Regulation of inositol 1,4,5-trisphosphate-induced Ca^{2+} release. I. Effect of Mg^{2+}

POMPEO VOLPE, BARBARA H. ALDERSON-LANG, AND G. ALLEN NICKOLS Departments of Physiology and Biophysics and of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77550

VOLPE, POMPEO, BARBARA H. ALDERSON-LANG, AND G. ALLEN NICKOLS. Regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release. I. Effect of Mg²⁺. Am. J. Physiol. 258 (Cell Physiol. 27): C1077-C1085, 1990.-Canine cerebellar membranes were fractionated by differential centrifugation into a crude mitochondrial pellet (P_2) and a crude microsomal pellet (P_3) . The effect of Mg^{2+} on inositol 1,4,5-trisphosphate (IP_3) induced Ca²⁺ release and [³H]IP₃ binding was assessed. Mg²⁺ inhibited IP₃-induced Ca²⁺ release in a concentration-dependent manner. Mg²⁺ influenced both the extent of IP₃-induced Ca²⁺ release and the apparent affinity for IP₃. A 10-fold change of free Mg²⁺ (from ~ 30 to $\sim 300 \ \mu$ M) reduced the extent of Ca²⁻ release by two- to threefold and shifted the apparent Michaelis constant from ~0.5 to ~0.9 μ M IP₃. Thus Mg^{2+} seemed to be a noncompetitive inhibitor of IP₃-induced Ca²⁺ release. Mg²⁺ also inhibited Ca²⁺ release elicited by glycerophosphoinositol 4,5bisphosphate, a poorly metabolized analogue of IP₃. Mg²⁺ and heparin sodium were shown to be additive inhibitors of IP_3 -induced Ca^{2+} release. Mg^{2+} inhibited $[^{3}H]IP_3$ binding under experimental conditions designed to minimize IP_3 hydrolysis. Scatchard plots indicated that 0.5 mM free Mg2+ reduced maximum binding from 10.9 to 3.5 pmol IP₃ bound/mg protein and increased the dissociation constant from 136 to 227 nM. The modulation of $[{}^{3}H]IP_{3}$ binding and IP₃-induced Ca²⁺ release by Mg²⁺ could be physiologically relevant.

magnesium; calcium channel

REDISTRIBUTION OF INTRACELLULAR Ca^{2+} is a key event in cell activation. The belief that neurotransmitters (20), hormones, agonists, and growth factors act at plasma membrane receptors to stimulate the breakdown of phosphatidylinositol 4,5-bisphosphate into diacylglycerol and inositol 1.4.5-trisphosphate (IP_3) is widely accepted (for a review, see Ref. 3). IP_3 has been shown to be the link between receptor activation and Ca²⁺ release from intracellular store(s) (3). The ability of IP_3 to act as an intracellular messenger has been described in a large number of cell types (3), including neurons and model neurotumor cells (11, 20). Hydrolysis of phosphatidylinositol 4,5-bisphosphate might serve a number of functions in nerve cells, e.g., excitability, secretion of neurotransmitters, posttetanic potentiation, and differentiation. The physiological role of IP₃-induced Ca²⁺ release in nerve cells remains to be fully elucidated.

Isolated membrane fractions have been used to investigate several aspects of the mechanism of IP₃-induced Ca^{2+} release. Membrane fragments derived from the cerebellum display a very high density of IP₃ binding sites (27) and have quickly become a useful model to study properties and regulation of IP₃-induced Ca²⁺ release (1, 15, 16, 24, 25).

In this and in the accompanying paper (26), we have investigated the roles of Mg^{2+} and adenosine 3',5'-cyclic monophosphate-dependent protein kinase in IP_3 -induced Ca^{2+} release from canine cerebellar membrane fragments. Mg^{2+} is shown to be a noncompetitive inhibitor of IP_3 -induced Ca^{2+} release and $[^3H]IP_3$ binding. Thus the resting free Mg^{2+} concentration as well as transient or long-lasting changes of intracellular free Mg^{2+} might influence the open-closed state of the IP_3 gated Ca^{2+} channel.

MATERIALS AND METHODS

Isolation of crude mitochondrial and crude microsomal pellet fractions from canine cerebellum. Brains were obtained from mongrel dogs of either sex weighing 10–15 kg. The dogs were anesthetized by intravenous injection of a mixture of α -chloralose (0.1 g/kg) and urethan (1 g/kg) and were later killed with a lethal dose of the anesthetic mixture. Immediately after exsanguination, the skull was opened with the use of an osteotome, and the meninges surrounding the brain were cut away. The cerebellum was removed from the brain and immediately sealed in a plastic bag on ice from which it was transferred to a -80°C freezer and stored until needed.

The procedure used for isolating the crude mitochondrial pellet (P_2) and crude microsomal pellet (P_3) was based on the procedure of Edelman et al. (9) with a few minor modifications as outlined by Alderson and Volpe (1). Briefly, the cerebellums were initially homogenized in 10 vol of ice-cold buffer A [0.32 M sucrose, 5 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), 0.1 mM phenylmethylsulfonyl fluoride, pH 7.4]. After the first spin at 900 g, the pellets (P_1) were resuspended in 5 vol of buffer A and homogenized again. The supernatants (S_1) collected from the first and second centrifugation steps were poured through six layers of cheese cloth before the 17,000 g spin from which the P_2 fractions were obtained. P₃ fractions were obtained by centrifugation of S2 supernatants at 100,000 g. All centrifugations were carried out at 4°C. The P_2 and P_3 fractions were resuspended and rehomogenized by a hand-held glass-Teflon homogenizer in a small volume of buffer A and stored in 0.5- to 1.0-ml aliquots in liquid nitrogen until used. Previously (1), P_2 and P_3 fractions

were found to have similar levels of $[{}^{3}H]IP_{3}$ binding and to differ markedly in the extent of IP₃-induced Ca²⁺ release. Most of the present experiments were carried out with both membrane fractions to identify the possible cause of such a discrepancy. The protein concentration of each fraction was determined by the Lowry method, using bovine serum albumin as a standard.

