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0. Introduction. Let P be a real n-dimensional projective space. For k e Z
and e e Z/2, we denote by ff (elk) the co line bundle on P whose sections f
satisfy the relation

f(2x) (sgn 2)2f(x) %;I, e Rx
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598 ANDREA D’AGNOLO

where Ix] is a system of homogeneous coordinates. As is well known (see, e.g., [4]
and [8]), for -n- 1 < k < 0 the real projective Radon transform interchanges
global sections of cgff (elk) with global sections of the line bundle cg. (e*lk*) on
the dual projective space P*, where k* -n- 1 k, e* n- 1 e.

In [2] P. Schapira and I studied complex integral transforms within the
framework of sheaves and -modules. (Another approach to integral geometry
by Y-module theory is discussed in [7].) In particular, we obtained general
adjunction formulas which, by [13], have their analogue within the framework
of both tempered and formal cohomologies. Then, we investigated in [3] the
analytical aspects of the complex projective Radon transform. As an application,
we recovered the above-mentioned isomorphism related to the real projective
Radon transform.

Let E--P\H be the affine chart associated to a hyperplane H c P. The
Schwartz space 6e(E) of rapidly decreasing cg-functions on E is naturally iden-
tified with the space of global sections of cg (elk), vanishing up to infinite order
in H. The real affine Radon transform is thus obtained by restriction of the pro-
jective one. A Paley-Wiener-type theorem gives necessary and sufficient con-
ditions for a section of cg.(e*lk*) to be n the image of 6e(E) by the Radon
transform: depending on the parity of e.*, either the so-called Cavalieri condition
appears, or all nonlocal differentials (in the sense of [5]) have to vanish.

Here, we use the adjunction formulas of [2] and 13] and the analytical results
of [3]. By computing the transform of some constant sheaves, we then recover
the Paley-Wiener-type theorem mentioned above, as well as prove other related
results such as a Borel-type theorem for nonlocal differentials, Helgason’s support
theorem, and a description of the conformal Radon transform or of the affine
Radon transform for distributions or hyperfunctions.
As in [2] and [3], the main point to make is that our general adjunction for-

mulas allow one to separate the analytical (i.e., Y-module-theoretical) and the
topological (i.e., sheaf-theoretical) features of the transform under consideration.
Thus, we see how the different phenomena occurring in the real projective, real
affine, or conformal Radon transform reflect different topological configurations
attached to the same analytical setting, given by the complex projective Radon
transform.

Using this approach, a delicate problem arises in making the link between the
isomorphisms that we obtain and the explicit integral formulas in the literature.
We thus give in Appendix A some results on quantized integral transforms. In
particular, we show how the distribution kernel of the real Radon transform is
best understood as a boundary value of a meromorphic kernel associated to the
complex Radon transform.

This paper is organized as follows. In Section 1, we state the theorems related
to the real Radon transform, using a classical formalism (i.e., without mentioning
sheaves or -modules). In Section 2, we collect from [2] and [13] the formalism
and the results of the theory of integral transforms for sheaves and -modules
that we need, and we present a brief review of [3]. Then, in Section 3, after some
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geometric preparation (i.e., computation of the transform of some constant
sheaves), we prove the theorems stated in Section 1. Additional results are
obtained in Section 4. We gather in Appendix A some results on quantized
adjunction formulas for integral transforms, necessary for identifying the asso-
ciated distribution kernels. Finally we give in Appendix B a description in bi-
homogeneous coordinates of the blow up of a projective space along a point,
necessary for a projective invariant expression of nonlocal differentials.

The results of this paper were announced in [1].

Acknowledgement. We wish to express our gratitude to Masaki Kashiwara
for useful discussions during the preparation of this work.

1. Statement of the main results

1.1. Projective Radon transform. In this section, using a classical formalism,
we state the results on the real Radon transform that we discuss later in this
paper. Most of these results are classical and may be found in [4] and [8], for
example, but we refer only to [4].
Denote by IR the multiplicative group IR\{0}. For k Z and e 7Z/2Z, we

say that a function f on an lR-homogeneous space is (elk)-homogeneous if

f(2x) (sgn 2)e2kf(x) (1.1)

Let P P(V) be the n-dimensional projective space attached to a real (n + 1)-
dimensional vector space V. Set 17 V\{0}, and let 7: 1? P be the natural
projection. As usual, if (x) is the system of coordinates associated to a base of V,
we denote by [x] the corresponding system of homogeneous coordinates in P.
Let c (elk) be the sheaf of (elk)-homogeneous c-functions on 17, and set

(elk). (1.2)

This is the co line bundle on P, whose sections satisfy relation (1.1) when written
in homogeneous coordinates. We denote by f[x] the section of cff (elk) on an
open subset U c P associated with a section f(x) of c(elk on -I(u).

Remark 1.1. For e g, the map f[x] [x[f[x] gives an isomorphism from
cg (elk) to cg (e + Ilk + 1). Since this isomorphism is not canonical, we prefer to
keep k as part of our notation.

Consider the distribution on IR:

1 dk( 1
6 (lk) (t)

2i dtk iO (.1/). (1.3)
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Note that the distribution (elk)(t) is (-e- 11- k- 1)-homogeneous, (l)(t) is
the classical Dirac delta function, and (ll)(t) equals pv(1/t), the principal value
of 1/t. The n-form on V,

n

co(x) (-1)Jxjdxo ^... A XXj ^... ^ dxn,
j=0

is (n + l ln + 1)-homogeneous. We denote by co[x] the associated (n + l ln + 1)-
density on P, usually called the (real) Leray form. Let us set

k*=-n-l-k, e*-- -n-l-e, --e+l. (1.4)

Definition 1.2. Let P*= P(V*) denote the dual projective space to P. We
denote by R(p"lk) the real projective Radon transform

R(fiIk)" F(P;( (elk)) -- r(P*; (pZ (*[k*))

f[x] lf[xl6(n+eln+k) ((X ))co[X].

Concerning the Radon transform of homogeneous cg-functions, the following
result is known (cf., e.g., [4, page 73]).

TI-IEOm3M 1.3. For -n- 1 < k < O, the transform R(elk) introduced above is an
/(e*lk*)isomorphism of inverse ..p,

1.2. Nonlocal differentials. For U c P a subanalytic open subset, let us
denote by

Fw(U;o(elk)) F(P; ,o (elk))

the subspace of functions vanishing up to infinite order in P\ U.
Let HcP be a hyperplane, oeP* its dual point, and set E=P\H,

Po P*\{o}. Let H*= ToP*/IR be the projective tangent bundle to P* at
o, and identify it with a hyperplane of P* not containing o.

Definition 1.4. (i) For q9 e F(p*;Cgp(e*lk*)) and ’ e H*, set

This is a section of F(H*; cg, (olm)).
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(ii) For fp e rw(Po;, (e*lk*)) and ’ e H*, set

oo

Co Im) tp[’]
-oo

tp(so + ’) sgn(s)smds.

This is a section of F(H*; c, (co + e* + 1 [m+ k* + 1)).
Remark 1.5. (a) For t, s IR, the points of homogeneous coordinates [o + t],

[sG + ’] describe two affine charts of the projective line issued from o with tan-
gent direction ’. This description is not projectively invariant, since it depends
on the noncanonical identification of H* with a hyperplane of P*. That is why
we had to write tp(. instead of tp[.] as integrand in the above definitions. For an
invariant expression of the above functionals, refer to Appendix B.

(b) Note that dll)tp is the usual differential of o at o, and that

(R) O(o + t’)
dtdI1) (/9[t1 pv t2

is the nonlocal differential of o at o in the sense of [5].
(c) For co e* it is possible to make molm) act on the whole F(P*;CC,(e*lk*)),

by patching the two charts described in (a). This gives

d(llm+k*+l)C’lm)(fl[/] Wo 0[’].

