Regulation of inositol 1,4,5-trisphosphate-induced Ca^{2+} release. I. Effect of Mg^{2+}

POMPEO VOLPE, BARBARA H. ALDERSON-LANG, AND G. ALLEN NICKOLS Departments of Physiology and Biophysics and of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77550

VOLPE, POMPEO, BARBARA H. ALDERSON-LANG, AND G. ALLEN NICKOLS, Regulation of inositol 1,4,5-trisphosphate-induced Ca^{2+} release. I. Effect of Mg^{2+} . Am. J. Physiol. 258 (Cell $Phusiol. 27$): $C1077-C1085.1990$ -Canine cerebellar membranes were fractionated by differential centrifugation into a crude mitochondrial pellet (P_2) and a crude microsomal pellet (P_3) . The effect of Mg^{2+} on inositol 1,4,5-trisphosphate (IP_3) induced Ca²⁺ release and $[{}^3H]IP_3$ binding was assessed. Mg^{2+} inhibited IP₃-induced Ca^{2+} release in a concentration-dependent manner. Mg^{2+} influenced both the extent of IP₃-induced $Ca²⁺$ release and the apparent affinity for IP₃. A 10-fold change of free Mg²⁺ (from \sim 30 to \sim 300 μ M) reduced the extent of Ca² release by two- to threefold and shifted the apparent Michaelis constant from ~ 0.5 to ~ 0.9 μ M IP₃. Thus Mg²⁺ seemed to be a constant from $\sim 0.0 \, \text{U} \sim 0.3 \, \mu \text{m}$ in μ 3. Thus Mg seemed to be a $\sum_{i=1}^{n}$ in $\sum_{i=1}^{n}$ also inhibited $\sum_{i=1}^{n}$ in $\sum_{i=1}^{n}$ also in $\sum_{i=1}^{n}$ also in $\sum_{i=1}^{n}$ inhibited Ca²⁺ release elicited by glycerophosphoinositol 4,5-
bisphosphate, a poorly metabolized analogue of IP₃. Mg²⁺ and μ here shown to be additional to be additional to be a shown to be a shown to be a shown to μ 3ineparint soutumn were shown to be additive inhibitors of $\mathbf{1}\mathbf{r}_3$ -
 $\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 + \mathbf{r}_3 \mathbf{r}_4 \mathbf{r}_5 + \mathbf{r}_4 \mathbf{r}_5 \mathbf{r}_6$ $\frac{1}{2}$ minimize $\frac{1}{2}$ minimized $\frac{1}{2}$ hydrological conditions designed to $\frac{1}{2}$ hydrolysis. experimental conditions designed to minimize $IP₃$ hydrolysis. Scatchard plots indicated that 0.5 mM free Mg^{2+} reduced maximum binding from 10.9 to 3.5 pmol IP_3 bound/mg protein and increased the dissociation constant from 136 to 227 nM. The modulation of $[^{3}H]IP_{3}$ binding and IP₃-induced Ca²⁺ re-
lease by Mg²⁺ could be physiologically relevant.

magnesium; calcium channel

REDISTRIBUTION OFINTRACELLULAR Ca2'isakeyevent REDISTRIBUTION OF INTRACELLULAR Ca⁻¹ is a key event in cell activation. The belief that neurotransmitters (20) , hormones, agonists, and growth factors act at plasma membrane receptors to stimulate the breakdown of phosphatidylinositol 4,5-bisphosphate into diacylglycerol and inositol 1,4,5-trisphosphate (IP_3) is widely accepted (for a review, see Ref. 3). IP₃ has been shown to be the link between receptor activation and Ca^{2+} release from intracellular store(s) (3). The ability of $IP₃$ to act as an intracellular messenger has been described in a large number of cell types (3), including neurons and model neurotumor cells (11, 20). Hydrolysis of phosphatidylinositol 4,5-bisphosphate might serve a number of functions in nerve cells, e.g., excitability, secretion of neurotransmitters, posttetanic potentiation, and differentiation. The physiological role of IP_3 -induced Ca²⁺ release in nerve cells remains to be fully elucidated.

Isolated membrane fractions have been used to investigate several aspects of the mechanism of IP_3 -induced $Ca²⁺$ release. Membrane fragments derived from the cer-
ebellum display a very high density of IP₃ binding sites 0.363 ± 0.51 copyright 0.51 ± 0.51 copyright 0.51 ± 0.51 copyright 0.51 ± 0.51

(27) and have quickly become a useful model to study properties and regulation of IP_3 -induced Ca^{2+} release (1, 15, 16, 24, 25).

In this and in the accompanying paper (26), we have investigated the roles of Mg^{2+} and adenosine $3',5'$ -cyclic monophosphate-dependent protein kinase in IP_3 -induced Ca^{2+} release from canine cerebellar membrane fragments. $M\alpha^{2+}$ is shown to be a noncompetitive inhib- $\frac{1}{2}$ induced $\frac{1}{2}$ release and $\frac{1}{2}$ Fill p. binding. Thus the resting free $M\sigma^{2+}$ concentration as well as transient or long-lasting changes of intracellular free transient or long-lasting changes of intracellular free
Mg²⁺ might influence the open-closed state of the IP₃gated $Ca²⁺$ channel.

MATERIALS AND METHODS

Isolation of crude mitochondrial and crude microsomal pellet fractions from canine cerebellum. Brains were obtained from mongrel dogs of either sex weighing $10-15$ kanned from mongret dogs of enther sex weighing fo-fa α , i.e. α -chloralogy (0.1 g/kg) and urethous injection of a mixture of α -chloralose (0.1 g/kg) and urethan (1 g/ kg) and were later killed with a lethal dose of the anesthetic mixture. Immediately after exsanguination, the skull was opened with the use of an osteotome, and the meninges surrounding the brain were cut away. The cerebellum was removed from the brain and immediately sealed in a plastic bag on ice from which it was transferred to a -80° C freezer and stored until needed.

The procedure used for isolating the crude mitochondrial pellet (P_2) and crude microsomal pellet (P_3) was based on the procedure of Edelman et al. (9) with a few minor modifications as outlined by Alderson and Volpe (1) . Briefly, the cerebellums were initially homogenized in 10 vol of ice-cold buffer A [0.32 M sucrose, 5 mM $N-2$ -hydroxyethylpiperazine- $N'-2$ -ethanesulfonic acid $(HEPES)$, 0.1 mM phenylmethylsulfonyl fluoride, pH 7.4]. After the first spin at 900 g, the pellets (P_1) were resuspended in 5 vol of *buffer* A and homogenized again. The supernatants (S_1) collected from the first and second centrifugation steps were poured through six layers of cheesecloth before the 17,000 g spin from which the P_2 fractions were obtained. P_3 fractions were obtained by centrifugation of S_2 supernatants at 100,000 g. All centrifugations were carried out at 4° C. The P_2 and P_3 fractions were resuspended and rehomogenized by a hand-held glass-Teflon homogenizer in a small volume of *buffer A* and stored in 0.5- to 1.0-ml aliquots in liquid nitrogen until used. Previously (1), P_2 and P_3 fractions

were found to have similar levels of $[^{3}H][P_{3}$ binding and to differ markedly in the extent of IP_3 -induced Ca^{2+} release. Most of the present experiments were carried out with both membrane fractions to identify the possible cause of such a discrepancy. The protein concentration of each fraction was determined by the Lowry method, using bovine serum albumin as a standard.