 Ca^{2+} uptake and IP_3 -induced Ca^{2+} release. Ca^{2+} uptake and IP₃-induced Ca²⁺ release were measured as described (1). The assay was carried out at 37°C in a medium containing 40 mM KCl. 62.5 mM potassium phosphate. 8 mM potassium-3-(N-morpholino)propanesulfonic acid (MOPS), pH 7.0, 0.04 mg/ml creatine phosphokinase, 0.2 mM phosphocreatine, 1 mM Na₂ATP, 0.1-3 mM MgCl₂, and 162.5 μ M antipyrylazo III, in a final volume of 1 ml. Ca²⁺ fluxes were monitored spectrophotometrically in a Hewlett-Packard 8451A spectrophotometer after the differential absorbance (790-710 nm) of the Ca^{2+} -sensitive dye antipyrylazo III. Each fraction (0.5) mg of protein) was added to the uptake-release medium and allowed to equilibrate to 37°C for 10 min. After this, Ca²⁺ was administered in two 10-nmol aliquots. After the administered Ca²⁺ was completely accumulated by the preparation, 0.1–20 μ M IP₃ was added to the medium. In some experiments, glycerophosphoinositol 4,5-bisphosphate $(GPIP_2)$ was used to induce Ca^{2+} release. At the end of each experiment, 10 nM CaCl₂ was added to recalibrate the antipyrylazo III response.

The free Mg²⁺ and MgATP concentrations of the uptake-release medium were calculated using a modified computer program ("IONS" or "SPECS") originally designed by Dr. Alexandre Fabiato (Medical College of Virginia, Richmond).

 $[^{3}H]IP_{3}$ binding. $[^{3}H]IP_{3}$ binding was measured using a centrifugation assay as previously described (1). [³H]-IP₃ binding was carried out at 1.6°C in a medium containing 50 mM tris(hydroxymethyl)aminomethane (Tris) HCl, pH 8.3, 100 mM KCl, 1 mM EDTA, in a final volume of 0.5 ml. In those experiments in which the effect of Mg^{2+} on IP_3 binding was investigated, the medium composition was modified to contain 50 mM phosphate and specified concentrations of MgCl₂. Typically, total [³H]IP₃ binding was measured in the presence of 50 nM [³H]IP₃, and nonspecific binding was measured in the presence of both 50 nM $[^{3}H]IP_{3}$ and 5 μ M nonradioactive IP₃. Specific IP₃ binding was determined as the difference between total and nonspecific binding. To obtain Scatchard plots, total [³H]IP₃ binding was measured in the presence of 5–300 nM $[^{3}H]IP_{3}$ only, whereas nonspecific binding was measured in the presence of 5-300 nM [³H]IP₃ and corresponding 100-fold concentrations of nonradioactive IP₃. From Scatchard analyses, apparent dissociation constants (K_d) and maximal binding (B_{max}) for $[^{3}H]IP_{3}$ binding to cerebellar fractions were obtained.

The detailed protocol for the centrifugation assay is outlined in Ref. 1. Briefly, cerebellar fractions were added in a final concentration of 1 mg/ml and incubated in binding media in plastic tubes on ice for 30 min with occasional vortexing. After the 30-min incubation period, 0.43 ml from each IP₃ tube of binding medium was transferred to an ultraclear airfuge centrifuge tube that was spun at high speed in a Beckman Airfuge for 10 min at 23°C. The colorless supernatant was carefully removed from the tube after which the pellet was rinsed once with chilled binding buffer not containing IP₃. The pellet was solubilized by adding 0.43 ml of 10% (wt/vol) glycerol, 5% (vol/vol) 2-mercaptoethanol, 2.3% (wt/vol) sodium dodecyl sulfate, and 625 mM Tris HCl, pH 6.8, to the tube and incubating it for a minimum of 3 h. Then the entire tube containing the pellet and solubilizing buffer was placed in a vial containing 15 ml of Opti-Fluor (Packard Bell) scintillation cocktail and analyzed by liquid scintillation spectrometry.

 $[^{3}H]IP_{2}$ binding was carried out as described above using 15 nM $[^{3}H]IP_{2}$.

Measurements of $[{}^{3}H]IP_{3}$ hydrolysis. To determine the extent of IP3 hydrolysis occurring, high-pressure liquid chromatography (HPLC) analysis was performed on $[^{3}H]IP_{3}$ binding media of 0.5 ml vol, consisting of (in mM) 50 Tris buffer, pH 8.3, 1 EDTA, 50 K₂HPO₄, and 50 [³H]IP₃. Two different types of "control" experiments were designed. One type contained only [³H]IP₃ and no added protein or $Mg^{2\ddagger}$ to assess the initial level of IP_3 hydrolysis in the radioactive sample itself. A second type contained 0.5 mg protein and $[^{3}H]IP_{3}$ to assess the level of IP₃ degradation by the IP₃ase present in the protein sample before addition of Mg²⁺. "Experimental media" contained 0.5 mM MgCl₂ in addition to 0.5 mg protein and [³H]IP₃ and were prepared in Silanized 2-ml centrifuge tubes and incubated on ice for 30 min at 1.6°C. At the end of the incubation period, 0.5 ml of 10% (wt/vol) trichloroacetic acid (TCA) was added to stop the binding reaction.