On the contrary, note that for co * the tempered distribution kernel on

Po H* associated to c*Ira) cannot be extended to the whole P*x H* as a
kernel sending F(P*;Cgp(e*lk*)) to F(H*; c8/, (0]m + k* + 1)).

1.3. Affine Radon transform. The space Fw(E; co (elk)) is naturally identified
with the Schwartz space of rapidly decreasing c-functions on the affine chart
E. For k -n, e -n, the restriction of R(p]k) to the space Fw(E; c)o (elk)) is the
classical affine Radon transform, given by integration along hyperplanes. A
natural problem is then to describe the image by R(pelk) of Fw(E;Cg(elk)) in

THEOREM 1.6. Assume -n 1 < k < O. Let tp e F(P*;Cg,(e*lk*)).
(i) If e*= O, then there exists a function f e such that tp

R(plk) f if and only if o satisfies the odd Cavalieri condition: for any nonne#ative
integer m,

o fp=0. (1.5)

R"(!!)’;.K, If e*=-1, then there exists a function feFw(E;Cg(nlk))such that
f if and only if (o belon#s to rw(P o; % (llk*)) and satisfies the (even) Car-
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alieri condition: for any nonnegative integer m and any ’ H*, the integral

C01m)(/9[ t] 9(So -+- C’)Smds (1.6)
--GO

is a homogeneous polynomial ofdegree m + k* + 1 in ’.
Note that part (ii) was obtained, for example, in [4, page 86] for k--n. Of

course, part (i) can also be proved by the same method, which makes use of the
inversion formula for the Fourier transform. As remarked in [4], the exponential
kernel of the Fourier transform makes their method of proof violate the pro-
jective invariance of the Radon transform. Our approach here is different, and
shows how the Cavalieri condition is of a geometrical nature, related to the
complex projective Radon transform.
An old theorem of Borel asserts that any formal series is the Taylor series of

some c-function. As a byproduct of our cohomological proof of Theorem 1.6,
we get the following Borel-type theorem for nonlocal differentials.

THEOREM 1.7. Assume -n-1 < k < O. For 09 Z/2Z and for every non-
negative integer m, take gm F(H*; c. (og[k* + m + 1)).

(i) If o9 =- 1, then there exists f r(P*;p,(Olk*)) such that dllk*+m+l)
gin,

for any m.
(ii) If co----0, then there exists f Fw(Po;Cg,(llk*)) such that clm) =- gm

modulo homogeneous polynomials, for any m.

Other results that can be obtained along the same lines are discussed in
Section 4. These are, for example, Helgason’s support theorem and a description
of the conformal Radon transform or of the affine Radon transform for dis-
tributions or hyperfunctions.

2. Review of integral transforms

2.1. Notation. Let M be a real analytic manifold. If A c M is a locally
closed subset, we denote by A the sheaf on M, which is the constant sheaf on A
with stalk ir, and zero on M\A. Denote by Db(Irm) the derived category of
the category of bounded complexes of sheaves of Ir-vector spaces on M, and
by D_c(IEM its full, triangulated subcategory of objects with lR-constructible
cohomology groups. We denote by (R), Rf,., f-l, Rom, Rf., and f! the "six
operations" of sheaf theory, and we denote by t the exterior tensor product. As
a shorthand notation, we set RHom(., .) RF(M; Rg’om(., .)). To F e Db((I]M)
we associate its duals D’F Rom(F, M), DF Rom(F, oM), where ogre
orM[dimM] denotes the dualizing complex, and OrM denotes the orientation
sheaf. We denote by T*M the cotangent bundle to M, and we set /’*M- T
*M\TM, the cotangent bundle with the zero-section removed. We denote by
DbR_c((I]M; *M) the localization of Db_c(M) by the null system ff of com-
plexes of constant sheaves in M with finite rank. (In the terminology of [12],
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is the null system of objects F whose microsupport SS(F) is contained in the
zero-section TM.) Recall that the objects of D_c(M; J’*M) are the same as
those of Db_c(IEM), and that a morphism F G in Dbrt_c(IEM) becomes an iso-

U

morphism in D_c(II2M; J’*M) if and only if the third term H of a distinguished
triangle F

Denote by Db(@M) the derived category of the category of bounded com-
plexes of left modules over the sheaf of rings M of linear differential operators.
Following [10] and [13], one considers the functors:

TWom(.,bM)" Db_c(M)P--Db(M),

( (g: Dbrt_c(M) Db(M),

where bM denotes the sheaf of Schwartz’s distributions on M. These are
induced by exact functors from the abelian category of lR-constructible sheaves,
characterized by the requirement that if Z is a closed subanalytic subset of M,
then TgC’om(IEz, ..@bM) FzbM and CM\Z (R) cg Z,M, where Z,M denotes
the ideal of cgt of functions vanishing up to infinite order on Z.

Let X be a complex manifold, and denote by dx its dimension. If f: S - X is a
morphism, we set ds/x --ds- dx. Denote by (gx the structural sheaf of X, by
Ox the holomorphic forms of maximal degree, and by Nx the sheaf of rings of
holomorphic linear differential operators.
We denote by f! and f-1 the proper direct image and inverse image for 9-

modules, and we denote by _N the exterior tensor product. To ’ e Db(Nx) we
associate its dual Dxl-R,Omx(/l,X(R)xx-l[dx]). As a shorthand
notation, we set ol(//[)= ROmx(g, (gx). We say that a x-module //is

good (resp., quasi-good) if, on every relatively compact open subset of X, it
admits a filtration {//k} by coherent x-submodules such that each quotient
.///lk///lk_l admits a good filtration and ’k 0 for [k >> 0 (resp., k << 0). We
denote by Dgbood(X) (resp., Dq.goodb (,,X)) the full triangulated subcategory of
Db(x) consisting of objects with good (resp., quasi-good) cohomology groups.
We denote by Drbh(X) the full triangulated subcategory of bDgood(X of objects
with regular holonomic cohomology groups.
For F D_c(tEx), the complexes Tom(F, (gx) and F ( (gx are defined in

[10] and [13] as the Dolbeault complexes with coefficients in Ta’om(F,bx)
and F (R) cg,, respectively. As a shorthand notation we set THorn(.,-)-
Rr’(x; T,’efom( .)).

2.2. Integral kernels. Let us be given a correspondence of complex manifolds

S
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This induces a morphism h (f, g)"

S---,Xx Y.
h

For G e Db(y), /’ Db(x), and kernels L e Db(s), a ff Db(s), we define

Lo6=

,////OO -1 La,(f

We similarly define F o L and &a _o V for F Db(x), o/V" Db(y).

Remark 2.1. By the projection formula, there are natural isomorphisms

L o G - (Rh!L) o G, #[l o_9_ ’ - /g o_ (h_!), (2.2)

where we consider Rh!L and h! as kernels on the product X x Y, endowed
with the two natural projections. Recall that if h is proper and L is -constructible, one has Tom(Rh!L, (xy)[dx + dy ds] h!L’.
We obtained in [2] general adjunction formulas for the functors o and o__.

Analogue formulas in the framework of formal and temperate cohomology were
obtained in [13].

bTHEOREM 2.2 [13, Theorem 10.8]. Let G e obR_c((i]y), /’ ff Dq.good(X),
L e D_c(S), and set ’ T2/tom(L, (Ps). Assume that

f-lsupp(’) supp()
g-supp(G) supp(L)

is proper over Y,
is proper over X.