 Ca^{2+} uptake and IP₃-induced Ca^{2+} release. Ca^{2+} uptake and IP₃-induced Ca^{2+} release were measured as described (1). The assay was carried out at 37°C in a medium containing 40 mM KCl, 62.5 mM potassium phosphate, 8 mM potassium-3-(N-morpholino)propanesulfonic acid (MOPS), pH 7.0, 0.04 mg/ml creatine phosphokinase, 0.2 mM phosphocreatine, 1 mM $Na₂ATP$, 0.1-3 mM $MgCl₂$, and 162.5 μ M antipyrylazo III, in a final volume of 1 ml. Ca²⁺ fluxes were monitored spectrophotometritally in a Hewlett-Packard 845lA spectrophotometer after the differential absorbance (790-710 nm) of the $Ca²⁺$ -sensitive dye antipyrylazo III. Each fraction (0.5) mg of protein) was added to the uptake-release medium and allowed to equilibrate to 37°C for 10 min. After this, $Ca²⁺$ was administered in two 10-nmol aliquots. After the administered Ca^{2+} was completely accumulated by the preparation, $0.1-20 \mu M$ IP₃ was added to the medium. In some experiments, glycerophosphoinositol 4,5-bisphosphate (GPIP₂) was used to induce Ca^{2+} release. At the end of each experiment, 10 nM CaCl₂ was added to recalibrate the antipyrylazo III response.

 T_{min} α and α and α and α and α of the α the α the α Interester medium were concentrations of the uptake-release medium were calculated using a modified computer program ("IONS" or "SPECS") originally designed by Dr. Alexandre Fabiato (Medical College of
Virginia, Richmond). f_{3111} ipsing, indicimumity.
 f_{311} IP3 binding was measured using was measured using was measured using the set of the set of the set of t

a centrifugation assay as previously described (1). [3H] a centrifugation assay as previously described (1) . $[{}^{3}H]$ -IP₃ binding was carried out at 1.6° C in a medium containing 50 mM tris(hydroxymethyl)aminomethane $(Tris) \cdot HCl$, pH 8.3, 100 mM KCl, 1 mM EDTA, in a final volume of 0.5 ml. In those experiments in which the effect of Mg^{2+} on IP₃ binding was investigated, the medium composition was modified to contain 50 mM phosphate and specified concentrations of MgCl₂. Typically, total $[{}^3H]IP_3$ binding was measured in the presence of 50 nM $[^{3}H]IP_{3}$, and nonspecific binding was measured in the presence of both 50 nM $\left[\begin{array}{c}\right]^{3}H\end{array}\right]IP_{3}$ and 5 μ M nonradioactive $IP₃$. Specific $IP₃$ binding was determined as the difference between total and nonspecific binding. To obtain Scatchard plots, total $[{}^3H]IP_3$ binding was measured in the presence of 5-300 nM $[$ ³H $]$ IP₃ only, whereas nonspecific binding was measured in the presence of $5-$ 300 nM $[3H]IP₃$ and corresponding 100-fold concentrations of nonradioactive $IP₃$. From Scatchard analyses, apparent dissociation constants (K_d) and maximal binding (B_{max}) for $[{}^3H]IP_3$ binding to cerebellar fractions were obtained.

The detailed protocol for the centrifugation assay is outlined in Ref. 1. Briefly, cerebellar fractions were added in a final concentration of 1 mg/ml and incubated in binding media in plastic tubes on ice for 30 min with occasional vortexing. After the 30-min incubation period. 0.43 ml from each IP_3 tube of binding medium was transferred to an ultraclear airfuge centrifuge tube that was spun at high speed in a Beckman Airfuge for 10 min at 23°C. The colorless supernatant was carefully removed from the tube after which the pellet was rinsed once with chilled binding buffer not containing $IP₃$. The pellet was solubilized by adding 0.43 ml of 10% (wt/vol) glycerol, 5% (vol/vol) 2-mercaptoethanol, 2.3% (wt/vol) sodium dodecyl sulfate, and 625 mM Tris. HCl, pH 6.8, to the tube and incubating it for a minimum of 3 h. Then the entire tube containing the pellet and solubilizing buffer was placed in a vial containing 15 ml of Opti-Fluor (Packard Bell) scintillation cocktail and analyzed by liquid scintillation spectrometry.

 $[{}^{3}H]IP_{2}$ binding was carried out as described above using 15 nM $[^{3}H]IP_{2}$.

Measurements of \bar{l}^3HJIP_3 hydrolysis. To determine the extent of IP₃ hydrolysis occurring, high-pressure liquid chromatography (HPLC) analysis was performed on $[3H]IP₃$ binding media of 0.5 ml vol, consisting of (in mM) 50 Tris buffer, pH 8.3, 1 EDTA, 50 K_2HPO_4 , and 50 [3 H]IP₃. Two different types of "control" experiments were designed. One type contained only $[3H]$ IP3 and no were along note. Since the contained only \lceil 11 as and no
added protein or $M\alpha^{2+}$ to assess the initial level of ID hydrolysis in the radioactive sample itself. A second type contained 0.5 mg protein and $[{}^{3}H]IP_{3}$ to assess the level of IP_3 degradation by the IP_3 ase present in the protein sample before addition of Mg^{2+} . "Experimental media" contained 0.5 mM $MgCl₂$ in addition to 0.5 mg protein and $[{}^{3}H$]IP₃ and were prepared in Silanized 2-ml centri $f(x) = \frac{1}{2} \int_0^1 \frac{1}{x} \cdot \frac{1}{$ the end of the incubation period, $\frac{1}{2}$ multiple $\frac{1}{2}$ multip the end of the incubation period, 0.5 ml of 10% (wt/vol) trichloroacetic acid (TCA) was added to stop the binding
reaction.