FIG. 1. IP₃-induced Ca²⁺ release from cerebellar crude mitochondrial pellet fraction at high (2 mM) and low (0.3 mM) total Mg²⁺. Ca²⁺ loading and Ca²⁺ release were measured as described in MATERIALS AND METHODS using antipyrylazo III as a Ca²⁺ indicator. Assay was started by adding 0.5 mg of membrane protein. Two consecutive 10 nmol CaCl₂ pulses were administered (2nd addition is shown at arrow). After completion of Ca²⁺ loading, 10 μ M IP₃ was added (arrowheads). A downward deflection of absorbance tracing after Ca²⁺ administration is indicative of Ca²⁺ loading, and an upward deflection corresponds to Ca²⁺ release. At end of each experiment, 10 nmol CaCl₂ were added to recalibrate antipyrylazo III response (arrows). Data points were stored on Hewlett-Packard microflexible disks, and tracings were electronically scaled so that Ca²⁺ releases are directly comparable. A: total Mg²⁺ was 0.3 mM, and free Mg²⁺ was calculated to be 334 μ M; B: total Mg²⁺ was 0.3 mM, and free Mg²⁺ was calculated to be 28.6 μ M.

	P ₂		P ₃	
	0.3 mM Mg ²⁺ (28.6 µM free Mg ²⁺)	2 mM Mg ²⁺ (334 μM free Mg ²⁺)	0.3 mM Mg ²⁺ (28.6 μM free Mg ²⁺)	2 mM Mg ²⁺ (334 µM free Mg ²⁺)
Rate of Ca^{2+} release, nmol $Ca^{2+} \cdot min^{-1} \cdot mg$ protein ⁻¹	228.7±22.9 (8)	141.9±18.5 (7)	179.7±21.9 (12)	106.7±8.8 (7)
Extent of Ca ²⁺ release, nmol Ca ²⁺ /mg protein	30.0±3.4 (8)	17.1±4.3 (7)	15.9±3.1 (12)	6.9±1.1 (7)
$K_{\rm m}, \mu M$ Hill coefficient	0.48 ± 0.10 (4) 1.51 ± 0.16 * (4)	0.94 ± 0.15 † (3) 1.63 ± 0.19 * (3)	0.39±0.11† (4) 1.69±0.14* (4)	0.88 ± 0.17 † (3) $1.78 \pm 0.20^{*}$ (3)

TABLE 1. Effects of Mg^{2+} on IP_3 -induced Ca^{2+} release from cerebellar P_2 and P_3

Values are means \pm SD of no. of experiments in parentheses. P₂, crude mitochondrial pellet; P₃, crude microsomal pellet. Experiments were carried out as described in MATERIALS AND METHODS and in legends to Figs. 1 and 3. Rate and extent of Ca²⁺ release were measured in presence of 10 μ M IP₃. Michaelis constant (K_m) and Hill coefficient were calculated as described in Fig. 3C. Relative size of inositol 1,4,5-trisphosphate (IP₃)-sensitive and IP₃-insensitive Ca²⁺ stores was calculated as follows: total Ca²⁺ accumulated by preparation was 40 nmol Ca²⁺/mg protein and is defined as total Ca²⁺ store (Tot_{Ca²⁺}). IP₃ was able to release only part of actively accumulated Ca²⁺. Size of the IP₃-sensitive Ca²⁺ store was calculated from (extent of Ca²⁺ release/Tot_{Ca²⁺}) × 100 and was 75 and 43% of total (IP₃ sensitive and IP₃ insensitive) Ca²⁺ store at low and high free Mg²⁺, respectively (second line, first two columns). * Not significant; † P < 0.05.

HPLC analysis was also performed on Ca²⁺ release assay media of 0.5 ml vol containing 40 mM KCl, 52.5 mM potassium phosphate, 8 mM potassium MOPS, pH 7.0, 0.04 mg/ml creatine phosphokinase, 0.2 mM phosphocreatine, 1 mM Na₂ATP, and either 0.3 or 2 mM MgCl₂. Control media contained no protein, and experimental media contained 0.5 mg protein. The media were prepared in Silanized 2.0-ml centrifuge tubes and incubated at 37°C for 10 min after which 10 μ M IP₃ spiked with 0.03 μ Ci [³H]IP₃ was added. Twenty seconds after the addition of IP₃ to the media, the Ca²⁺ release reaction was stopped with the addition of 0.5 ml of ice-cold 10% (wt/vol) TCA.

After the addition of TCA, the media were vortexed and centrifuged in a Fisher microfuge (model 235A) at high speed for 5 min in a cold room (4°C). The supernatants were extracted five times with ice-cold ethyl ether. After the extractions, the supernatant was run on the HPLC column. Alternatively, the supernatant was frozen at -80°C, lyophilized, and then resuspended in 0.4 ml of 1 mM EDTA, pH 7.0.

The HPLC analysis was carried out using a Du Pont Zorbax SAX column. The samples were eluted in 1-ml fractions by a two-step gradient from 0 to 100% of 0.6 M ammonium formate, pH 3.7 (flow rate, 1 ml/min). After being eluted from the column, the fractions were mixed with Flo-Scint IV scintillation fluid (Packard Bell) at a flow rate of 3 ml/min. They were then passed through an on-line β -detector (Radiomatic Flo-One model CT) to assess the level of radioactivity in each fraction. The identification of the different inositol phosphates was based on the retention time of labeled standards.

Materials. IP₃, inositol 1,4-bisphosphate (IP₂), GPIP₂, HEPES, and MOPS were obtained from Calbiochem; $[^{3}H]IP_{3}$ and $[^{3}H]IP_{2}$ from New England Nuclear; CaCl₂ and MgCl₂ stock solutions, heparin (catalog no. 5640), and antipyrylazo III from Sigma; and ATP from Pharmacia. Ultra-pure grade sucrose was from Schwarz-Mann Biotech. All other chemicals were of analytical or higher grade.

RESULTS

 Mg^{2+} inhibition of IP_3 -induced Ca^{2+} release. In Fig. 1, the cerebellar P_2 fraction actively accumulated two con-

secutive 10-nmol CaCl₂ pulses (up to 40 nmol Ca²⁺/mg protein) and then released a certain amount of Ca²⁺ when challenged with 10 μ M IP₃ (arrowheads in Fig. 1). As shown in Fig. 1A (2 mM total Mg²⁺ and 334 μ M free Mg²⁺), IP₃ released ~38.5% of the accumulated Ca²⁺ within ~20 s, and as shown in Fig. 1B (0.3 mM total Mg²⁺ and 28.6 μ M free Mg²⁺), IP₃ released twice as much Ca²⁺. The rate of Ca²⁺ release was also faster at the lower free Mg²⁺ concentration (see also Table 1). Thus Mg²⁺ interfered with the Ca²⁺-releasing action of IP₃.

