Mod(DX), and by
Db

coh(DX) the full triangulated subcategory of Db(DX) whose objects have
coherent cohomology groups.

Definition 1.1. Let . : M � N be a morphism of coherent DX-modules.
We shall say that . is an isomorphism modulo-flat-connections (an m-f-c
isomorphism for short) if ker . and coker . are flat connections (i.e.,
coherent DX-modules whose characteristic varieties are contained in the
zero-section).

We denote by T*X X the zero-section of T*X, by ?* : T4 *X � X the
cotangent bundle with the zero-section removed, by { : P*X � X the pro-
jective cotangent bundle, and by # : T4 *X � P*X the natural projection.
For V/T*X, we set V4 =V & T4 *X.
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Denote by E� X the sheaf of formal microdifferential operators on P*X of
[10] (see [11] for an exposition). If M is a coherent DX-module, we set:

M� =E� X �{&1DX
{&1M. (1.1)

If . : M � N is a morphism of coherent DX -modules, we denote by
.̂ : M� � N� the associated morphism of E� X -modules.

Lemma 1.2. (i) A morphism .: M � N is an m-f-c isomorphism if and
only if .̂ is an isomorphism.

(ii) The set of m-f-c isomorphisms is a multiplicative system (as
defined, e.g., in [7, Definition 1.6.1]) in Modcoh(DX).

Proof. Set K=ker ., H=coker .. Since E� X is flat over {&1DX ,
K� =ker .̂, H� =coker .̂. Recall that T4 *X & char(M)=#&1 supp(M� ), and
that M is a flat connection if and only if char(M)/T*X X. It is then clear
that K and H are flat connections if and only if .̂ is an isomorphism. This
proves (i).

To prove (ii), we have to check that properties (S1)�(S4) of [7, Defini-
tion 1.6.1]) are satisfied. (S1), asserting that the identity morphisms are
m-f-c isomorphisms, is obvious. (S2) requires that a composition of two
m-f-c isomorphisms be again an m-f-c isomorphism, and follows from (i).
A simple proof of (S3) and (S4) is obtained by working in the derived
category Db

coh(DX), along the lines of Proposition 1.6.7 of loc. cit. Let us
prove for example that any diagram in Modcoh(DX)

M

f

P ww�
.

N

where . is an m-f-c isomorphism, can be completed into a commutative
diagram

Q ww�
�

M

f (1.2)

P ww�
.

N,

with � an m-f-c isomorphism. (We shall leave the other verifications to the
reader.) Embed . into a distinguished triangle P w�. N w�g R w�

+1
, and

embed h := g b f into a distinguished triangle Q� w�
��

M w�
h

R w�
+1

. The
diagram
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Q� ww�
��

M ww�
h

R ww�
+1

f id

P ww�
.

N ww�
g

R ww�
+1

,

may be completed as a morphism of distinguished triangles. Since
char(R)/T*X X, �=H 0(�� ) is an m-f-c isomorphism. Setting Q=H 0(Q� ),
we get (1.2). K

We denote by Modcoh(DX ; OX) the quotient category of Modcoh(DX) by
the multiplicative system of m-f-c isomorphisms. Note that an m-f-c
isomorphism of Modcoh(DX) becomes an isomorphism in Modcoh(DX ; OX).

Recall that a conic involutive submanifold V of T*X is called regular if
the restriction to V of the canonical 1-form never vanishes.

Definition 1.3. (i) Let V be a closed conic regular involutive sub-
manifold of T4 *X, and let M be a coherent DX-module. We say that M is
simple along V if M can be endowed with a good filtration [Mk] such that
G� M | T4 *X is locally isomorphic to OV as an OT4 *X -module.

We denote by Simp(V; OX) the full subcategory of Modcoh(DX ; OX)
whose objects are simple along V.

(ii) If F is a locally free OX -module, we set:

DF=DX �OX
F.