FIG. 1. IP₃-induced Ca²⁺ release from cerebellar crude mitochondrial pellet fraction at high (2 mM) and low (0.3 mM) total Mg^{2+} . Ca^{2+} loading and Ca^{2+} release were measured as described in MATERIALS AND METHODS using antipyrylazo III as a Ca^{2+} indicator. Assay was started by adding 0.5 mg of membrane protein. Two consecutive 10 nmol CaCl₂ pulses were administered (2nd addition is shown at arrow). After completion of Ca²⁺ loading, 10 μ M IP₃ was added (arrowheads). A downward deflection of absorbance tracing after $Ca²⁺$ administration is indicative of Ca^{2+} loading, and an upward deflection corresponds to Ca^{2+} release. At end of each experiment, 10 nmol $CaCl₂$ were added to recalibrate antipyrylazo III response (arrows). Data points were stored on Hewlett-Packard microflexible disks, and tracings were electronically scaled so that Ca^{2+} releases are directly comparable. A: total Mg^{2+} was 2 mM, and free Mg²⁺ was calculated to be 334 μ M; *B*: total Mg²⁺ was 0.3 mM, and free Mg²⁺ was calculated to be 28.6 μ M.

	P ₂		P_{3}		
	$0.3 \text{ mM } \text{Mg}^{2+}$ $(28.6 \,\mu\text{M} \text{ free } \text{Mg}^{2+})$	$2 \text{ mM } \text{Mg}^{2+}$ $(334 \,\mu M \,$ free Mg ²⁺)	$0.3 \text{ mM } \text{Mg}^{2+}$ $(28.6 \,\mu M \,$ free Mg ²⁺)	$2 \text{ mM } \text{Mg}^{2+}$ $(334 \mu M \text{ free Mg}^{2+})$	
Rate of Ca ²⁺ release, nmol $Ca^{2+} \cdot min^{-1} \cdot mg$ protein ⁻¹	228.7 ± 22.9 (8)	141.9 ± 18.5 (7)	179.7 ± 21.9 (12)	$106.7 + 8.8$ (7)	
Extent of Ca ²⁺ release, nmol Ca^{2+}/mg protein	30.0 ± 3.4 (8)	(7) 17.1 ± 4.3	15.9 ± 3.1 (12)	6.9 ± 1.1 (7)	
$K_{\rm m}, \,\mu{\rm M}$ Hill coefficient	0.48 ± 0.10 (4) 1.51 ± 0.16 [*] (4)	0.94 ± 0.15 (3) $1.63 \pm 0.19^*$ (3)	0.39 ± 0.11 † (4) (4) $1.69{\pm}0.14^{*}$	0.88 ± 0.17 (3) $1.78 \pm 0.20^*$ (3)	

TABLE 1. Effects of Mg^{2+} on IP_3 -induced Ca^{2+} release from cerebellar P_2 and P_3

Values are means \pm SD of no. of experiments in parentheses. P_2 , crude mitochondrial pellet; P_3 , crude microsomal pellet. Experiments were carried out as described in MATERIALS AND METHODS and in legends to Figs. 1 and 3. Rate and extent of Ca²⁺ release were measured in presence of 10 μ M IP₃. Michaelis constant (K_m) and Hill coefficient were calculated as described in Fig. 3C. Relative size of inositol 1,4,5-trisphosphate (IP $_8$)-sensitive and IP₃-insensitive Ca²⁺ stores was calculated as follows: total Ca²⁺ accumulated by preparation was 40 nmol Ca²⁺/mg protein and is defined as total Ca²⁺ store (Tot_{ca²⁺). IP₃ was able to release only part of actively accumulated Ca²⁺. Size of the IP₃-sensitive Ca²⁺ store was} calculated from (extent of Ca^{2+} release/Totes) X 100 and was 75 and $\text{A}^{2\%}$ of total (IP) sensitive and IP insensitive) Ca²⁺ totas at low and high free $M\sigma^{2+}$ respectively (second line, first two columns). * Not significant: $t P \ge 0.05$.

HPLC analysis was also performed on Ca^{2+} release assay media of 0.5 ml vol containing 40 mM KCI, 52.5 mM potassium phosphate, 8 mM potassium MOPS, pH 7.0, 0.04 mg/ml creatine phosphokinase, 0.2 mM phosphocreatine, 1 mM Na2ATP, and either 0.3 or 2 mM MgCl₂. Control media contained no protein, and experimental media contained 0.5 mg protein. The media were prepared in Silanized 2.0-ml centrifuge tubes and incubated at 37°C for 10 min after which 10 μ M IP₃ spiked with 0.03 μ Ci [³H]IP₃ was added. Twenty seconds after the addition of IP₃ to the media, the Ca²⁺ release reaction was stopped with the addition of 0.5 ml of ice-cold 10% (wt/vol) TCA.

the TITLE COMMINI. Alternatively, the supernation was After the addition of TCA, the media were vortexed and centrifuged in a Fisher microfuge (model 235A) at frozen at -80° C, lyophilized, and then resuspended in 0.4 ml of 1 mM EDTA, pH 7.0. high speed for 5 min in a cold room (4°C). The supernatants were extracted five times with ice-cold ethyl ether. After the extractions, the supernatant was run on t_{min} : H t_{min} and t_{min} a T_{min} and T_{min} a

Zorbax SAX column. The samples were eluted in 1-ml The firm analysis was carried out using a Du Pon fractions by a two-step gradient from 0 to 100% of 0.6 M ammonium formate, pH 3.7 (flow rate, 1 ml/min). After being eluted from the column, the fractions were mixed with Flo-Scint IV scintillation fluid (Packard Bell) at a flow rate of 3 ml/min. They were then passed through an on-line β -detector (Radiomatic Flo-One model CT) to assess the level of radioactivity in each fraction. The identification of the different inositol phosphates was based on the retention time of labeled standards.

Materials. IP₃, inositol 1,4-bisphosphate (IP_2) , GPIP₂, HEPES, and MOPS were obtained from Calbiochem; $[{}^3H]IP_3$ and $[{}^3H]IP_2$ from New England Nuclear; CaCl₂ and $MgCl₂ stock solutions, heparin (catalog no. 5640),$ and antipyrylazo III from Sigma; and ATP from Pharmacia. Ultra-pure grade sucrose was from Schwarz-Mann Biotec

RESULTS

 Mg^{2+} inhibition of IP₃-induced Ca²⁺ release. In Fig. 1, the cerebellar P₂ fraction actively accumulated two con-

secutive 10-nmol CaCl₂ pulses (up to 40 nmol Ca^{2+}/mg protein) and then released a certain amount of Ca^{2+} when challenged with 10 μ M IP₃ (arrowheads in Fig. 1). As shown in Fig. 1A (2 mM total Mg²⁺ and 334 μ M free Mg^{2+}), IP₃ released ~38.5% of the accumulated Ca²⁺ within \sim 20 s, and as shown in Fig. 1B (0.3 mM total $M\alpha^{2+}$ and 28.6 μ M free $M\alpha^{2+}$). ID released twice as much $\frac{C_2}{R_1}$. The rate of $\frac{C_2}{R_1}$ release was also faster at the lower free Mg^{2+} concentration (see also Table 1). Thus Mg^{2+} interfered with the Ca²⁺-releasing action of IP₃.