 Ca^{2+} -loading rates were similar in both cases (Fig. 1, A and B) and were at least one order of magnitude lower than Ca^{2+} -release rates. Experimental conditions were such that Ca^{2+} loading was carried out at MgATP concentrations of 725 and 185 μ M (Fig. 1, A and B, respectively), i.e., well above its Michaelis constant (K_m) of $\sim 27 \ \mu$ M.¹ The larger Ca^{2+} release observed in Fig. 1B was therefore not likely due to a reduced Ca^{2+} reuptake during release.

Figure 2 shows that Mg^{2+} inhibited IP₃-induced Ca²⁺ release from both P₃ and P₂ fractions (Fig. 2, A and B, respectively) in a concentration-dependent manner. Half-maximal inhibition of Ca²⁺ release was attained at Mg^{2+} concentrations of 61.2 ± 6.8 and 69.3 ± 7.1 (SD) μ M for P₃ and P₂ fractions, respectively (n = 3).

In Figs. 1 and 2, Ca^{2+} release was elicited by 10 μ M IP₃ to counteract the action of IP₃ase, which degrades IP₃ in a Mg²⁺-dependent fashion (8, 14). The extent of IP₃ hydrolysis was measured in Ca²⁺ release media containing 10 μ M [³H]IP₃ and either low or high free Mg²⁺ (28.6 and 334 μ M Mg²⁺, respectively). As judged by HPLC chromatograms, after 20 s at 37°C, IP₃ comprised 90.6 and 86.4% of the total inositol phosphates at low and high free Mg²⁺, respectively. Thus the concentration of IP₃ remaining after 20 s was >8.5 μ M and was still at saturating levels (i.e., >2 μ M; see below Fig. 3A). Figure 3A shows that Mg²⁺ reduces the extent of IP₃-

Figure 3A shows that Mg^{2+} reduces the extent of IP₃induced Ca²⁺ release at saturating IP₃ concentrations. Figure 3B shows the effect of Mg^{2+} on the dose-response curve for IP₃-induced Ca²⁺ release when the extent of Ca²⁺ release is replotted as percentage of maximal re-

 $^{{}^{1}}K_{m}$ was calculated from Lineweaver-Burk plots of $1/Ca^{2+}$ loading rate vs. [MgATP]. In the assays, total Mg²⁺ concentration varied from 0.1 to 5 mM and total ATP from 0.1 to 2 mM.

FIG. 2. Mg^{2+} inhibition of IP_3 -induced Ca^{2+} release from cerebellar crude mitochondrial pellet (P_2) and crude microsomal pellet (P_3) fractions. IP_3 -induced Ca^{2+} release was measured in presence of 10 μ M IP₃ as described in MATERIALS AND METHODS and in legend to Fig. 1. Total ATP concentration was kept at 1 mM, and total Mg^{2+} concentration varied from 0.1 to 3 mM. Typical experiments are shown depicting the extent of IP_3 -induced Ca^{2+} release from cerebellar P_3 (A) and P_2 (B) as a function of free Mg^{2+} concentration. Mg^{2+} concentrations inhibiting IP_3 -induced Ca^{2+} release by 50% were determined graphically assuming highest amount of Ca^{2+} release as 100%.

sponse; it is evident that Mg^{2+} shifted such a curve to the right. Hill plots of these curves (Fig. 3C) allowed determination of K_m . Mg^{2+} seemed to be a noncompetitive inhibitor of IP₃-induced Ca²⁺ release, since both extent of Ca²⁺ release (Fig. 3A) and K_m (Fig. 3C) were different. Additionally, the Hill coefficients were 1.5 and 1.6 in the presence of low and high Mg^{2+} , respectively, and indicated that IP_3 -induced Ca^{2+} release was cooperative.

Several parameters of inhibition of IP₃-induced Ca²⁺ release by Mg²⁺ are summarized in Table 1. Low free $[Mg^{2+}]$, i.e., 28.6 μ M, increased the rate and extent of Ca²⁺ release and decreased the apparent K_m for IP₃-

FIG. 3. Influence of Mg^{2+} on dose-response curve for IP_3 -induced Ca^{2+} release from cerebellar P_2 fraction. IP_3 -induced Ca^{2+} release was measured as described in MATERIALS AND METHODS. IP_3 concentration was varied from 0.1 to 20 μ M; total Mg^{2+} concentration was kept either at 0.3 (O) or 2 mM (\bullet). A: typical experiment. Extent of IP_3 -induced Ca^{2+} release is plotted as a function of [IP_3]. B: extent of IP_3 -induced Ca^{2+} release is expressed as percentage of maximal response and plotted as a function of $[IP_3]$. C: Hill plot of data in A. On ordinate, y represents fractional release, which is defined as extent of Ca^{2+} release obtained at a particular IP_3 concentrations studied. K_m represents the x-axis value for y = 0. Mean K_m values of several experiments for both P_2 and P_3 fractions are reported in Table 1.

induced Ca²⁺ release from ~0.9 to 0.4–0.5 μ M IP₃. The Hill coefficient was between 1.5 and 1.8 for P₂ and P₃ fractions, and Mg²⁺ did not affect the degree of cooperativity for IP₃-induced Ca²⁺ release. As previously shown (1), cerebellar P₂ fractions released larger amounts of accumulated Ca²⁺ as compared with P₃ fractions, at both high and low free [Mg²⁺]. No additional insight was gained as to the reasons for different Ca²⁺ release between P₂ and P₃ fractions (see also Ref. 1).