We denote by Line(DX) the full subcategory of Modcoh(DX) whose objects
are of the type DL for some line bundle L.

The DX -module DL has a natural good filtration DLk=DX (k)�OX
L,

and is thus an example of simple module along T4 *X. This gives a natural
functor:

F: Line(DX) � Simp(T4 *X; OX).

Recall the definition of M� given in (1.1), and consider the functor:

G: Mod(DX) � Mod(DX)

M [ {
*

M� .

If . : M � N is an m-f-c isomorphism, .̂ is an isomorphism, and hence G
factorizes through a functor that we will also denote by G:

G: Simp(T4 *X; OX) � Mod(DX).
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Theorem 1.4. With the above notations, assume dX�3.

(i) If M # Simp(T4 *X; OX), then G(M) # Line(DX).

(ii) The functors:

Line(DX) ww��ww
F

G
Simp(T4 *X; OX)

are quasi-inverse to each other, and thus establish an equivalence of
categories.

We get that if M is simple along T4 *X there exists a unique (up to
OX-linear isomorphism) line bundle L on X and an m-f-c isomorphism
M � DL. In other words, simple DX -module along T4 *X are classified,
up to flat connections, by Pic(X ), the family of holomorphic line bundles
on X.

Proof. (i) If [Mk] is a good filtration of M, M� has a natural filtration
given by

M� k= :
l # Z

E� X (k&l ) {&1Ml ,

where E� X (k) is the subsheaf of E� X of operators of degree at most k. Since
[Mk] is a good filtration, the above sum is locally finite, and hence the
M� k 's are E� X (0)-coherent. Moreover,

M� k=E� X (k)M� 0

for all k # Z. Since M is simple along T4 *X, M� 0 �M� &1 is a line bundle on
P*X, and by Lemma 1.5 below, there exists a line bundle F on X and
m # Z, such that

M� 0�M� &1 &{&1F�{&1OX
OP*X (m),

where OP*X (m)=#
*

(OT4 *X (m)). By shifting the filtration, we may assume
m=0. Let us cover X by open polydiscs (in some local chart). Let U be
such a polydisc. Then, M� 0 �M� &1 |P*U &OP*U (0). In particular, this implies:

M� k �M� k&1 |P*U &OP*U (k). (1.3)

Since U is affine, P*U&U_P, where P is a (dX&1)-dimensional complex
projective space. Since dX &1>1 and U is Stein, H 1(P*U; OP*U (k))&
1(U; OU)�H1(P; OP(k))=0 for k<0. Apply the functor R1(P*U; } ) to
the exact sequence:

0 � M� k �M� k&1 � M� 0�M� k&1 � M� 0 �M� k � 0.
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We get, for k<0, the surjectivity of the morphism:

1(P*U; M� 0 �M� k&1) � 1(P*U; M� 0 �M� k).

Let s� U be a free generator of M� 0 �M� &1 on P*U. By induction on k, using
the above surjection, we get a section

sU # �
k

1(P*U; M� 0 �M� k)&1(P*U; �
k

M� 0�M� k)

&1(P*U; M� 0)

whose class modulo M� &1 is s� U (here, the last isomorphism follows from
[10, Proposition II, 3.2.5]). Consider the morphism of E� U (0)-modules

E� U (0) ww�.U
M� 0 |P*U ,

given by .U (P)=PsU , and set K=ker .U , H=coker .U . By construc-
tion, .U induces an isomorphism E� U (0)�E� U (&1)[M� 0 �M� &1 |P*U . It follows
that K�E� U (&1)K&H�E� U (&1)H&0, and hence, again by loc. cit.,
K=H=0.

Summarizing, we have shown that M� 0 |P*U is a free E� U (0)-module of
rank one. This implies that M� |P*U is a free E� U -module of rank one. Hence,
{
*

M� is a locally free DX -module of rank one. Since the only invertible
differential operators are of degree zero, {

*
M� &DL for a line bundle L

on X.