 Ca^{2+} -loading rates were similar in both cases (Fig. 1, A and B) and were at least one order of magnitude lower than Ca^{2+} -release rates. Experimental conditions were such that Ca^{2+} loading was carried out at MgATP consuch that α rounds was called out at institutions of 75° tellulations of $l2\sigma$ and $1\sigma\sigma$ μ ivi (Fig. 1, A and D, respectively) α -27 , α , well above its inicial constant (Λ_m) or \sim 21 μ m. The larger \sim a release observed in Fig. 11 was therefore not likely due to a reduced Ca^{2+} reuptake during release. Figure 2 shows that $2 + 1$ in the $12-3+1$

rigure \angle shows that mg immoned if 3 -induced \triangle release from both P_3 and P_2 fractions (Fig. 2, A and B, respectively) in a concentration-dependent manner.
Half-maximal inhibition of Ca^{2+} release was attained at Mg^{2+} concentrations of 61.2 \pm 6.8 and 69.3 \pm 7.1 (SD) μ M for P₃ and P₂ fractions, respectively $(n=3)$.

In Figs. 1 and 2, Ca^{2+} release was elicited by 10 μ M IP_3 to counteract the action of IP_3 ase, which degrades IP_3 in a Mig" -dependent fashion (8, 14). The extent of $1P_3$ hydrolysis was measured in Ca^{$2+$} release media con taining 10 μ M [³H]IP₃ and either low or high free Mg²⁺ (28.6 and 334 μ M Mg²⁺, respectively). As judged by HPLC chromatograms, after 20 s at 37° C, IP₃ comprised 90.6 and 86.4% of the total inositol phosphates at low and high free Mg^{2+} , respectively. Thus the concentration of IP₃ remaining after 20 s was $>8.5 \mu M$ and was still at saturating levels (i.e., $>2 \mu M$; see below Fig. 3A).

Figure 3A shows that Mg^{2+} reduces the extent of IP₃induced Ca^{2+} release at saturating IP₃ concentrations Figure $3B$ shows the effect of $\mathbf{Mg^{2+}}$ on the dose-response curve for IP₃-induced Ca²⁺ release when the extent of Ca²⁺ release is replotted as percentage of maximal re-

SOLIS
Ma²⁺ inhibition of IP, induced Ce^{2+} release. In Fig. 1, K_m was calculated from Lineweaver-Burk plots of 1/Ca²⁺ loading rate vs. [MgATP]. In the assays, total Mg^{2+} concentration varied from 0.1 to 5 mM and total ATP from 0.1 to 2 mM.

FIG. 2. Mg^e inhibition of IP_3 -induced Ca^{2+} release from cerebella crude mitochondrial pellet (P_2) and crude microsomal pellet (P_3) fractions. IP₃-induced Ca²⁺ release was measured in presence of 10 μ M IP₃. as described in MATERIALS AND METHODS and in legend to Fig. 1. Total ATP concentration was kept at 1 mM, and total Mg^{2+} concentration varied from 0.1 to 3 mM. Typical experiments are shown depicting the extent of IP₃-induced Ca²⁺ release from cerebellar P₃ (A) and P₂ (B) as a function of free Mg^{2+} concentration. Mg^{2+} concentrations inhibiting IP₃-induced Ca²⁺ release by 50% were determined graphically assuming highest amount of Ca²⁺ release as 100%.

sponse; it is evident that Mg^{2+} shifted such a curve to the right. Hill plots of these curves (Fig. $3C$) allow determination of K_{m} . Mg²' seemed to be a noncompetitive inhibitor of IP_3 -induced Ca^{2+} release, since both extent of Ca^{2+} release (Fig. 3A) and K_{m} (Fig. 3C) were

FIG. 3. Influence of Mg+ on dose-response curve for IPZ-induced

 $s_{\rm eff}$ is the Mg+ shifted such a curve to that $\sigma_{\rm eff}$ such a curve to the curve to the

1.6 in the presence of low and high Mg^{2+} , respectively, and indicated that IP_3 -induced Ca^{2+} release was cooperative.

Several parameters of inhibition of IP_3 -induced Ca²⁺ release by Mg^{2+} are summarized in Table 1. Low free [Mg²⁺], i.e., 28.6 μ M, increased the rate and extent of $\text{Ca}^{\overline{2}+}$ release and decreased the apparent K_m for IP₂.

FIG. 3. Influence of Mg^{2+} on dose-response curve for IP₃-induced Ca^{2+} release from cerebellar P_2 fraction. IP₃-induced Ca²⁺ release was measured as described in MATERIALS AND METHODS. $IP₃$ concentration was varied from 0.1 to 20 μ M; total Mg²⁺ concentration was kept either at 0.3 (o) or 2 mM $\left($. A: typical experiment. Extent of IP₃-induced Ca^{2+} release is plotted as a function of $[IP_3]$. B: extent of IP_3 -induced $Ca²⁺$ release is expressed as percentage of maximal response and plotted as a function of $\text{[IP}_3]$. C: Hill plot of data in A. On ordinate, y represents fractional release, which is defined as extent of Ca^{2+} release obtained at a particular IP_3 concentration divided by maximal Ca^{2+} release attained over all IP₃ concentrations studied. K_m represents the x-axis value for $y = 0$. Mean K_m values of several experiments for both P_2 and $P₃$ fractions are reported in Table 1.

induced Ca²⁺ release from \sim 0.9 to 0.4–0.5 μ M IP₃. The Hill coefficient was between 1.5 and 1.8 for P_2 and P_3 fractions, and Mg^{2+} did not affect the degree of cooper ativity for IP_3 -induced Ca²⁺ release. As previously shown (1), cerebellar P_2 fractions released larger amounts of accumulated Ca^{2+} as compared with P_3 fractions, at both high and low free $[Mg^{2+}]$. No additional insight was gained as to the reasons for different Ca^{2+} release between P_2 and P_3 fractions (see also Ref. 1).