 Mg^{2+} inhibition of $GPIP_2$ -induced Ca^{2+} release. Mg^{2+} dependent hydrolysis of IP_3 might be responsible for some of the differences observed in Fig. 3, particularly

FIG. 4. Effect of Mg²⁺ on glycophosphoinositol 4,5-bisphosphate GPIP₂-induced Ca²⁺ release from cerebellar P₂ fraction. Ca²⁺ loading of cerebellar P₂ fraction (40 nmol Ca²⁺/mg protein) was carried out as described in MATERIALS AND METHODS. A: total Mg^{2+} concentration was kept either at 0.3 (0) or 2 mM (\bullet); GPIP₂ concentration was varied from 0.1 to 40 μ M. Extent of GPIP₂-induced Ca²⁺ release is expressed as percentage of maximal response and is plotted as a function of [GPIP₂]. GPIP₂ was one order of magnitude less effective than IP₃. However, saturating concentrations of either IP3 or GPIP2 released similar amounts of Ca²⁺ (not shown). Inset: spectrophotometric tracing in which 30 μ M GPIP₂ (arrowhead) was added to cerebellar P₂ fraction. Downward deflection at GPIP₂ addition is an artifact also observed in absence of membrane protein (not shown). Arrow, addition of 10 nmol CaCl₂. B: total ATP concentration was kept at 1 mM, and total Mg² concentration varied from 0.2 to 3 mM. Ca²⁺ release was elicited by adding 30 µM GPIP₂. Extent of GPIP₂-induced Ca²⁺ release is plotted as function of free Mg²⁺ concentration.

at low IP₃ concentrations. To address this issue, we repeated experiments reported in Figs. 2 and 3 using GPIP₂, a poorly metabolized analogue of IP₃ (4, 15, 16). Figure 4A shows that GPIP₂ induced Ca²⁺ release from cerebellar P₂ (Fig. 4A, *inset*), although higher concentrations were required to attain maximal Ca²⁺ release (17). Mg²⁺ shifted the dose-response curve for GPIP₂-induced Ca²⁺ release to the right; half-maximal release was obtained with 6.5 and 11.8 μ M GPIP₂, at 28.6 and 334 μ M free Mg²⁺, respectively. Figure 4B shows that Mg²⁺ inhibited Ca²⁺ release elicited by a saturating concentration of GPIP₂ (30 μ M) in a concentration-dependent manner. These experiments, together with estimates of IP₃ hydrolysis (see above), clearly suggest that inhibition of IP₃-induced Ca²⁺ release by Mg²⁺ was not due to augmented Mg²⁺-dependent IP₃ hydrolysis.

Effect of Mg^{2+} on $[{}^{3}H]IP_{3}$ binding. Mg^{2+} was found to be a noncompetitive inhibitor of $[{}^{3}H]IP_{3}$ binding by the Scatchard analysis shown in Fig. 5. The plot indicates that 0.5 mM free Mg^{2+} decreased B_{max} from ~10 to 3 pmol $[{}^{3}H]IP_{3}$ bound/mg protein and increased K_{d} from 117 to 171 nM. Mean values of B_{max} and K_{d} for three different experiments are reported in Table 2. K_{d} values for $[{}^{3}H]IP_{3}$ binding were higher than previously reported (1, 17, 27) because of the presence of 50 mM phosphate, which was added to the assay medium to help inhibit the IP_{3} ase (14). Figure 5, *inset*, shows, however, that in the absence of both Mg^{2+} and 50 mM phosphate, B_{max} was unchanged (~10 pmol $[{}^{3}H]IP_{3}$ bound/mg protein) and K_{d} was in the expected range, i.e., 34.4 nM (compare Refs. 1, 17, 27).

Hill plots of $[{}^{3}H]IP_{3}$ binding data (not shown) yielded linear relationships with slopes ~1, which is consistent with a one-site model (24, 27), and indicated that Mg²⁺ did not influence the degree of cooperativity for $[{}^{3}H]IP_{3}$

FIG. 5. Effect of 0.5 mM free Mg^{2+} on $[{}^{3}H]IP_{3}$ binding to cerebellar P_{2} fraction. Data are presented as a Scatchard plot analysis for a typical experiment. $[{}^{3}H]IP_{3}$ binding was carried out as described in MATERIALS AND METHODS in presence of 50 mM phosphate and in presence (\odot) or absence (\bigcirc) of 0.5 mM free Mg^{2+} . Phosphate was used to inhibit, at least partially, IP_{3} ase (14). 2,3-Bisphosphoglycerate, a known inhibitor of the IP_{3} ase, was found to inhibit IP_{3} binding as well (not shown, see also Ref. 27) and could not be used in these experiments. *Inset*: IP_{3} binding in absence of both 50 mM phosphate and Mg^{2+} . Under these experimental conditions K_{d} was found to be 34.4 nM, similar to that previously reported for either dog (1) or rat (17, 27) cerebellar membrane vesicles.

binding. Mean values for three experiments are reported in Table 2.

 IP_3 hydrolysis in $\int {}^{3}H / IP_3$ binding medium. It would be expected that IP₃ase would not be very active in the $[^{3}H]IP_{3}$ binding medium because of the presence of phosphate, the temperature $(1.6^{\circ}C)$, and the fact that the IP₃ concentrations used were well below the $K_{\rm m}$ of the IP₃ase of ~15 μ M (14, 17). Nevertheless, 0.5 mM free Mg²⁺ might promote the action of the IP₃ase, and the actual IP_3 concentration in the IP_3 binding medium might be lower than the nominal one. The extent of IP_3 hydrolysis was thus measured by HPLC in the absence and presence of 0.5 mM free Mg²⁺ (Fig. 6). After a 30-min incubation in the absence of Mg^{2+} , the cerebellar P_2 fraction degraded only 3.8% of the initial 50 nM [³H]IP₃ into [³H]- IP_2 (Fig. 6, solid line). In the presence of Mg^{2+} , 5.1% of the initial [³H]IP₃ was hydrolyzed (Fig. 6, dotted line). Using bovine adrenal cortex membranes, Guillemette et al. (14) reported that 9% of the initial IP₃ was hydrolyzed after 15-min incubation in the presence of Mg²⁺. If data of Fig. 5 are corrected for the actual IP₃ concentrations in the presence and absence of Mg^{2+} , both B_{max} and K_d do not change appreciably. Additionally, we could not detect any specific $[^{3}H]IP_{2}$ binding with 15 nM $[^{3}H]IP_{2}$ (not shown), which implies that all specific binding was due to $[^{3}H]IP_{3}$.