Then, there are natural isomorphisms

RHomr(’ _o , G (gy) RHomx (//, (L o G) ) (-gx)[ds/r], (2.3)

RFc(Y; T3/gom(G,fy) (R)r (h o__ ’))[ds/x]

Rrc(X; T2,om(L o G, fx) (R)x [)" (2.4)

In order to apply the above general result to specific cases, topological and
analytical computations must be performed. The first consists of computing
L o G or, at least, finding an F Db_c(X) and a morphism

F --, L o G. (2.5)
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The second consists of computing ’_o Sa or, at least, finding an ff Db(y)
and a morphism

W ’ o_ Lf. (2.6)

Finally, one has to explicitly describe the morphisms

RHomr(V, G ( (gy) ,-- RHomx(’, F (gx)[ds/r],

RFc(Y; T3/fom(G, r) (R)rvl/") [ds/x] RFc(X; T3C’om(F, fx)(R)x/)

(2.7)

(2.8)

obtained by means of (2.3) (resp., (2.4)), (2.5), and (2.6). The following lemma
describes the kernels associated to morphisms like (2.6). In Appendix A we dis-
cuss how to compute the distribution kernels associated to morphisms like (2.7)
and (2.8).

b Db(.@r), o 6LEMMA 2.3 (cf. [3, Lemma 3.1]). Let /4(Dgood(X) /"

Db(s). Assume that f-Xsupp(’)c supp() is proper over Y. Then there is a
natural isomorphism

a:Homxr(D/l.W’[-dx],h!) - Homr(U,’ o_ ).

Proof By (2.2), it is not restrictive to assume S X x Y, f and g being the
natural projections. In this case, one has

f-l j//,)//[ o ’
_

Rg!(q(dx’O) (R)_,x

where we set q,(dx,0) _f-lx (f_lCx" To conclude, it is then enough to con-
sider the chain of isomorphisms

RHom (D//4/’[-dx] ,.q)
_
RHomo-,r(9-1,Rffomf-x (f-D//l[-ax] ,q’))

,RHomg_,r (g-l,, f-l (x(R) (R)f_,xq-RHomr(,Rg,(q(ax,0)(R)-’x f-1/,))

_RHomy(, Rg!(L(dx,O) L(f_,xf jg [--]

2.3. Complex projective Radon transform. In this section we review the
results of [3] on the complex projective Radon transform. Note that here,
following [14], we use a different kernel with respect to [3]. Since the proofs do
not change significantly, we do not repeat them here.
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Let IP be a complex, n-dimensional projective space, IP* be the dual projective
space, and consider the diagram

where f, 9 are the natural projections and - {(z, ); (z, )= 0} denotes the
incidence relation. Note that, denoting by A 2(IP x IP*) the conormal bundle
to

_
with the zero-section removed, the associated microlocal correspondence

A

T*IP T*IP*

induces a globally defined contact transformation (the Legendre transform)

X: *IP- *IP*. (2.9)

Set (IP x IP*)\, and consider the kernels on IP x IP*

L (12n, z, Tgom(L, (9pF*), (2.10)

so that 6aol() L by the Riemann-Hilbert correspondence of [10]. Note that
qo (gFxF* [,k] is the sheaf of meromorphic functions with poles on &.

Remark 2.4. By [3, Lemma 4.6] (see also [12, exercise III.15]), the functors

oL Db(F) -- Db((I]F,),

Db(!F) -- Db(!F,)

are equivalences of categories, with quasi-inverse DL o and D& _o., respectively.
Moreover, the first equivalence preserves IR- and 112-constructibility, while the
second preserves goodness. Using (2.9) it follows as in [2, Proposition 3.5] that
the transform /o__ a of a good @F-module / is essentially concentrated in
degree zero. (Precisely, this means that the cohomology groups HJ(/o__ &o) are
fiat holomorphic connections for j 0.)

Let k, e Z. Denote by (gF(k) the -kth tensor power of the tautological line
bundle, and set @F(k)= NF(R)(0 (gF(k). For 3f Db(!FxF*), as shorthand
notation, we set

("’)(k, l) =f-l(nF (R), (gF(k)) (R)f-, 3g (R)g-’(0r, g-l(gF*(/).
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Following Leray [15, page 94], we set

n

j=O

1 og[z] (n,0)Sk[Z, (]
(z, ()n+l+k

e F(IP x IP*; &a (-k, k*)). (2.11)

THEOREM 2.5 [3, Theorem 4.3]. Assume -n- 1 < k < O. Then, the morphism

a(Sk): N,, (-k*) !,(-k) o_ &o

(where a is introduced in Lemma 2.3) is an isomorphism in Db(,,). Its inverse is
associated to the kernel Sk, [(, z].

Briefly, the idea of the proof is as follows. In view of (2.9), the theory of micro-
differential operators of [16] implies that a(Sk) is an isomorphism in J’*lP* for
n -t- 1 4- k > 0. We use the hypothesis k < 0 to extend the isomorphism across the
zero-section.

Applying Theorems 2.5 and 2.2, we get the following corollary.

COROLLARY 2.6 [3, Corollary 4.5]. Let F Db_c(,). Then, for-n-1 <
k < 0 the section Sk induces isomorphisms

RF(IP; F ( (9(k)) RF(IP*; (F o L) (9v, (k*))[n],

THom(F, (%,(k)) In] _Z, THom(F o L, (9,. (k*)).

3. Proof of the main results

3.1. Geometrical preliminaries. As in (2.10), consider the kernel L--n on
D_c(r,). Let P and P* be the real projective spaces of which IP and IP* are
the respective complexifications (compatible with the embedding of affine charts
lRn n). Assume for simplicity that n > 2. Since nl(P)= Z/27Z, there are
essentially two locally constant sheaves of rank 1 on P--the constant sheaf p,
which we also denote by ffp(O), and the canonical line bundle, which we denote
by p(1). Recall notation (1.4).

LEMMA 3.1 [3, Proposition 5.16]. For e /2, set

IE,.(e*) tEp() o L[n].

Then for e* =- 1 we have tl2’p. (1) - {[p, (1), and for e* =- 0 we have a distinguished
triangle (d.t.)
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In particular, there are natural morphisms

fl Hom(p, (e*)[-n], ep(e) o L) (3.1)

that become isomorphisms in Db_c(tEr,; J’*IP*).
Proof For the description of p(e)o L, we refer to [3]. Here we just point

out that ill, is given by the isomorphism ,(1)
_
p, (1) and that fl0, is given

by the natural morphisms

ev,(0) - ,\p,[ll- ,(0).

Notation 3.2. Let H c P be a hyperplane, IH c IP its natural complexi-
fication and o P* its dual point. Let H* IH* be the dual projective spaces to
H and M, respectively. Set E PH, o {o}, Po P*{o} and con-
sider the maps

IP* IP -- IH*,
q

where is the embedding and q is the natural projection, dual of the embedding
IH --* IP. Finally, set Q* q-(H*) IP*.

Using Lemma 3.1, we can easily compute the transform by L of the constant
sheaves

LEMMA 3.3. Set 0" (e) i!q- ten, (e). Then we have

ell(e) o L - 0, (*)[1 n].

Proof. Consider the natural maps

IP x IP* IH x IPo --, IH x IH*.

Let IB IH x IH* be the incidence relation, set 09 (IH x IH*)\IB, and consider
the kernel

bK o D_c(II*).