(ii) For M # Simp(T4 *X; OX), the natural adjunction morphism
. : M � {

*
M� gives a morphism of functors Id � F b G, and we have to

check that it is an m-f-c isomorphism. By Lemma 1.2(i), we have to check
that .̂ is an isomorphism. By the arguments and with the notations in (i),
M� is free of rank one on P*U, and we are reduced to prove that the
natural morphism:

E� U � E� U �{&1DX
{&1{

*
E� U

is an isomorphism, which is obvious since {
*

E� U &DU .
For DL # Line(DX), the natural adjunction morphism . : DL � {

*
DL@

gives a morphism of functors Id � G b F, and we have to check that it
is an isomorphism. This is a local problem on X, and we may assume
DL&DX . Then, as above, the statement follows from the isomorphism
{
*

E� X &DX . K
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Lemma 1.5. If dX�2, there is a natural isomorphism:

Pic(X )_Z[Pic(P*X )
(1.4)

(F, m) [ {&1F�{&1OX
OP*X (m).

Proof. We may assume X is connected.

(o) If x # X and L is a line bundle on P*X, denote by Lx its
restriction to Px*X as an O-module. If U is an open ball in Cn, then
Pic(P*U )&Z. Hence, the Chern class of Lx is locally constant w.r.t. x.

(i) The map is injective. In fact, if {&1F�{&1OX
OP*X (m) is trivial, by

restriction to Px*X we find that m=0. Next, by taking the direct image
on X, we find that F is trivial.

(ii) The map is surjective. In fact, if L is a line bundle on P*X, then
Lx &OP*x X (m) for some m, and m does not depend on x # X by (o). Let
L$=L�OP*X

OP*X (&m). Then L$x is trivial for all x # X, and hence the
natural morphism L$ � {*{

*
L$ is an isomorphism. One concludes, since

L is the image of ({
*

L$, m) by (1.4). K

2. INTEGRAL TRANSFORMS

Let X and Y be complex analytic manifolds of dimension dX and dY ,
respectively. Let 4/T4 *(X_Y ) be a closed smooth Lagrangian sub-
manifold and consider the natural projections

X �wwq1
X_Y ww�q2

Y, T4 *X �wwp1
4 ww�pa

2
T4 *Y, (2.1)

where we denote by pa
2 the composition of p2 with the antipodal map.

Here, we will make the following assumptions:

(i) 4 & (T4 *X_T*Y Y)=4 & (TX*X_T4 *Y )=<,
(ii) p1 is smooth and surjective on T4 *X, and has{ connected and simply connected fibers, (2.2)

(iii) pa
2 is a closed embedding identifying 4 to a

closed regular involutive submanifold V of T4 *Y.

If f : S � X is a morphism, we denote by f
�
! and f

�
&1 the proper direct

image and inverse image for D-modules, and we denote by g_ the exterior
tensor product. To M # Db(DX) we associate its dual

D
�
$M=RHomDX

(M, DX �OX
0 � &1

X ),
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where 0X is the sheaf of holomorphic forms of maximal degree. We also set
D
�
M=D

�
$M[dX]. Thus, D

�
$M and D

�
M belong to Db(DX).

Let K be a simple DX_Y-module along 4. In particular, K is regular
holonomic, and hence D

�
K is concentrated in degree zero. For M # Db(DX),

N # Db(DY), we set:

8
�

KM=q
�

2!
(K�L

OX_Y
q
�

&1
1 M), 8

�
j
K M=H j8

�
K M,

9
�

KN=q
�

1!
(D

�
K�L

OX_Y
q
�

&1
2 N)[dX&dY ], 9

�
j
KN=H j9

�
K N.

Theorem 2.1. Assume that q1 and q2 are proper on supp(K), and
assume (2.2). Let M be a simple DX -module along T4 *X, and let N be a
simple DY -module along V. Then:

(o) 8
�

0
K and 9

�
0
K send m-f-c isomorphisms to m-f-c isomorphisms.