Effect of Mg^{2+} on heparin inhibition of IP_3 -induced Ca^{2+} release. Heparin, a competitive inhibitor of IP₃induced Ca^{2+} release (13), was previously found to inhibit IP₃-induced Ca²⁺ release from canine brain microsomes (21) with an apparent inhibitory constant (K_i) of 14 μ M at 127 μ M free Mg²⁺. Figure 7A shows that 14 μ M heparin inhibited IP_3 -induced Ca^{2+} release from the cerebellar P_2 fraction at both low and high free Mg^{2+} , i.e., 28.6 and 334 μ M Mg²⁺ (Fig. 7, C and D, respectively). Both the extent and rate of IP₃-induced Ca²⁺ release were affected by heparin. Figure 7B shows the inhibitory effect of two different heparin concentrations, i.e., 14 and 22 μ M, on $IP_3\text{-induced Ca}^{2+}$ release when free Mg^{2+} varied between 18 and 585 $\mu M.$ The plot clearly indicates that Mg^{2+} and heparin are additive inhibitors. The Dixon plot of Fig. 7C shows that the families of curves intersect below 1/ R_{max} and above the x-axis, as expected for the interaction between a competitive inhibitor (heparin) and a mixedtype inhibitor (Mg^{2+}) , which are not mutually exclusive. Thus Mg²⁺ and heparin seem to have distinct binding sites.

DISCUSSION

Intracellular effects of Mg^{2+} . Mg^{2+} is involved in several aspects of neuronal function (12). It is a cofactor for hundreds of enzymes, plays an important role in protein synthesis, and is also involved in a wealth of metabolic processes, i.e., glycolysis, respiration. Intracellular Mg^{2+} regulates transmembrane transport of ions such as Na⁺ and Ca²⁺ (2) and may also act as cofactor of ion channels, since Mg^{2+} is the blocking ion producing inward K⁺ rectification (23).

Very little is known about the free Mg^{2+} concentration in vertebrate neurons and whether the resting free Mg^{2+} concentration changes upon cell activation (2). By ³¹Pnuclear magnetic resonance spectra of superfused cerebral tissues, free Mg^{2+} values of 0.33 mM have recently been reported (5). These values were increased by hypoglycemia, hypoxia, or reduced extracellular Ca^{2+} (5). Intracellular free Mg^{2+} seems to be well buffered (2) as measured by Mg^{2+} -sensitive microelectrodes, which, however, lack the time resolution required to detect transient changes of free Mg^{2+} concentration. In this respect, monitoring cytoplasmic free Mg^{2+} in cultured neurons loaded with Furaptra, a cell-trappable fluorescent Mg^{2+} indicator (19), should soon provide valuable information.

Do the present data have physiological relevance? This paper shows that Mg^{2+} is an in vitro inhibitor of both IP_3 -induced Ca^{2+} release from isolated cerebellar membrane fractions and $[^3H]IP_3$ binding. The present observations indicate that, if the resting intracellular Mg^{2+} concentration is ~0.3 mM (5) and does not change on cell activation, Mg^{2+} controls IP_3 -induced Ca^{2+} release by affecting both the binding of IP_3 to its receptor sites (Fig. 5) and the release of Ca^{2+} via IP_3 -gated Ca^{2+} channels (Figs. 1–3). A portion of the IP_3 -sensitive Ca^{2+}

TABLE 2. Effect of Mg^{2+} on $[^{3}H]IP_{3}$ binding to cerebellar P_{2} fraction

	No Mg ²⁺	0.5 mM Free Mg ²⁺
B _{max} , pmol/mg protein	$10.9 \pm 2.2^{\dagger}$	3.5±0.6†
$K_{\rm d},{ m nM}$	$136 \pm 20^{*}$	$227 \pm 45^*$
Hill coefficient	1.11±0.15‡	$1.02 \pm 0.08 \ddagger$

Data are means \pm SD for 3 different experiments. B_{max}, maximal binding; K_d , dissociation constant; IP₃, inositol 1,4,5-trisphosphate; P₂, crude mitochondrial pellet. Experiments were carried out as described in MATERIALS AND METHODS and in legend to Fig. 6. * P < 0.05; † P < 0.01; \ddagger Not significant.

FIG. 6. IP₃ hydrolysis by cerebellar P₂ fraction in [³H]IP₃ binding medium. [³H]IP₃ binding media were prepared and high-pressure liquid chromatography (HPLC) analysis carried out as described in MATE-RIALS AND METHODS. Incubation was performed with 50 nM [³H]IP₃ for 30 min at 1.6°C, in presence (dotted line) or absence (solid line) of 0.5 mM free Mg²⁺. Samples were not lyophilized before HPLC separation. Two additional experiments were done in which samples were lyophilized before HPLC separation, and similar results were obtained (not shown). Actual counts (cpm/fraction) referable to [³H]IP₃ and [³H]IP₂ were 890 × 10² and 35 × 10² and 750 × 10² and 40 × 10², respectively, in absence and presence of Mg²⁺. Data in text are given as [IP₂/(IP₂ + IP₃)] × 100.