Since f c (IH x IP*) f c (l[-I x IPo) -(IB), we have

ffH(e) o L Rg!(a (R) f-ltEH(e))_
Rg!R!t-(o (R) f-n(e))
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Ri!q-lRg!((Eo (R) f-l(En(e))_
Ri!q-l((En(e) o K)

Ri!q-IIEH,(*)[1 n],

where the last equality follows from Lemma 3.1. (By abuse of notation, we
denoted by f and g both the projections from IP x IP* and from IH x IH*.) [-1

Remark 3.4. Let us describe the microlocal geometry underlying Lemma 3.3.
Recall that t denotes the Legendre transform (2.9). By the microlocal theory of
sheaves from [12], since the sheaf (EH(e) is simple along the conormal bundle
J’lP, one knows a priori that its transform by o L is again a simple sheaf along
X(5/’/lP). In this sense, the complex lines in Q* (which are the fibers of q) cor-
respond to the complex conormal directions to H in IP.

Let us define (e) by the natural short exact sequence

Of course, tEe(e) - tee, but since the morphism lp(3) (IH(e) depends on e, we
keep the twist as part of our notation.

LEMMA 3.5. In the trianoulated cateoory D_c(tE,,; 5/’*IP*), there are the d.t.’s

CE(0*) o L - tEp, (0) [-n] -- t2,(1)[1 n]
+1

(3.2)

/(1") o L epL (1)[-n [1 n]--.
+1

(3.3)

Proof By Lemmas 3.1 and 3.3, we have a d.t.

g(e*) o L -- , (e)[-n] Q,()[1 n]---.
a +1

(3.4)

Since (E,, (0)
_

Cp,(0) in Dt_c((E,,; 5/’*lP*), (3.2) follows. Since (E,;o\2,[1
and tE,o [1] - tEo in D_c(,,; 7*IP*), by definition of, (0), we have a d.t.

tE[1 n] (EQ, (0)[1 n] --+ o[-n]---+.
b +1

(3.5)

Applying the octahedral axiom to (3.4), (3.5), and to the d.t.

(Ep; (1)I-n]- (Ep,(1)[-n]--, o[-n]---
boa +1

we get (3.3).
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3.2. Real projective Radon transform. As we noticed in [3], the space of (elk)
homogeneous cg-functions or distributions, defined as in (1.2), may be described
in terms of the functors ) and Tom.

LEMMA 3.6. For k 7Z and e 7Z/27Z, there are natural identifications

bP(elk) T,om(D’(Gp(e)), (9(k)).

(3.6)

(3.7)

Proof. Since the arguments are similar, we just consider (3.7). Recall that
P- P(V) for an (n + 1)-dimensional real vector space V, so that IP- IP(W)
for a complexification W of F. Set l?v"- W\(0}, and denote by ’k the left
-module associated with the differential operator (,j"=oZjdj)-k. Then
Rgff.om (lk, @be,) is the sheaf of lR>0-homogeneous distributions of degree k
on F. Since any IR>0-homogeneous function decomposes into the sum of an even
and an odd lR-homogeneous function, to prove (3.7) we have to establish the
isomorphism

R,R3/fomw (//k, bfz)
_

T3/fom(D’(p(O) @ Cp(1)), 9(k)),

where 7: I? IP is the natural projection. One has /k 7-1N,(-k), and hence

R,R3tfomg (//k, bf,,) R,R/forn(_-l,(-k), TWom(O’, (_9)_
Rom,(r(-k), ,T,om(O’fffz,_
R3/fomr (r(-k), Tom(R?!O’, 6o,)) [-2]

RWom,((-k), Teom(Ry![1 hi, (_9)).

In the second isomorphism, we use the fact that y is smooth, and the third
isomorphism follows from [11, Corollary 9.2.2]. Recall that D’(p(e))’
ffp(e*)[--n]. One then concludes, using the following lemma.

LEMMA 3.7. Denote by 7: -- P the natural projection. Then there is an iso-
morphism

Proof. Denote by S l)’/lR>0 the real sphere, and decompose into
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Clearly, HJRp!, vanishes for j 1, and, for j 1, it is a locally constant sheaf
of rank 1. Since S is simply connected, we get Rp!,[1] s. The trace mor-
phism q!s q!q!P P induces a short exact sequence

0 -- tEp(1) -, q!s ---* Cp(O) ---, O.
tr

Composing the natural morphism {lip(0) q!s, 1 1 with the trace mor-
phism, we get twice the identity, and hence the above sequence splits. [[]

Proof of Theorem 1.3 (See [3, proof of Theorem 5.17]).
2.6 for F tEp(e), and using Lemma 3.1, we get

Applying Corollary

RFOP; Cp() & (ge(k)) ,_Z_ RFOP*; .(a*) & (9,. (k*)).

Since -n-1 < k*< 0, one has RF(IP*;(9,.(k*))=0, and hence the functor
RF(IP*;. ( (9,. (k*)) is well defined in the localized category Db_c(,,; *IP*).
By Lemma 3.1, we may then replace ,,(e*) by p.(e*) in the above iso-
morphism. In view of (3.6), we then get

r’(P; CC (elk)) (3.8)

Theorem A.9 implies that the inverse of isomorphism (3.8) is the integral trans-
form R(pelk) of Definition 1.2.

Using (3.6), if U c P is a subanalytic open subset, one easily checks that

Vw(U;c(elk)) - RF(IP; tEt(e) ) C0w(k)). (3.9)

In view of (3.8), Corollary 2.6 for F e(e) gives

Rplk>rw(E;C(elk))
_

RF(IP*; ((e)o L) ) (9, (k*)).

By Lemma 3.5, we obtain the d.t.

Rp*lk)Fw(E;(O*lk)) - F(P*; cff,(01k)) RF(IP*;O,(1 (9(k*))[1] +---
(3.10)

R(p*Ik)Fw(E;CC(I*Ik)) Fw(Po;CCff,(llk)) - RF(II’*; tE 9, (k*)) [1] +--.
(3.11)

In the next section, to describe the above d.t.’s (and hence to prove Theorems
1.6 and 1.7), we establish some preliminary results.
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3.3. Nonlocal differentials. Recall Notation 3.2. Denote by p: lPo IP* the
blow up of IP* along o, by ID its exceptional divisor, and consider the diagrams

IP* IH*, IP* IH*.

For (’ IH*, p(-l((,)) c IP* is the complex projective line issued from o with
tangent direction (’. (Recall that IH* is identified with PolP*/.) Let k,
and let gr be an (9---module. As shorthand notation, we set

IPo
:;r(k,l) p-l(gr, (k) (R)p-1%, cg" (R)0-1(9,

Consider the kernels on lPo

Go

In the next proposition, although is not a trivial bundle over IH*, we improp-
erly use the term "fiber coordinate" tr for q. This has to be understood in the
same sense as the coordinate s in Definition 1.4(i). For an intrinsic expression of
the section m below, refer to Appendix B.

PROPOSITION 3.8. Denoting by a a "fiber coordinate"of q, the sections

)m ;rod" F(lPo;oo/,[*lD](-k*,k* + m + 1)),

for m a nonnegative integer, induce an isomorphism

()m)" O -I’ (-k* m 1) - ,. (-k*) _o cr.
m>0 m>0

Proof Let us begin by proving that the complex @,, (-k*) o__ oCg is isomorphic
to @m>0 59I* (-k* m 1). This is shown by the chain of isomorphisms

N,. (-k*) _o
_

_0!p-IN,. (-k*)
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In the last isomorphism, we considered a "fiber coordinate" tr for q (refer to
Appendix B), and we used the identification for k, Z:

R!(f/i,[,lD](k 1)) - ( H*(k- l- m- 1)-tTmd(7.
m>O

(3.12)

By the above identification, we also see that ’m>0 7m is indeed the kernel of our
isomorphism. To this end, it is enough to compose the natural isomorphism

r(eo;n , [,ID](-k* k* + m + 1))
lo/iH,- Hom,,n, (D(,,(-k*)) ri,(-k* m- 1) [-n] h! (9o (3.13)

with the isomorphism of Lemma 2.3. (Recall that h denotes the map (p, ).) U]

Applying formula (2.3) for L-- K, and noticing that K o G Ri!q-lG, we get
the following corollary.