 Mg^{2+} inhibition of GPIP₂-induced Ca²⁺ release. Mg²⁺dependent hydrolysis of IP3 might be responsible for some of the differences observed in Fig. 3, particularly

FIG. 4. Effect of Mg^{2+} on glycophosphoinositol 4,5-bisphosphate GPIP₂-induced Ca²⁺ release from cerebellar P₂ fraction. Ca²⁺ loading of cerebellar P_2 fraction (40 nmol Ca²⁺/mg protein) was carried out as described in MATERIALS AND METHODS. A: total Mg^{2+} concentration was kent either at 0.3 (o) or 2 mM (\bullet): GPIP₂ concentration was varied from 0.1 to 40 μ M. Extent of GPIP₂-induced Ca²⁺ release is expressed as percentage of maximal response and is plotted as a function of [GPIP₂]. GPIP₂ was one order of magnitude less effective than IP₃. However, saturating concentrations of either IP_3 or $GPIP_2$ released similar amounts of Ca^{2+} (not shown). Inset: spectrophotometric tracing. in which 30 μ M GPIP₂ (arrowhead) was added to cerebellar P₂ fraction. Downward deflection at GPIP_2 addition is an artifact also observed in absence of membrane protein (not shown). Arrow, addition of 10 nmol CaCl₂. B: total ATP concentration was kept at 1 mM, and total Mg²⁺ concentration varied from 0.2 to 3 mM. Ca^{2+} release was elicited by adding 30 μ M GPIP₂. Extent of GPIP₂-induced Ca²⁺ release is plotted as function of free Mg²⁺ concentration.

at low IP_3 concentrations. To address this issue, we repeated experiments reported in Figs. 2 and 3 using $GPIP₂$, a poorly metabolized analogue of IP₃ (4, 15, 16). Figure 4A shows that GPIP_2 induced Ca^{2+} release from cerebellar P_2 (Fig. 4A, inset), although higher concentrations were required to attain maximal Ca^{2+} release (17). Mg^{2+} shifted the dose-response curve for $GPIP_2$ -induce Ca^{2+} release to the right; half-maximal release was obtained with 6.5 and 11.8 μ M GPIP₂, at 28.6 and 334 μ M free Mg^{2+} , respectively. Figure 4B shows that Mg^{2+} inhibited Ca^{2+} release elicited by a saturating concentration of GPIP₂ (30 μ M) in a concentration-dependent manner. These experiments, together with estimates of $IP₃$ hydrolysis (see above), clearly suggest that inhibition of IP₂-induced Ca^{2+} release by Mg^{2+} was not due to augmented Mg²⁺-dependent IP₃ hydrolysis

Effect of Mg^{2+} on $\int^3 HJIP_3$ binding. Mg^{2+} was found to be a noncompetitive inhibitor of $[{}^3H]IP_3$ binding by the Scatchard analysis shown in Fig. 5. The plot indicates that 0.5 mM free Mg^{2+} decreased B_{max} from \sim 10 to 3 pmol $[{}^{3}H]IP_3$ bound/mg protein and increased K_d from 117 to 171 nM. Mean values of B_{max} and K_d for three different experiments are reported in Table 2. K_d values for $[^{3}H]IP_{3}$ binding were higher than previously reported (1,17, 27) because of the presence of 50 mM phosphate, which was added to the assay medium to help inhibit the $IP₃ase$ (14). Figure 5, inset, shows, however, that in the absence of both Mg^{2+} and 50 mM phosphate, B_{max} was unchanged $(-10 \text{ pmol }[^3H]IP_3]$ bound/mg protein) and K_d was in the expected range, i.e., 34.4 nM (compare Refs. 1, 17, 27).

Hill plots of $[{}^{3}H]IP_{3}$ binding data (not shown) yielded linear relationships with slopes \sim 1, which is consistent with a one-site model (24, 27), and indicated that Mg^{2+} did not influence the degree of cooperativity for $[^{3}H]IP_{3}$

FIG. 5. Effect of 0.5 mM free Mg^{2+} on $[{}^{3}H]IP_{3}$ binding to cerebellar $P₂$ fraction. Data are presented as a Scatchard plot analysis for a typical experiment. $[^{3}H]IP_{3}$ binding was carried out as described in MATERIALS AND METHODS in presence of 50 mM phosphate and in presence (\bullet) or absence (\circ) of 0.5 mM free Mg²⁺. Phosphate was used to inhibit, at least partially, IP_3 ase (14). 2,3-Bisphosphoglycerate, a known inhibitor of the IP₃ase, was found to inhibit IP_3 binding as well (not shown, see also Ref. 27) and could not be used in these experiments. Inset: $IP₃$ binding in absence of both 50 mM phosphate and Mg^{2+} . Under these experimental conditions K_d was found to be 34.4 nM, similar to that previously reported for either dog (1) or rat (17, 27) cerebellar membrane vesicles.

binding. Mean values for three experiments are reported in Table 2.

 IP_3 hydrolysis in I^3H/IP_3 binding medium. It would be expected that IP_3 ase would not be very active in the $[{}^{3}H]IP_3$ binding medium because of the presence of phosphate, the temperature (1.6 $^{\circ}$ C), and the fact that the IP₃ concentrations used were well below the K_m of the IP₃ase of \sim 15 μ M (14, 17). Nevertheless, 0.5 mM free Mg²⁺ might promote the action of the IP₃ase, and the actual $IP₃$ concentration in the $IP₃$ binding medium might be lower than the nominal one. The extent of $IP₃$ hydrolysis was thus measured by HPLC in the absence and presence of 0.5 mM free Mg^{2+} (Fig. 6). After a 30-min incubation in the absence of Mg^{2+} , the cerebellar P_2 fraction degraded only 3.8% of the initial 50 nM $[{}^{3}H]IP_{3}$ into $[{}^{3}H]$ -IP₂ (Fig. 6, solid line). In the presence of Mg²⁺, 5.1% of the initial $[{}^3H]IP_3$ was hydrolyzed (Fig. 6, dotted line). Using bovine adrenal cortex membranes, Guillemette et al. (14) reported that 9% of the initial IP₃ was hydrolyzed after 15-min incubation in the presence of $\mathbf{M}\mathbf{\alpha}^{\tilde{2}+}$ If data of \overline{Fig} 5 are corrected for the actual IP₂ concentration in the presence and absence of Mg²⁺, both B_{max} and K_d do not change appreciably. Additionally, we could not detect any specific $[{}^3H]IP_2$ binding with 15 nM $[{}^3H]IP_2$ (not shown), which implies that all specific binding was due to $[^{3}H]IP_{3}$.