Free Mg^{2+} , μM

FIG. 7. Effect of heparin and Mg^{2+} on IP_3 -induced Ca^{2+} release from cerebellar P_2 fraction. Ca^{2+} loading and Ca^{2+} release were measured as described in MATERIALS AND METHODS using antipyrylazo III as a Ca^{2+} indicator. A: assay was started by adding 0.5 mg of membrane protein and then 2 consecutive 10-nmol $CaCl_2$ pulses (not shown). Control tracings a and b were in presence of low (a) and high (b) free Mg^{2+} (28.6 and 334 μ M Mg^{2+} , respectively). Tracings c and d: 14 μ M heparin was added 20-30 s before addition of 10 μ M IP_3 . B: total ATP concentration was kept at 1 mM, and total Mg^{2+} concentration varied from 0.2 to 3 mM. Ca^{2+} release was elicited by adding 10 μ M IP_3 . Extent of IP_3 induced Ca^{2+} release is plotted as function of free Mg^{2+} . \odot , Control; \bullet , + 14 μ M heparin; Δ , plus 22 μ M heparin. Average molecular weight of heparin was assumed to be 5,000 (21). C: Dixon plot of data of B; symbols are as in B.

channels could always be in a closed state provided that other in situ regulatory factors, yet to be identified, do not play opposite roles.

Transient or long-lasting changes (5) of free Mg^{2+} concentration are also expected to affect IP₃-induced Ca^{2+} release. During an intracellular Ca^{2+} transient, free Mg^{2+} might increase, at least temporarily, if Ca^{2+} and Mg^{2+} compete for the same cytoplasmic binding sites. The magnitude and duration of free Mg^{2+} change would reflect the kinetics of Ca^{2+} transport back into intracellular Ca^{2+} stores, Ca^{2+} extrusion from the cell, and Ca^{2+} binding to cytoplasmic $Ca^{2+}-Mg^{2+}$ binding proteins, e.g., parvalbumin (6). Such an increase of Mg^{2+} concentration would decrease both IP₃ binding and IP₃-induced Ca^{2+} release. Within this hypothetical scenario, increasing the free Mg^{2+} concentration would favor the formal transition to the closed state of the IP₃-gated Ca^{2+} channel.

There is ample evidence that IP₃ releases only part, i.e., 30-50%, of the Ca²⁺ accumulated by intracellular high affinity Ca²⁺ stores (17). The present findings indicate that estimates of the IP₃-sensitive Ca²⁺ store are influenced by the experimental conditions, notably by the free Mg²⁺ concentration. Data of Table 1 show that IP₃ releases part of the actively accumulated Ca²⁺ (40 nmol Ca²⁺/mg protein) and suggest that the size of the IP₃-sensitive Ca²⁺ store may vary from 43 to 75% of the total (IP₃-sensitive and IP₃-insensitive) Ca²⁺ store of the P₂ fraction (40 nmol Ca²⁺/mg protein), depending on the Mg²⁺ concentration of the assay medium (see legend to Table 1). An IP₃-insensitive Ca²⁺ store can be detected even at low free Mg²⁺ concentrations, although its identification, characteristics, and relationship to the IP₃sensitive Ca²⁺ store are still unknown (see also Ref. 1).

Mechanism of Mg^{2+} inhibition. Mg^{2+} is shown to be a noncompetitive inhibitor of both [³H]IP₃ binding and IP_3 -induced Ca²⁺ release. The [³H]IP₃ binding data (Fig. 5 and Table 2), even when adjusted for the small amount of IP₃ degraded in the presence of 0.5 mM free Mg^{2+} (Fig. 6), clearly indicate the noncompetitive nature of the inhibition. The effect of Mg^{2+} on IP_3 -induced Ca^{2+} release was studied after active Ca^{2+} preloading and under experimental conditions which necessarily favored IP₃ hydrolysis, e.g., micromolar concentrations of IP₃, Mg^{2+} , and 37°C. We have demonstrated that Mg^{2+} is an inhibitor of IP₃-induced Ca²⁺ release by showing that 1) saturating concentrations of IP₃ released less Ca²⁺ at high free Mg^{2+} (Figs. 2 and 3A). 2) Mg^{2+} inhibited IP_{3-} and $GPIP_{2}$ -induced Ca^{2+} release with identical characteristics (Fig. 4). 3) Mg^{2+} caused a shift to the right of the dose-dependence curve for both IP₃- and GPIP₂induced Ca^{2+} release (Figs. 3B and 4A, respectively). 4) Ca^{2+} reuptake, after addition of IP₃, was similar at low and high free Mg^{2+} concentrations, i.e., 28.6 and 334 μ M, respectively (uptake phases in Fig. 1). 5) Of the initial concentration, 85-90% of IP₃ was left after 20 s, i.e., the time to peak Ca²⁺ release (compare Fig. 1). Thus differences in K_m (Fig. 3C) and extent of IP₃-induced Ca²⁺ release (Fig. 3A) indicate that Mg^{2+} is indeed a noncompetitive inhibitor of IP_3 -induced Ca^{2+} release.

The effects of Mg^{2+} are different from those exerted by free Ca^{2+} and pH, which change only the apparent affinity of the IP₃ receptor of rat cerebellar microsomes (16). IP₃-induced Ca²⁺ release from canine brain microsomes was also shown to be inhibited by increasing free Ca²⁺ (21). Half-maximal inhibition of IP₃-induced Ca²⁺ release was obtained at ~6 μ M free Ca²⁺ (21). Previous data (16, 21) and present results, taken together, indicate that the mechanisms of inhibition by Mg²⁺ and Ca²⁺ are different and that the inhibitory site(s) has(have) an apparent affinity for Ca²⁺ (6 μ M) 10-fold higher than for Mg²⁺ (~60 μ M; Fig. 2). It is not known, however, whether Mg²⁺ and Ca²⁺ have distinct binding sites.