(i) 8
�

0
K M is simple along V and 9

�
0
KN is simple along T4 *X. More-

over, 8
�

j
KM and 9

�
j
K N are flat connections for j{0.

(ii) The natural adjunction morphisms M � 9
�

0
K8

�
0
K M and 8

�
0
K9

�
0
K N

�N are m-f-c isomorphisms.

In particular, the functors

Simp(T4 *X; OX) ww��ww
8
�

0
K

9
�

0
K

Simp(V; OY)

are quasi-inverse to each other, and thus establish an equivalence of
categories.

Proof. The above theorem has been proved in [3] in the case where
4=T4 S*(X_Y ), for a smooth submanifold S/X_Y of codimension d, and
K=BS :=H d

[S](OX_Y), the algebraic cohomology of OX_Y supported by
S. There, we also show that this statement is of a microlocal nature, i.e.,
local on 4. The general case follows since, in a neighborhood of any point
of 4, one may find a quantized contact transformation interchanging the
pair (4, K) with the pair (T4 S*(X_Y ), BS). K

Theorem 2.2. With the same hypotheses as in Theorem 2.1, assume also
dX�3. Then, with the notations of Theorem 1.4, there is an equivalence of
categories:

Line(DX) ww��ww
8
�

0
K b F

G b 9
�

0
K

Simp(V; OY)
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In particular, if N is a simple DY -module along V there exists a unique (up
to OX -linear isomorphisms) line bundle L on X such that N&8

�
0
KDL in

Modcoh(DY ; OY).

In other words, the above theorem says that simple DY -modules along
V are classified, up to flat connections, by Pic(X ).

Proof. This is an obvious corollary of Theorems 1.4 and 2.1. Let us
just describe how the isomorphism N&8

�
0
KDL is obtained. By

Theorem 2.1(i), 9
�

0
K (N) is simple along T4 *X. Hence, by Theorem 1.4,

there exists a line bundle L on X and an m-f-c isomorphism
9
�

0
K (N) � DL. By Theorem 2.1(o), we get an m-f-c isomorphism

8
�

0
K (9

�
0
K (N)) � 8

�
0
KDL. Theorem 2.1(ii) gives an m-f-c isomorphism

8
�

0
K (9

�
0
K (N)) � N. Summarizing, we have obtained m-f-c isomorphisms:

8
�

0
K DL � 8

�
0
K (9

�
0
K (N)) � N. K

Theorem 2.1 gives an equivalence of categories between simple DX-modules
on T4 *X, and simple DY-modules on V, modulo flat connections. However,
if one is interested in calculating explicitly the image of a DX -module
associated to a line bundle, one way to do it consists in ``quantizing'' this
equivalence. This is the purpose of the next result.

With the same notations as in Theorem 2.1, let M be a simple
DX -module along T4 *X, and let N be a simple DY -module along V. Then
D
�
$M g_ N is a simple DX_Y-module along T4 *X_V.

Definition 2.3. (i) Let p # T4 *X_V, and let u be a generator at p of
(D

�
$M g_ N)7, the E� X_Y-module associated to D

�
$M g_ N. Denote by I

the annihilating ideal of u in E� X_Y . We say that u is simple if its symbol
ideal I� is reduced, and hence coincides with the defining ideal IT4 *X_V of
T4 *X_V.

(ii) Let p # 4, we say that a section

s # HomDX_Y
(D

�
$M g_ N, K ) (2.3)

is nondegenerate at p if for a simple generator u of D
�
$M g_ N at p, s(u)

is a nondegenerate section of K at p in the sense of [10]. (Note that
locally simple modules admit simple generators, and one checks
immediately that this definition does not depend on the choice of such gen-
erators.)

(iii) We say that s is nondegenerate on 4 if s is nondegenerate at any
p # 4.
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There is a natural isomorphism (see [4, Lemma 3.1]):

: : HomDX_Y
(D

�
$M g_ N, K)[HomDY

(N, 8
�

K (M)).