Effect of \check{Mg}^{2+} on heparin inhibition of IP₃-induced Ca^{2+} release. Heparin, a competitive inhibitor of IP₃induced Ca^{2+} release (13), was previously found to inhibit IP_3 -induced Ca^{2+} release from canine brain microsomes (21) with an apparent inhibitory constant (K_i) of 14 μ M at 127 μ M free Mg²⁺. Figure 7A shows that 14 μ M heparin $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ release from the cerebellar P2. $f(x) = \frac{1}{2}$ in the detector and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{2}{2}$ and $\frac{2$ 334 PM M\$+ (Fig. 7, C and D, respectively). Both the $\frac{1}{2}$ and $\frac{1}{2}$ (Fig. i, C and D, respectively). Dutil the $\frac{1}{2}$ by here $\frac{1}{2}$ shows the inhibitor $\frac{1}{2}$ shows the inh by heparin. Figure 7B shows the inhibitory effect of two different heparin concentrations, i.e., 14 and 22 μ M, on unterent neparin concentrations, i.e., 14 and 22 μ ivi, or 118 -induced Ca release when free Mg α varied between $\frac{1}{10}$ and $\frac{1}{100}$ μ M. The plot clearly indicates that $\frac{1}{100}$ and heparin are additive inhibitors. The Dixon plot of Fig. TC shows that the families of curves intersect below $1/$ R_{max} and above the x-axis, as expected for the interaction between a competitive inhibitor (heparin) and a mixedtype inhibitor (Mg^{2+}) , which are not mutually exclusive. Thus Mg^{2+} and heparin seem to have distinct binding sites.

DISCUSSION Intracellular effects of $M_{\rm{max}}$ is involved in several involved in several in several in several in several

Intracellular effects of Mg^{2+} . Mg^{2+} is involved in several aspects of neuronal function (12) . It is a cofactor for hundreds of enzymes, plays an important role in protein synthesis, and is also involved in a wealth of metabolic processes, i.e., glycolysis, respiration. Intracellular Mg^{2+} regulates transmembrane transport of ions such as Na⁺ and Ca^{2+} (2) and may also act as cofactor of ion channels, since $Mg^{\hat{2}+}$ is the blocking ion producing inward K^+ rectification (23).

Very little is known about the free Mg^{2+} concentration in vertebrate neurons and whether the resting free Mg^{2+} concentration changes upon cell activation (2). By ${}^{31}P$ -
nuclear magnetic resonance spectra of superfused cere-
as $[IP_2/(IP_2 + IP_3)] \times 100$.

bral tissues, free Mg^{2+} values of 0.33 mM have recently been reported (5). These values were increased by hypoglycemia, hypoxia, or reduced extracellular Ca^{2+} (5). Intracellular free $\rm{Mg^{2+}}$ seems to be well buffered (2) as measured by Mg^{2+} -sensitive microelectrodes, which, however, lack the time resolution required to detect transient changes of free $\mathbf{M}e^{2+}$ concentration. In this respect, monitoring cytoplasmic free \mathbf{Mg}^{2+} in cultured neurons loaded with Furaptra, a cell-trappable fluorescent Mg^{2+} indicator (19), should soon provide valuable information.

Do the present data have physiological relevance? This paper shows that Mg^{2+} is an in vitro inhibitor of both IP_3 -induced Ca^{2+} release from isolated cerebellar membrane fractions and $[{}^{3}H]IP_{3}$ binding. The present observations indicate that, if the resting intracellular Mg^{2+} concentration is ~ 0.3 mM (5) and does not change on cell activation, Mg^{2+} controls IP₃-induced Ca²⁺ release by affecting both the binding of \overline{IP} to its receptor sites (Fig. 5) and the release of $\mathbb{C}a^{2+}$ via IP_{2-gated} $\mathbb{C}a^{2+}$ chan nels (Figs. 1-3). A portion of the IP₃-sensitive Ca²⁺

TABLE 2. Effect of Mg^{2+} on $\int^3 H JIP_3$ binding to cerebellar $P₂$ fraction

	No Mg^{2+}	0.5 mM Free Mg ²⁺
B_{max} , pmol/mg protein	$10.9 + 2.21$	3.5 ± 0.6 †
$K_{\rm d}$, nM	$136 \pm 20^*$	227 ± 45 *
Hill coefficient	1.11 ± 0.15	$1.02 + 0.081$

 $\sum_{i=1}^{\infty}$ binding $\sum_{i=1}^{\infty}$ in the constant $\sum_{i=1}^{\infty}$ in $\sum_{i=1}^{\infty}$ maximal binding; K_d , dissociation constant; IP₃, inositol 1,4,5-trisphosphate; P₂, crude mitochondrial pellet. Experiments were carried out as described in MATERIALS AND METHODS and in legend to Fig. 6. $* P < 0.05$; $\dagger P < 0.01$; \ddagger Not significant.

FIG. 6. IP₃ hydrolysis by cerebellar P₂ fraction in $[{}^{3}H]IP_{3}$ binding medium. $[{}^{3}H]IP_{3}$ binding media were prepared and high-pressure liquid chromatography (HPLC) analysis carried out as described in MATE-RIALS AND METHODS. Incubation was performed with 50 nM $[{}^{3}H]IP_{3}$ for 30 min at 1.6° C, in presence (dotted line) or absence (solid line) of 0.5 mM free Mg²⁺. Samples were not lyophilized before HPLC separation. Two additional experiments were done in which samples were lyophilized before HPLC separation, and similar results were obtained (not shown). Actual counts (cpm/fraction) referable to $[{}^3H]IP_3$ and $[^{3}H]IP_{2}$ were 890 × 10² and 35 × 10² and 750 × 10² and 40 × 10², respectively, in absence and presence of Mg²⁺. Data in text are given

FIG. 7. Effect of heparin and Mg^{2+} on IP₃-induced Ca²⁺ release from cerebellar P_2 fraction. Ca^{2+} loading and Ca^{2+} release were measured as described in MATERIALS AND METHODS using antipyrylazo III as a Ca^{2+} indicator. A: assay was started by adding 0.5 mg of membrane protein and then 2 consecutive 10-nmol CaCl₂ pulses (not shown). Control tracings a and b were in presence of low (a) and high (b) free Mg^{2+} (28.6) and 334 μ M Mg²⁺, respectively). Tracings c and d: 14 μ M heparin was added 20–30 s before addition of 10 μ M IP₃. B: total ATP concentration was kept at 1 mM, and total Mg²⁺ concentration varied from 0.2 to 3 mM. Ca²⁺ release was elicited by adding 10 μ M IP₃. Extent of IP₃induced Ca²⁺ release is plotted as function of free Mg²⁺. \circ , Control; \bullet , + 14 μ M heparin; \triangle , plus 22 μ M heparin. Average molecular weight of heparin was assumed to be 5,000 (21). C: Dixon plot of data of B ; symbols are as in B .

channels could always be in a closed state provided that other in situ regulatory factors, yet to be identified, do not play opposite roles.