COROLLARY 3.9. For any G Db_c(,), the sections {/m}m>0 induce an
isomorphism

RF(]P* Riq-I G ( 60r,(k*))[1 _7_> H RFOH*; G ( 6%i, (k* + m + 1)).
m>0

For F Db_c(,) and G Db_c(t,), the data of a morphism fl:F--
Ri!q-lG and of the sections m induce a morphism

RF(IP*; F ) 60e, (k*))[1] - H RF(IH*; G ) 60H, (k* + m + 1))
m>0

obtained by composing RF(IP*; (R) 60e, (k*)) with the isomorphism of Corollary
3.9. In the following proposition, we explicitly describe some instances of the
above morphism for G equal to n,(O), n,(1), or Cri*. In the first two cases,
these morphisms are precisely those given by the functionals introduced in
Definition 1.4.

PROPOSITION 3.10. With the notation of Definition 1.4, one has the following.
(i) The natural morphism p (e*)-- Ri!q-lffH,(?*)[1] and the sections

{]lm}m>O induce the morphism

cll’rw(P*co;C’(e*lk*))o - H F(H*; /,(*lk* + m+ 1))
m>O- -c0]m)’o
m>O

For (ii) and (iii), assume-n- 1 < k* < O.



614 ANDREA D’AGNOLO

(ii) The natural morphism (Ep,(0) Ri!q-l(En,(1)[1] in Db_c(IE,,; *IP*) and
the sections {Ym}m>0 induce the morphism

d(l’++)’r(e*;cgv(OIk*)) 1-[ r(n*;c’(llk* +m+ 1))
m>0

(iii) The identification o Ri!q
isomorphism

and the sections {/m}m>0 induce the

+1)
:o (9’*(k*)io H F(IH*; (9, (k* + m + 1))

m>0

/m /k*+m+l"
m m

Proof At the level of constant sheaves, the morphism in (i) is the natural
adjunction morphism

lpo (/3") Ri!ff,po(g,*

-- Ri!q!Rq!pjo (e*) (3.14)

Ri!q-ltF_,n,(*)[1].

(Here, to obtain the last isomorphism, note that Po H* is the global space of
the tautological bundle IEn,(1), so that Rq!lEPo (En, (1) [-1].) The morphism
in (iii) is similarly obtained, and the morphism in (ii) is the one appearing in
(3.2).
At the level of c-functions, the morphism in (i) is clearly described by the

(llk*+m+l)functionals cIn). The fact that the morphism in (ii) is described by do
follows from Remark 1.5(c). As for (iii), one has

60r*(k*)io - RF(IP*; :o (.%,, (k*))_
RF(*; ergo (.0e,(k*))[-1],

where the last isomorphism is due to the assumption -n- 1 < k* < 0. A section

@ e (9,,(k*)io is a formal sum /m, where m is a homogeneous poly-
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nomial of degree m + k* (hence only m > k* matters). For z O"-l, we have

’ Iq (,)trm+l da(d*+"" +l)k[ ])m (tr --Iq I//(’t’-Io + ’)’l:-l-m d"c

lq I]/( + ,.c(/),t._k,_m_ __d’t’,t.
0.//1[’],

where the last equality is a formal residue computation.

3.4. Cavalieri condition and nonlocal Borel theorem. We have now the tools
to describe the morphisms (3.10) and (3.11). We do this in the following theorem,
which gives a cohomological proof of Theorems 1.6 and 1.7.

THEOREM 3.11. Assumin# -n-1 < k < O, there are natural short exact
sequences

0 R(p’lkrw(E;q(O*lk))

0 --, R(p’tk)Fw(E;’ (l*lk))

-, r’(p*; o, (0lk*))

II F(H*; *(llk* + m + 1)) 0,
o m>O

Fw(Po; c. (11k*))

7 I-I(*;-er.(k*)) - o,

(3.15)

(3.16)

where the map c above enters the commutative dia#ram with the exact row:

d(k*+’’’+l)
0-- (9P’1o - II F(H*;C.(OJk* +m+ l)) --- Hl(lp*;-ffr)(gr*(k*)) 0.

m>O

Fw(Po; p% (11k*)) (3.17)

Here the morphisms cI’), dllk*+’’’+l)o
Proposition 3.10.

and d*+’’’+1) are the ones described in

Proof. The first exact sequence is obtained from (3.10) using Proposition
3.10(ii). The second exact sequence is obtained from (3.11), noting that, since
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k* < 0 and Q-- contains complex projective lines, H(IP*;C ( (gr. (k*)) 0.

Applying the functor RF(IP*;. (0,, (k*)) to the commutative diagram

0 Q,

IIpL (1) [- 11

(where the vertical arrow is constructed in (3.14)), we get the commutative
diagram

., RFOP*;a, ( Coe, (k*)) [1] .., RF(IP*; ( o,(k*))[1]--.
+1

The diagram (3.17) is obtained from the one above by taking cohomology
groups and by using Proposition 3.10(i) and (iii).

Proof of Theorems 1.6 and 1.7. Part (i) of both Theorems 1.6 and 1.7 imme-
diately follows by looking at (3.15). Let us then consider the case e* 1, co 0.
The image by R(pl*lk) of the space Fw(E;CC(l*lk)) is described by (3.16) as the
kernel of the morphism c. One sees by (3.17) that belongs to ker(c) if and only

"od(k*+m+l)’ which is precisely the space of (k* + m + 1)-if c!lm) is in the image of
homogeneous polynomials. This proves Theorem 1.6(ii). The exactness of
sequence (3.16) also asserts that the morphism c is surjective. One sees by (3.17)
that this implies that the morphism c!0In) is surjective, modulo the image of
d(k*+m+l) This proves Theorem 1.7(ii)

4. Other related results

4.1. Laplace-Borel theorem. Our proofwof Theorems 1.6 and 1.7 consisted in
successively applying the functor RF(IP;. (R) C0p(k)) and the isomorphism (2.3) to
the exact sequence

and in describing the result. For Xo P, Pxo P\{xo}, we can apply the same
procedure to the exact sequence
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Applying o L, we get the d.t.

tEpxo (e)o L - tE, (e*) [-n] tE,[-2n]
+1

where IH* denotes the hyperplane of IP* dual to Xo IP. For -n- 1 < k < 0, we
have the identifications

RFOP*;, (, (k*))[-n] - RFOP*; (e*(k*)ii,)[-n]

- H RF(I*; (i*(k* m))[-n]
m>O- H RF(II-I*;9,(k + m)),
m>O

where the first isomorphism may be obtained using Proposition 3.10 and Corol-
lary 2.6 (interchanging the role of IP and IP*, and for F- Xo), and the last iso-
morphism is given by Serre duality. From the d.t. above, we thus get the exact
sequence

0- R(p"lk)Fw(Po;cg(elk))- r(P*; cg,(e*lk*)) .(,,.--- H F(IH*; ,(k + m))- O,
e, m>O

which gives the following variant of Theorems 1.6 and 1.7, respectively.

(i) The image by R(plk) of the space of (e[k)-homogeneous rg-functions on P
with vanishing formal Taylor series at Xo is isomorphic to the kernel of e**I’).

(ii) The morphism e(**I’) is surjective.