Hence, a section s as in (2.3) defines a DY-linear morphism :(s) : N �
8
�

K (M).

Theorem 2.4. With the above notations, if s is non degenerate on 4, then
:(s) is an m-f-c isomorphism.

Note that when 4 is the graph of a contact transformation (and hence
V is open in T*Y ), the above result reduces to the so-called ``quantized
contact transformations'' of [10].

Proof. Let :̂(s) : N� � 8
�

K(M)7 denote the associated E� X_Y-linear
morphism. It is enough to check that :̂(s) is an isomorphism at each p # V.
This can be done as in [4, Theorem 3.3], using [3, Lemma 4.7]. K

3. APPLICATION 1: PROJECTIVE DUALITY

By the methods above, we will recall here some results of [4], [8] on
the complex projective Radon transform. Let us begin by recalling some
well-known facts and introduce some notations.

Let X be a complex manifold, S a closed smooth hypersurface, and
set U=X"S. Consider the DX -modules BU=OX (VS), BS=H 1

[S](OX),
B*U=D

�
BU , where OX (VS) denotes the sheaf of meromorphic functions with

poles in S. There are natural short exact sequences of DX-modules:

0 � OX w�: BU � BS � 0, 0 � BS w�; B*U � OX � 0. (3.1)

Assume X is an open disc in C with holomorphic coordinate t, S=[t=0],
and U = [t { 0]. Then, BU = DX �(DX } �t t), BS = DX�(DX } t), B*U =
(DX�DX } t�t). One denotes by 1�t, $(t) and Y(t) the canonical generators
of BU , BS and B*U , respectively. In this case, :(P } 1)=Pt } 1�t, ;(P } $(t))=
P�t } Y(t).

Let now P be a complex n-dimensional projective space, P* the dual
projective space, A=[(z, `); (z, `) =0] the incidence relation, and set
0=(P_P*)"A. Denote, as above, by OP(k) the &k th tensor power of the
tautological line bundle on P, and set DP(k)=DP�O

P
OP (k). For K a

DP_P*-module, set:

K(n, 0)(k, l )=q&1
1 [0P �O

P
OP (k)]�q1

&1O
P

K�q2
&1

O
P*

q&1
2 OP*(l ).
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For k # Z, we set

k*=&n&1&k,

and we consider the Leray form |(z) = �n
j=0 (&1) j zj dz0 7 } } } 7

dz@j 7 } } } 7 dzn , which is a section of 0P(n+1)&OP .
Since (z, `) is a section of OP_P*(1, 1), the analogue of the sections

(1�t)k, $ (k)(t), tkY(t), obtained by considering (z, `) instead of t, are then
``twisted''. More precisely, by tensoring them with the Leray form we get
sections:

sk (z, `)=(z, `)k* |(z) # 1(P_P*; B (n, 0)
0 (&k, k*)) for k*<0,

s� k (z, `)=$(&k*&1)((z, `) ) |(z) # 1(P_P*; B (n, 0)
A (&k, k*)) for k*<0,

sk*(z, `)={$ (&k*&1)((z, `) ) |(z)
(z, `) k* Y((z, `) ) |(z)

for k*<0
for k*�0

# 1(P_P*; B0*
, (n, 0)(&k, k*)).

Note that 4=T4 A*(P_P*) is the graph of a globally defined contact
transformation (the Legendre transform):

T4 *P �wtp1
4 w�t

p2
a T4 *P*,

and it is thus immediate to check that the above sections are non-
degenerate on 4. For K equals to B0 , BA or B 0*, we have:

1(P_P*; K(n, 0)(&k, k*))&HomDX_Y
(DP(k)g_ DP*(&k*), K).