Transient or long-lasting changes (5) of free Mg^{2+} concentration are also expected to affect IP_{3} -induced Ca^{2+} release. During an intracellular Ca^{2+} transient, free Mg^{2+} might increase, at least temporarily, if Ca^{2+} and Mg^{2+} compete for the same cytoplasmic binding sites. The magnitude and duration of free Mg^{2+} change would reflect the kinetics of Ca^{2+} transport back into intracellular Ca^{2+} stores, Ca^{2+} extrusion from the cell, and Ca^{2+} binding to cytoplasmic Ca^{2+} -Mg²⁺ binding proteins, e.g., parvalbumin (6) . Such an increase of Mg^{2+} concentration would decrease both IP₃ binding and IP₃-induced Ca²⁺ release. Within this hypothetical scenario, increasing the free Mg^{2+} concentration would favor the formal transition to the closed state of the IP₃-gated Ca²⁺ channel.

There is ample evidence that IP , releases only part $\frac{1}{20}$ 30-50% of the Ca²⁺ accumulated by intracellula high affinity Γa^{2+} stores (17). The present findings indicate that estimates of the IP₃-sensitive Ca²⁺ store are influenced by the experimental conditions, notably by the free Mg^{2+} concentration. Data of Table 1 show that IP₃ releases part of the actively accumulated Ca^{2+} (40) nmol Ca^{2+}/mg protein) and suggest that the size of the IP₃-sensitive Ca^{2+} store may vary from 43 to 75% of the total (IP₃-sensitive and IP₃-insensitive) Ca^{2+} store of the P_2 fraction (40 nmol Ca^{2+}/mg protein), depending on the Mg^{2+} concentration of the assay medium (see legend to T_{H} . Concentration of the assay incurrent (see legend to Fault 1). All 11 3-institutive Ca studies can be detected. even at low free Mg^{2+} concentrations, although its identification, characteristics, and relationship to the IP₃-sensitive Ca²⁺ store are still unknown (see also Ref. 1). M_{\odot} is stated of the stated of the matrix of M_{\odot} is stated in the behavior of M_{\odot} is stated

 $\frac{1}{2}$ incompetitive indicates in $\frac{1}{2}$ both $\frac{1}{2}$ binding and $\frac{1}{2}$ binding and $\frac{1}{2}$ Inducompetitive immutor of both $\left[\right]$ $\prod_{i=1}^{n}$ binding and IP₃-induced Ca²⁺ release. The $[{}^3H]IP_3$ binding data (Fig. 5 and Table 2), even when adjusted for the small amount of IP₃ degraded in the presence of 0.5 mM free Mg²⁺ (Fig. 6), clearly indicate the noncompetitive nature of (t) is the induced of $\sum_{i=1}^{\infty}$ induced case in $\sum_{i=1}^{\infty}$ on \sum_{i the inhibition. The effect of Mg⁻ on 1_{2} -induced Ca⁻¹ release was studied after active $Ca⁻$ preloading and under experimental conditions which necessarily favored IP_3 hydrolysis, e.g., micromolar concentrations of IP_3 , Mg^{2+} , and 37°C. We have demonstrated that Mg^{2+} is an inhibitor of IP_3 -induced Ca²⁺ release by showing that *I*) saturating concentrations of IP_3 released less Ca^+ at high free Mg²⁺ (Figs. 2 and 3A). 2) Mg²⁺ inhibited IP₃ and $GPIP_2$ -induced Ca^{2+} release with identical characteristics (Fig. 4). 3) Mg^{2+} caused a shift to the right of the dose-dependence curve for both IP_{3} - and $GPIP_{2}$ induced Ca²⁺ release (Figs. 3B and 4A, respectively). 4) Ca^{2+} reuptake, after addition of IP₃, was similar at low and high free Mg^{2+} concentrations, i.e., 28.6 and 334 μ M, respectively (uptake phases in Fig. 1). 5) Of the initial concentration, 85-90% of IP₃ was left after 20 s, i.e., the time to peak Ca^{2+} release (compare Fig. 1). Thus differences in K_m (Fig. 3C) and extent of IP₃-induced Ca²⁺ release (Fig. 3A) indicate that Mg^{2+} is indeed. titive inhibitor of IP_3 -induced Ca^{2+} release.

The effects of Mg^{2+} are different from those exerted by free Ca^{2+} and pH, which change only the apparent affinity of the IP₃ receptor of rat cerebellar microsomes

(16). IP₃-induced Ca²⁺ release from canine brain microsomes was also shown to be inhibited by increasing free Ca^{2+} (21). Half-maximal inhibition of IP₃-induced Ca^{2+} release was obtained at \sim 6 μ M free Ca²⁺ (21). Previous data (16,21) and present results, taken together, indicate that the mechanisms of inhibition by Mg^{2+} and Ca^{2+} are different and that the inhibitory site(s) has(have) an apparent affinity for Ca^{2+} (6 μ M) 10-fold higher than for Mg^{2+} (~60 μ M; Fig. 2). It is not known, however, whether $\rm{Mg^{2+}}$ and $\rm{Ca^{2+}}$ have distinct binding sites.

Additional insight into the mechanism of action of Mg^{2+} was provided by experiments carried out with heparin, known to be a competitive inhibitor of $IP₃$ binding and IP_3 -induced Ca^{2+} release (13, 17). Dixon plot analysis of inhibition curves with increasing concentrations of heparin (Fig. 7C) clearly shows that Mg^{2+} and heparin, and thus $IP₃$, have distinct binding sites.

The overall effect of $\mathbf{M}\sigma^{2+}$ was to reduce the affinit of the receptor for IP₂. The Mg²⁺ effect on the K, for $[{}^3H]IP_3$ binding and the K_m for IP_3 -induced Ca^{2+} release seems to be quantitatively different. In the presence of phosphate, the average K_d was 136 nM, and the K_m was 480 nM at low free Mg^{2+} ; at high free Mg^{2+} , the average K_d was 227 nM and the K_m was 940 nM (Tables 1 and 2). It has long been acknowledged that the two constants are different mainly because of the different experimental conditions, e.g., temperature, pH, IP_3 , and \overline{Mg}^{2+} concentrations, etc. (17) , and the present study is no exception. However, since the $IP₃$ binding has been reported to be noncooperative (24,27, and Table 2), whereas both the opening of the Ca^{2+} channel (18) and IP₃-induced C_2 ²⁺ release E^{\prime} α 3 C and T_2 be 1) appear to be cooperated as C_2 α release (Fig. b) and Table I) appear to be cooper ative, one should regard IP₃ binding as part of, rather than equivalent to, IP_3 -induced Ca^{2+} release. The K_d and $K = \frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ is a identical if the channel is a channel in $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and n_m need not necessarily be identical if the Channel is a multiprotein complex comprised of, at least, the IP₃ receptor, the channel pore, and a Ca^{2+} regulatory protein, i.e., calmed port, and a called a regulatory protein, \mathbf{r} e, cannellin (*i*). Differences between \mathbf{r}_d and \mathbf{r}_m maj pe present, even though the 1r₃-binding site and ch pore domains belong to the same polypeptide (10) .