At least in the particular case e 1, the ruth component of the morphism e**I)

is obtained as the composite

- Hom(tEH, [1 hi, (, (k* m))

Hom(tE, [1 hi, (, (k* m))
f(m)- Hn-I(IH*; (* (k* m))_
r(I*; ,(k + m)),



618 ANDREA D’AGNOLO

where /. are the usual ruth normal derivatives, where the arrow f(m) is induced
by the natural morphism rI* Cn., and where the last isomorphism is
given by Serre duality. (Note that we used the identification D’(tEH.(Og))--
w (*)[-n + ].)
4.2. Hel#ason’s support theorem. Let A {(x, ) P x P*; (x, ) 0} denote

the real incidence relation. For a locally closed subset D c P, we set

O g(A H (O x P*)) { P*;3x D such that <x, > 0),

/) g(&H f-l(D)) {( IP*; :Ix e D such that (x,() =0}.

As in [3], we say that D is &-trivial if for any ( /), one has

We then have the following version of Helgason’s support theorem. (For the
sake of brevity, we consider only the transform R(pl*lk) because, for k*=-1, it
coincides with the classical Radon transform.)

THEOREM 4.1. Assume -n-1 < k < O. Let D E be an open &-trivial
domain in P, and let tp F(P*; cgff,(llk*)). Then o belongs to the image by R(pl*lk)
of Ff(P;Cg(l*lk)) if and only if it belongs to F(P*;pm,(llk*)) and satisfies the
Cavalieri condition (1.6).

Briefly, the proof goes along the following lines. Set

Q IP*\{[]; [] /), [/] [] H D, for some ,r/with [ + ir/] []},

and note that Q Q* is the set described in Notation 3.2. One then checks that
there is a natural commutative diagram

II2(1") o L CPo (1

o(1") oL (1)[-n]

[1 n] --+
+1

N[1 n]--+,
+1

from which we get

0 - R(p*lk)Fw(E;Cg(l*lk)) -+ Fw(Po; cg, (llk*)) --+ H1 (]P*; -7 () do,, (k*)) -+ 0

0 --+ R(p**lk)Fw(D;Cg(l*lk)) --+ Fw(b; Cgp,(llk*)) -+ nl(IP*; -- ) (91p*(k*)).
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One then concludes, using arguments similar to those in the proof of Theorem
3.11, and noticing that

Fw(D; (l*lk)) - F6(P; (1"1k)),

since D is locally on one side of its boundary.

4.3. Conformal Radon transform. Let [x] [x0,..., Xn be a system of homo-
geneous coordinates in P, and let Sac P be the quadric of equation a(x) 0,

an_ 2where 8 (Z/2Z)n, 8 (0,..., 0), and [--]a(x) x + (-1)alXl2 +... + (-1) xn.
Note that if 8 (1,..., 1), the stereographic projection identifies the restric-
tion of the real projective transform to the sphere Sa with the conformal Radon
transform defined by integration along spheres.
For k Z and e 7z/2. let us denote by cg(eik the line bundle on Sa,Sa

whose sections satisfy the homogeneity conditions (1.1). A theorem in [6] asserts
that for -n- 1 < k <-2, the transform R(pl*lk) interchanges F(Sa; sa(l*lk + 2))
with the sections O e F(P*;Cg,(llk*)) satisfying the homogeneous differential
equation

0.

Let us explain how it is possible to recover and precise this result in our
framework.
Denote by 5a c IP the complexification of Sa defined by the equation

a(z) 0. Then, one has

(goo (elk) (s (e) toe) (R), (9 (k)So

Rom,((9(k)*, Esa (e) ) (gr),

where, as shorthand notation, we set (9sa(k)*- , (R)o Rromcr((-gsa(k),(ge).
Denoting by ’[]a(-k*) the left-coherent e,-module defined by the exact
sequence

0 ,, (-k* + 2) r*(-k*) ,/gro(-k*)- 0, (4.1)

we have the following lemma, similar to a remark in [3].

LEMMA 4.2. Assume that -n- 1 < k < -2. Then the sections Sk, Sk+2 in (2.11)
induce an isomorphism

’(-k*) _Z (9so (k + 2)* o_
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Proof The complex (gs0(k+2)* is concentrated in degree -1 and is
defined by the exact sequence

0 r(-k- 2) Nr(-k) - (-%a (k + 2)*[1] 0.

Since -n 1 < k < k + 2 < 0, the conclusion follows from Theorem 2.5, notic-
ing that [-la() is the Radon transform of [a(z).

Applying Theorem 2.2, we thus get an isomorphism

R(p*lklF(Sa;s(l*lk)) - RHome,. (’r%(-k*), (s(1") o L) ( 6%,.)[n 1],
(4.2)

and we are reduced to compute tEsa(l*)o L. For the sake of brevity, let us
restrict to the simplest case = (1,...,1). Let H c P be the hyperplane of
equation x0- 0, and D {x; [--la(x)> 0} be the open ball in the aftine chart
E P\H with boundary S Sa. Consider the short exact sequence

0 tEo(l*) rE6(1*) tEs(l*) O.

In the notation of paragraph (4.2), since D is closed convex, we easily get
tEfi(l*) oL

_
tEp,\. Taking the zeroth cohomology groups in (4.2), we thus

get by Theorem 4.1 that R(pl*lk) interchanges F(Sa; c(l*lk)) with the sectionsS0
F(P*;CCp,(llk*)), satisfying the Cavalieri condition (1.6) and the equation

0.

4.4. Affine Radon transform of other functional spaces. The sheaves of (elk)-
homogeneous distributions, analytic functions, and hyperfunctions on P are
given by

bp(elk T3/fom(D’p(e), (9(k))_
TVfom(p(e*), (9,(k))[n],

p(elk) ffh,(e) (R)

9p(elk) - R.;C’om(ff?.p(e.*), (9,(k))[n].

Applying formula (2.4), or the analogue of Theorem 2.2 for ) and Tom,
replaced with (R) and Rom, respectively (see [2] and [13]), we can state the
results analogous to those in Section 1 with coo replaced by 9b, , or 9. In
particular, the analogue of Theorems 1.6 and 1.7 are deduced from the following
analogue of Theorem 3.11. For the sake of brevity, we consider here only one
parity for e in each case.
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For -n- 1 < k < 0, there are exact sequences

0 --, RpIk)F,(E; b,(OIk)) -, r(P*;b,(O*lk*))

II r(H*;bn*(l*lk*+ m + 1))-- O,
m>O

0---, F(P* Cp,(OIk*)) --, Hl(lP*o q*sn,(llk*))
a

R’Ik)H(E; p(O*lk)) O,

o r’(P*;p.(O*lk*)) T H(IP;q*H’(I*Ik*))

--, Rlk)F(E;p(OIk)) --, O.

(4.3)

(4.4)

(4.5)

Here Ft(E;Nbp(Olk))= THom(IE(O*); (%,(k))[n] denotes the space of tempered
distributions on E, and q* denotes the (9-module inverse image. (That is, if - is a
fiat (gri,-module, we set q*- (geo (R)q-lCn, q-l-.)
Note that (4.3) is essentially different from (4.4) or (4.5), in that the image of

R(p"lk) appears as a quotient (or as an extension for the parity of e not considered
above) and not as a subspace of the corresponding space on P*. This is natural,
since conditions like (1.5) or (1.6) are meaningless without imposing growth con-
ditions. (See [9] for a study of the Radon transform for some classes of hyper-
functions with tempered growth at infinity.)

Let us briefly sketch how we obtained (4.4) and how the morphism a is de-
scribed. (The arguments for (4.5) and b are similar.) Applying the functor
RF(IP;. (R) (9,(k)) and isomorphism (2.3) to the exact sequence

o --, (o*) (o*) -, (o*) --, o,

we get the exact sequence

0--, F(P*; a’p, (0[k*)) Hl(lP*; (2* (1) (R) (9,, (k*)) -, R(p*lk)H (E;p(0" [k)) -, 0,

and we have

RF(IP*; e,(1) (R) d0r(k*))
_

RFc(lPo; e,(1 (R) (%,;o (k*))_
RFc(lPo; q-IEn,(1 (R) (gr; (R)q-n, q-(9,(k*))

- Rr’c(o ;q*Cn,(llk*)).