Hence, applying Theorem 2.4, we get that

H 0:(sk): DP*(&k*) � 80
B0

DP(&k) for k*<0 (i.e., k>&n&1),
H 0:(s� k): DP*(&k*) � 8

�
0
BA

DP(&k) for k*<0 (i.e., k>&n&1),

H0:(sk*): DP*(&k*) � 8
�

0
B0*

DP(&k) for k* # Z (i.e., k # Z),

are m-f-c isomorphisms. In fact, a more precise result holds.

Theorem 3.1 With the above notations, the morphisms:

(i) :(sk): DP*(&k*) � 8
�

B0
DP(&k), for k>&n&1,

(ii) :(s� k): DP*(&k*) � 8
�

BA
DP(&k), for &n&1<k<0,

(iii) :(sk*): DP*(&k*) � 8
�

B0*
DP(&k), for k<0,

are isomorphisms.
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Sketch of Proof. (i) First notice that the complex 8B0
DP(&k) is con-

centrated in degree zero (either by a direct calculation along the lines of [4,
Proposition 2.8], or, as pointed out by Kashiwara, by using GAGA and by
noticing that the fibers of q2 |0 are affine). Then the result follows as in the
proof of [4, Theorem 3.3].

(iii) The fact that 8B0*
DP(&k) is concentrated in degree zero for

k<0 follows by duality from (i), since D
�
8B0

DP(&k*)&8B0*
DP(&k). One

then concludes as above.

(ii) follows from (i) and (iii), using the exact sequences (3.1). K

Remark 3.2. (a) Theorem 3.1(ii) was obtained in [4].

(b) The kernels B0 and B0* were first considered in [8]. Then
Kashiwara pointed out the fact that these kernels allow one to treat all
values of k.

(c) A generalization of the above result to the case of Grassmannian
duality (where the analogue of A is no longer smooth) is treated in [9].

Recall that any holomorphic line bundle on P is isomorphic to OP(k) for
some k, so that Pic(P)&Z. Then, the results of Section 1 imply that simple
DP-modules along T4 *P are classified, up to flat connections, by an integer.
If M is simple along T4 *P, we denote by ch(M) the Chern class of the line
bundle L such that M is m-f-c isomorphic to DL.

Corollary 3.3. Let M be simple along T4 *P. Then

ch(8
�

0
BA

(M))=&n&1&ch(M).

4. APPLICATION 2: TWISTOR CORRESPONDENCE

For 1�q�p�n, denote by F(q, p) the flag manifold of type (q, p) in
an (n+1) dimensional complex vector space V, and denote by
G( p)=F( p, p) the Grassmannian manifold of p-planes in V. Let P=G(1),
a complex n-dimensional projective space, M=G( p), and denote by
F=F(1, p) the incidence relation. To 4=T4 *F (P_M ) is associated a
diagram:

T4 *P �wp1
4w�

p2
a V/T4 *M,

which satisfies hypotheses (2.2). Consider the kernel K=BF . Theorem 2.2
thus implies:

Theorem 4.1. Simple DM-modules along V/T4 *M are classified, up to
flat connections, by Z.
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Let N be a simple DM-modules along V, and let k be the unique integer
such that N is isomorphic to 80

BA
(DP(&k)) (up to flat connections).

Following Penrose and the physics literature, one sets

h(N)=&(1+k�2),

and calls it the ``helicity'' of N.

Remark 4.2. Consider the case n=4, p=2, as in [5]. Theorem 4.1
shows in particular that there are no other simple DM-modules along V
than those corresponding to the massless field equations in the conformally
compactified Minkowski space M. (See [5] and [1] for related results.
Even if the language of D-modules is not used in these papers, their state-
ments could be translated in terms of quasi-equivariant D-modules.)

5. COMMENTS

The classification of locally free D-modules (see [2]) or, more generally,
E� -modules globally defined on an involutive manifold V and of constant
multiplicities with regular singularities, would be, in our opinion, a very
interesting task. This paper should be considered as a very first step in this
direction.
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