 Mg^{2+} might have more than one site of action and influence both IP₃ binding, as clearly shown here, and Ca^{2+} channel opening. The reduction of B_{max} would indicate that Mg^{2+} decreases the number of activatable Ca^{2+} channels. Mg^{2+} might also interact with the conduction pathway and inhibit Ca^{2+} permeation, as has been suggested for the skeletal muscle sarcoplasmic reticulum $\bar{C}a^{2+}$ release channel (22). Single channel analysis of cerebellar vesicles incorporated into planar lipid bilayers and additional kinetic studies of Ca^{2+} release will further clarify the mechanism of action of Mg^{2+} on the IP₃-gated Ca²⁺ channel.

Received 8 November 1989; accepted in final form 19 January 1990.

REFERENCES

- 1. ALDERSON, B. H., AND P. VOLPE. Distribution of endoplasmic reticulum and calciosome markers in membrane fractions isolated from different regions of the canine brain. Arch. Biochem. Biophys. 272:164-172,1989.
- 2. Alvarez-Leefmans, F. J., F. Giraldez, and S. M. Gamiño Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can. J. Physiol. Pharmacol. 65: 915-925,1987.
- 3. BERRIDGE, M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159-193, 1987.
- 4. BERRIDGE, M. J., M. C. DAWSON, AND C. P. DOWNES, H. P, HESLOP, AND R. F. IRVINE. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212: 473-482, 1983.
- $5.$ BROOKS, K.J., AND M. S. BACHELARD. Changes in introcellular free magnesium during hypoglycaemia and hypoxia in cerebral tissue as calculated from ³¹P-nuclear magnetic resonance spectra. J. Neurochem. 53: 331-334,1989.
- 6. CELIO, M. R., AND C. W. HEIZMANN. Calcium-binding protein parvalbumin as a neuronal marker. Nature Lond. 293: 300-302, 1981.
- 7. DANOFF, S. K., S. SUPATTAPONE, AND S. H. SNYDER. Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 245: 701-705,1988.
- \sim Dividual C. 210. 101. 100, 1000. \sim dependent regulation of Ins-1,4,5- P_3 binding to rat cerebellar receptor, Sot. Neurosci. Abstr. 15: 1004, 1989. EDELMAN, A. M., D. D. HUNTER, A. E. HENDRICKSON, AND E. G.
- $\frac{10.681 \times 10^{10} \text{ F}}{10.71 \times 10^{10}}$ μ_{F} (a) and μ_{F} distribution of calcium- and calmodulinperson bubbendia usumution of calcium and calinoum-dependent myosin ngin cham prosphor
- $59,1959.$ FERRIS, C. D., R. L. HUGANIR, S. SUPATTAPUNE, AND S. H. cus in reconstitution flux in reconstitution in reconstitution in reconstitution of the constitution of the con-69. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989
- $1017, 1987.$ risher, S. N., AND D. W. AGRANOFF. Receptor activation an inositol lipid hydrolysis in neural tissues. J. Neurochem. 48: 999-1017, 1987.
- Memor. Biol. 80: 1–14, 1984. r LATMAN, P. W. Magnesiun
- GOSH, T. K., P. S. EIS, J. M. MULLANEY, C. J. EBERT, AND D. L GILL. Competitive, reversible and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263: 11075-11079, 1988.
14. GUILLEMETTE, G., T. BALLA, A. J. BAUKAL, AND K. J. CATT.
- Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. J. Biol. Chem. 262: 1010-1015, 1987.
- 15. JOSEPH, S. K., AND H. L. RICE. 1989. The relationship between inositol trisphosphate receptor density and calcium release in brain microsomes. Mol. Pharmacol. 35: 355-359, 1989.
- 16. JOSEPH, S. K., H. L. RICE, AND J. R. WILLIAMSON. The effect of external calcium and pH on inositol trisphosphate mediated calcium release from cerebellum microsomal preparations. Biochem. J. 258: 261-265, 1989.
- 17. JOSEPH, S. K., AND J. R. WILLIAMSON. Inositol polyphosphates and intracellular calcium release. Arch. Biochem. Biophys. 273: 1-15, 1989.
- 18. MEYER, T., D. HOLOWKA, AND L. STRYER. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science Wash. DC 240: 653-656, 1988.
- 19. MURPHY, E., C. C. FREUDENRICH, L. A. LEVY, R. E. LONDON, AND M. LIEBERMAN. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc. Natl. Acad. Sci. USA 86: 2981-2984. 1989.
- 20. NAHORSKI, S. R. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 11: 444-448, 1988.
- $21.$ Palade, P., C. Dettbarn, B. Alderson, and P. Volpe. Ph macologic differentiation between inositol 1,4,5-trisphosphate-induced Ca^{2+} release and Ca^{2+} - or caffeine-induced Ca^{2+} release from intracellular membrane systems. Mol. Pharmacol. 36: 673-680, 1989.

We thank Drs. Aileen K. Ritchie and Daniel Lang for comments on the manuscript, Monica "LG" Tzinas for excellent technical assistance, and Lynette Durant for typing the manuscript.

This work was supported by National Institutes of Healt A -40068-02 (to P. Volpe) and HL-37943 (to G. A. Nickols).

Address for reprint requests: P. Volpe, Dept. of Physiology Biophysics, Univ. of Texas Medical Branch, Galveston, TX 77550.

- 22. SMITH, J. S., R. CORONADO, AND G. MEISSNER. Single channel measurements of the Ca²⁺ release channel from skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol. 88: 573-588, 1986.
- 23. STANFIELD, P. R. Intracellular Mg^{2+} may act as co-factor in ion channel function. Trends Neurosci. 11: 474-476, 1988.
- 24. STAUDERMAN, K. A., G. D. HARRIS, AND W. LOVENBERG. Characterization of inositol 1,4,5-trisphosphate-stimulated calcium release from rat cerebellar microsomal fractions. Biochem. J. 255: 677-683,1988.
- 25, SUPATTAPONE, S., S. K. DANOFF, A. THEIBERT, S. K. JOSEPH, J.

STEINER, AND S. H. SNYDER. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. USA 85: 8747-8750, 1988.

- 26. VOLPE, P., AND B. H. ALDERSON-LANG. Regulation of inositol 1,4,5-trisphosphate-induced Ca^{2+} release. II. Effect of cAMP-dependent protein kinase. Am. J. Physiol. 258 (Cell Physiol. 27): C1086-C1091,1990.
- 27. WORLEY, P. F., J. M. BARABAN, S. SUPATTAPONE, V. S. WILSON, AND S. H. SNYDER. Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262: 12132-12136, 1987.