In the above short exact sequence, we used the fact that RFc(E;M,(O*Ik)) is
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concentrated in degree 1. (Recall that

H(E; ’e(O*lk)) - lim
F(P\K; e(O*lk))
F(P; p(O*lk))

where K ranges over the family of compact subsets of E.) The arrow a is de-
scribed as follows. Denoting by p1 and IP a real and a complex 1-dimensional
projective space, and choosing e p1, we have the natural morphisms

From these we get a morphism

F(p1;e’) --* H(IpI\(cx)}; 1’) (4.6)

whose topological dual

- Fo (P1;,p,)

-- F(p1; p1)

is easily understood. The arrow a is the analogue of (4.6), with real analytic
parameters.

APPENDICES

Appendix A. Quantization of integral transforms

A.1. Distribution kernels. Let us consider a general correspondence of com-
plex manifolds

S

Let F e Db_(tEx), G Db_c(IF.y), ’ Db(x), r Db(y), L Db_(s),
and set ’ T/gom(L, (gs). Set

L ; G Rf,(L ( g-IG).

Assume to be given morphisms

e Homer(’ 9_ if), fle Hom(F, L ; G) - Hom(f-1F, L (R) 0-1G).



RADON TRANSFORM AND THE CAVALIERI CONDITION 623

Then, there is a natural morphism

RFc(Y; T3/tom(G, fy (R),, W) RFc(X; TWom(F, fx) (R),, #)[-ds/x],
(A.1)

obtained as the composite of

RF(Y; Tetom(G, fr

RFc(Y; T’om(G,e) (R)r (,//l o_

RFc(Y; Ta,om(G,y) (R)r g_!(f-i’M’_ (R)L

Rrc(S; r/tom(g-lG, ns) @L (f-l/, ()s .o))

Rr(s; (Vo(e-i,) Vo(,)) Z-)
RFc(S; Tom(Lg-lG,s)

Rr(x; Vo(Rf.( e-i), x) )[-/x]

Rr(x; Vo( e,) )[-/]

Rr(x; Vo(F,))i-/]. (A.:)

Here the first and last morphisms are induced by a and fl, respectively. The
morphisms g-1 and f are obtained from formulas (5.20) and (5.10) of [13],
respectively. Recalling that the interior product is the restriction to the diagonal
of the exterior product, the morphism is obtained from formulas (5.20) and
(5.2) of [13].

Remark A.1. By tracing back the proof of [13, Theorem 10.8], it is possible
to check that, under the hypotheses of Theorem 2.2, (A.1) coincides with (2.7).

Morphism (A.1) may be considered as an integral transform, in that it consists
of (1) pulling back a "function" from Y to S, (2) taking its product with a kernel
on Tom(L, s) induced by a, and (3) integrating along the fibers off and using fl
to recognize the result as a "function" on X. Here we use the term quantization
to refer to the fact that such a morphism depends on the choice of and ft.
As we saw in Section 3.2 (where we dealt with the functor instead of

Tom), in the framework of the complex Radon transform, for a suitable choice
of F, G, , and , (A.1) reads

F(P*; bp.(e*lk*)) -% F(P; bp(elk)). (A.3)
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We have to check that this integral transform coincides with the Radon transform

(A.4)

In terms of (A.2), this means that we need to rewrite the composition of the last
two morphisms and fl,

RFc(S; T/gom(L (R) g-1 G, s) (sfL -1 ,///[)

---, RFc(X; T,/fom(F, fx) (R)x g)[-ds/x],
(A.5)

so that a distribution kernel appears. We begin with a technical lemma.

LEMMA A.2. Morphism (A.5) decomposes into

RFc(S; T/C’om(L (R) g-1 G, s) ls -1,/[)

Rl-’c(S; T,’om(f-lF,s)

-- Rrc(X; T/fom(Rf f-’F[ds/x], t)x) (R)x

---, RF(X; Tfom(F[ds/x], x)(R)x /’),

where the last morphism is induced by the adjunction morphism id Rf, f-1.

Proof. It is easy to check the commutativity of the following diagram, where,
for lack of space, we omit to write RFc:
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Note that if supp(G) is contained in a submanifold N c Y, then the morphism
f-iF L (R) g-l G induced by fl factorizes in

f-1F fl ... L(R)g- G,

FINs IE

(A.6)

where we set FNs ten =f-iF (R) g-ltE)v.

PRO’OSITION A.3. Assume that supp(G) is contained in a submanifold N Y.
Then (A.5) factorizes in

L -1Rr(s; Tom(L (R) g- G, s) (R)sf

-- Rrc(S; r3ttom(FNls ll2N, S) (R)sf-l#)
b

---. Rrc(X; Tffom(Rf (F Ns ll2s) [ds/x], fx) (R)x #)

--, Rrc(X; Tffom(F[as/x], nx) (R)x

where the first map is the "boundary value" morphism induced by the arrow b in
(A.6), and the last morphism is induced by the natural morphisms F -- Rf, f-iF -Rf f Nls lg and lg -- IN.

Proof. In view of Lemma A.2, the statement follows from the commutativity
of the following diagram, where again, for lack of space, we omit to write RFc:

T;rtom L (R) # G f s )
-1 //t[

Tm(f-lF, fs) (R) sft" -1 ,/[/[,

b

T3g’om(F Nls ff?,lV, s) (R)esf l

T2ftom(Rf f-lF[ds/x], nx) (R)x "/# Tttm(Rf (F Ns )[ds/x], Cx) (R)Lx

Teom(F[asM, n) (R)

Here the top triangle is induced by (A.6).
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In order to apply the above proposition to check that in the case of the Radon
transform (A.3) is described by (A.4), we give in Proposition A.8 a construc-
tion of the distribution di(’lk)((x,)) as boundary value of the Leray section
(2.11).

A.2. Boundary values. We begin with a topological lemma.

LEMMA A.4. Let M be a connected real analytic manifold, and let X be a com-
plexification of M. For q F(X; (gx), let U {z X (z) v 0}, Y X\U,
09___ {z e X" +_ Im tp(z) > 0}, 09 09+ w 09_. Assume that q satisfies

(i) Im elM 0,
(ii) d 0.

Then Hom(D’M, o+/- - , and it has a canonical 9enerator +_. Assume more-
over that Y M is connected and that

(iii) Hi(M; IEM) 0.
Then the natural morphism o - v (9iven by the inclusion 09 c U) induces an
isomorphism

Hom(D’M, to) _Z Hom(D’M, u).

Proof. Hypothesis (i) implies that _+ M, and (ii) implies that D’,o+/- -,. We then have

R..’om(D’ff;M, ,o+/- - RgCtom(D’,.+/- D’D’M)_
Re’om(+/-, M) (A.7)

Then V + corresponds to 1 e F(M; M), or, equivalently, to the natural morphism

Setting N X\09, the exact sequences

0 U\o N (Iy 0

induce the d.t.’s

Rom(D’M, ,o) --* Rv’om(D’M, u) Rom(D’M, u\,o)
+1

(A.8)

Rg’om(D’M, u\,o) RCom(D’M, N) R,om(D’M, Y) ---- (A.9)
+1
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By (A.8), to prove the second part of the statement, we are reduced to show that

Fj "= HJRHom(D’tl2M, tl2u\a,) 0 for j -1,0. (A.10)

One has

RaCg’om D M, tl2y
_
RaCg’om D tl2y tl2M

Ra’om(tl2g[-2],-- Rom(tEycM, M)[2]

OryrM/M[1]

ffYmM/M[1].

In the last isomorphism, we oriented Y M in M by Repl > 0. Similarly,
noticing that N M and that orN/x is trivial, one has

Rom(Dql2M, N) tl2M[1].

Applying the functor RF(X; .) to (A.9), we thus get the exact sequence

0 -- F-1 F(M; tl2M) F(Y c M; l,ycM/M --+ F --+ H (M; tl2M) 0,

where the last equality is due to hypothesis (iii). Since M and Y M are con-
nected, j is an isomorphism, and (A.10) follows. IS]

Following [17], to u e Hom(D’tl2M, l12u) we associate the boundary value map

bu" THom(tl2u, (.0x) --+ F(M; bM), (A.11)

given by bu THom(u, (gx). Under the hypotheses of the above lemma, any
morphism u" D’M --+ ff2u factorizes into

In particular, we get the following result.

PROPOSITION A.5. With the notation and the hypotheses of l_emma A.4, for any
u e Hom(D’M, u) there exist unique constants c+ t12, such that

bu(f c+b,+ (fl+) + c_b_ (fl,o_). (A.12)
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A.3. Quantization of real projective duality.
transform, associated to the correspondence

Let us now consider the Radon

Recall that fl (lP x IP*)\_&.
LEMMA A.6. For F Db(tE,), G D_c(tE,,), there is a natural isomorphism

a: Hom(FND’G, IEn) - Hom(F, IEn o G).

Proof. One has the chain of isomorphisms

Hom(F, IEn o G) - Hom(f-lF, {En (R) g-IG)

- Hom(f-lF, Rom(g-lD’G, Ca))- Hom(FND’G, En),

where the last isomorphism follows from [12, Proposition 5.4.14], using the fact
that T(IP x IP*) (TIP x T*IP*) T,, (IP x IP*). i-1

Recall that P P(V) for an (n+ 1)-dimensional real vector space V, so
that IP IP(W) for a complexification W of V. Set {(z,(); (z,()-0}

x *.

LEMMA A.7.
isomorphism

For F, D’(p(e))[-n], Ge, D’(ff2p,(e*)), there is a natural

@ Hom(F,,n o G,) - Hom(D’E,, IEfi).
,eZ/2.

Proof. Denote by y" I? x I?* -- IP x IP* the natural projection. One has the
isomorphisms

Hom(D’,,, eft)
_
Hom(D’ff2,,,

- Hom(, [-2n 2],_
Hom(R!IE, [2 2n], Cn)
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(R)

e,r/e 7Z/2Z

e,t/e Z/2.

Hom(p(e) r p. (/)[-2n],

Hom(Fe G,.)[-n]

Hom(F. tea o Gn.).

where the fourth isomorphism follows from Lemma 3.7, and the last isomorphism
from Lemma A.6. By Lemma A.4, the first term in the above chain of iso-
morphisms is isomorphic to 1122. One then concludes by noting that the direct
summands in the last line are different from zero for e r/, due to Lemma 3.1. f--1

Note that the hypotheses of Lemma A.4 are satisfied for M 17 x 1)’*,
X Ilk x 17’*, 0(z, () (z, (). By the identification in the above lemma, the sec-
tion fie defiaed in (3.1) induces a boundary value morphism

bfl" THom(IE6, (gww,) - F(l)" x 1*;b,).
PROPOSITION A.8. In the above notation, up to a nonzero multiplicative con-

stant c x, one has

b/, 2rci(z

Proof. By Proposition A.5, b#, (1/2zi(z, ()k+l) is a linear combination of
t(lk)((x, )) and di(llk)((x, )). One then concludes by a parity argument. [--1

THEOREM A.9. Let F= D’(tl2p(e))[-n], G= D’(ti2p.(e*)),
r* (k*), L IEn, T,/fom(L, (9,x,,). Let

a(Sk,) Homer, (vl/’, ’ _o a), fie e Hom(F, L o G)

be the sections defined by (2.11) and (3.1), respectively. In this case, (2.8) is
given by

R.*lk*)" F(P*’bp.(e*lk*)) - N(P; bP(elk)) (A.13)

Moreover, (2.7) enters a commutative diagram

F(P*; bp. (e* Ik*)) R**’*

(2.7)
r(p* Cp, (e* lk*

F(P; bP(elk))
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Proof. To prove (A.13), with the notation of Proposition A.3, we have to
check that the boundary value map b induced by fie sends tp[]Sk.[Z, ]o9[] to
the distribution q[]6(n+*ln+k*)((x,))o[]. This is clear from Proposition A.8.
The commutativity of the diagram follows from the functoriality of the
constructions.

Appendix B. Homogeneous coordinates for the blow up. Denote by p:
]P* the blow up of ]P* along o. In terms of microlocal geometry, ]Po is identified
with the projective normal deformation of o in IP*. In fact, there are natural
maps (cf., e.g., [12, 4.1], where the analogous construction is performed within
the framework of real manifolds)

,o ,/, Ill* c- "-’c- -]Po ]Po

with IPo--t-l(0). Moreover, as we noted in Section 3.3, denoting by IH* the
projective tangent space to IP* at o, there are natural correspondences

IP* IH*, IP* 1H*.

For o [1, 0,..., 0], lPo may be realized as the quotient space of x ("\{0})
by the relation (tr, (’)2 (2tr, 2(’) for 2 . Similarly, IP may be realized as the
quotient space of ( \{0}) (n\{0}) by the relation

(00, 01, t) (,O0, 01,,’) for 2, # .
We denote by o, (’] the bihomogeneous coordinate system on IPo associated to
(o, ’). In these coordinates, the above maps read

p(o, (’) [o0, Ol

([a, (’]) -tr, 1, (’]], (B.2)

q([tr, (’]) [(’],

[’].
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This allows us to give a precise meaning to the sections )m of Proposition 3.8 as

for tr ol/o0. The isomorphisms (3.12) and (3.13) used in the proof of Proposition
3.8 also follow from (B.1) and (B.2). In particular, (3.12) uses the identification

.f-l(9o (k,
_

(9,o(k-l).

Of course, the same description holds in the real case. Denoting by u, ’ a
system of bihomogeneous coordinates on the blow up of P* along o, we may
then intrinsically rewrite the functionals of Definition 1.4 as follows:

t5 (lm) (UO/Ul)

Clm)[t] L (/9[U0, UlC’]
sgn(ul/UO)(Ul/UO)m

u+k*
for t uo/ul, s Ul/UO.
Note added in proof. With Pierre Schapira, we point out the following cor-

rection to [3].
(1) Proposition B.5 holds only in the algebraic case. In the analytic case,

it holds only when Z is reduced to a point. That is, Proposition B.5 should be
replaced by the following.

Let Db(xxY) and q) Db(y). Then, there is a natural isomorphism in

Db(x),
3/ 9_ Rqll((O’d’) (qL2-1y

-1where vf(’ar) is endowed with its natural (qi-l.x, q2 y)-bimodule structure.

(2) In formulas (C.4) and (C.7), K o G should be replaced by G o tK. In other
words, formula (C.4) should read

Rr(X; RtOmx(/l,Rom(G o tK, (gx)))[dx]_
RF(Y; R;Vomr([ o_ 3fr, R’om(G, (9r)))[2dg],

and formula (C.7) should read

RFc(X; RtOmx(,/g, T;,om(G o tK, (-gx)))[dx]

- RFc(Y; Romr([o_ :fir, Tom(G, (gy)))[2dg].
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