Additional insight into the mechanism of action of Mg^{2+} was provided by experiments carried out with heparin, known to be a competitive inhibitor of IP₃ binding and IP₃-induced Ca²⁺ release (13, 17). Dixon plot analysis of inhibition curves with increasing concentrations of heparin (Fig. 7C) clearly shows that Mg^{2+} and heparin, and thus IP₃, have distinct binding sites.

The overall effect of Mg^{2+} was to reduce the affinity of the receptor for IP₃. The Mg^{2+} effect on the K_d for [³H]IP₃ binding and the K_m for IP₃-induced Ca²⁺ release seems to be quantitatively different. In the presence of phosphate, the average K_d was 136 nM, and the K_m was 480 nM at low free Mg^{2+} ; at high free Mg^{2+} , the average $K_{\rm d}$ was 227 nM and the $K_{\rm m}$ was 940 nM (Tables 1 and 2). It has long been acknowledged that the two constants are different mainly because of the different experimental conditions, e.g., temperature, pH, IP₃, and Mg^{2+} concentrations, etc. (17), and the present study is no exception. However, since the IP₃ binding has been reported to be noncooperative (24, 27, and Table 2), whereas both the opening of the Ca^{2+} channel (18) and IP_3 -induced Ca^{2+} release (Fig. 3C and Table 1) appear to be cooperative, one should regard IP₃ binding as part of, rather than equivalent to, IP₃-induced Ca²⁺ release. The K_d and $K_{\rm m}$ need not necessarily be identical if the channel is a multiprotein complex comprised of, at least, the IP₃ receptor, the channel pore, and a Ca²⁺ regulatory protein, i.e., calmedin (7). Differences between K_d and K_m may be present, even though the IP₃-binding site and channel pore domains belong to the same polypeptide (10).

 Mg^{2+} might have more than one site of action and influence both IP₃ binding, as clearly shown here, and Ca²⁺ channel opening. The reduction of B_{max} would indicate that Mg^{2+} decreases the number of activatable Ca²⁺ channels. Mg^{2+} might also interact with the conduction pathway and inhibit Ca²⁺ permeation, as has been suggested for the skeletal muscle sarcoplasmic reticulum Ca²⁺ release channel (22). Single channel analysis of cerebellar vesicles incorporated into planar lipid bilayers and additional kinetic studies of Ca²⁺ release will further clarify the mechanism of action of Mg²⁺ on the IP₃-gated Ca²⁺ channel.

REFERENCES

- 1. ALDERSON, B. H., AND P. VOLPE. Distribution of endoplasmic reticulum and calciosome markers in membrane fractions isolated from different regions of the canine brain. *Arch. Biochem. Biophys.* 272: 164–172, 1989.
- ALVAREZ-LEEFMANS, F. J., F. GIRALDEZ, AND S. M. GAMIÑO. Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can. J. Physiol. Pharmacol. 65: 915– 925, 1987.
- BERRIDGE, M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159-193, 1987.
- BERRIDGE, M. J., M. C. DAWSON, AND C. P. DOWNES, H. P. HESLOP, AND R. F. IRVINE. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. *Biochem. J.* 212: 473-482, 1983.
- BROOKS, K. J., AND M. S. BACHELARD. Changes in intracellular free magnesium during hypoglycaemia and hypoxia in cerebral tissue as calculated from ³¹P-nuclear magnetic resonance spectra. J. Neurochem. 53: 331-334, 1989.
- CELIO, M. R., AND C. W. HEIZMANN. Calcium-binding protein parvalbumin as a neuronal marker. *Nature Lond.* 293: 300-302, 1981.
- DANOFF, S. K., S. SUPATTAPONE, AND S. H. SNYDER. Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. *Biochem. J.* 245: 701-705, 1988.
- DANOFF, S. K., A. THEIBERT, R. EVANS, AND S. H. SNYDER. Ca²⁺dependent regulation of Ins-1,4,5-P₃ binding to rat cerebellar receptor. Soc. Neurosci. Abstr. 15: 1004, 1989.
- EDELMAN, A. M., D. D. HUNTER, A. E. HENDRICKSON, AND E. G. KREBS. Subcellular distribution of calcium- and calmodulin-dependent myosin light chain phosphorylating activity in rat cerebral cortex. J. Neurochem. 5: 2603-2617, 1985.
- FERRIS, C. D., R. L. HUGANIR, S. SUPATTAPONE, AND S. H. SNYDER. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. *Nature Lond.* 342: 87– 89, 1989.
- FISHER, S. K., AND B. W. AGRANOFF. Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48: 999-1017, 1987.
- FLATMAN, P. W. Magnesium transport across cell membranes. J. Membr. Biol. 80: 1-14, 1984.
- GOSH, T. K., P. S. EIS, J. M. MULLANEY, C. J. EBERT, AND D. L. GILL. Competitive, reversible and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263: 11075-11079, 1988.
- GUILLEMETTE, G., T. BALLA, A. J. BAUKAL, AND K. J. CATT. Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. J. Biol. Chem. 262: 1010-1015, 1987.
- JOSEPH, S. K., AND H. L. RICE. 1989. The relationship between inositol trisphosphate receptor density and calcium release in brain microsomes. *Mol. Pharmacol.* 35: 355–359, 1989.
- JOSEPH, S. K., H. L. RICE, AND J. R. WILLIAMSON. The effect of external calcium and pH on inositol trisphosphate mediated calcium release from cerebellum microsomal preparations. *Biochem.* J. 258: 261-265, 1989.
- JOSEPH, S. K., AND J. R. WILLIAMSON. Inositol polyphosphates and intracellular calcium release. Arch. Biochem. Biophys. 273: 1-15, 1989.
- MEYER, T., D. HOLOWKA, AND L. STRYER. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. *Sci*ence Wash. DC 240: 653-656, 1988.
- MURPHY, E., C. C. FREUDENRICH, L. A. LEVY, R. E. LONDON, AND M. LIEBERMAN. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc. Natl. Acad. Sci. USA 86: 2981-2984, 1989.
- NAHORSKI, S. R. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 11: 444-448, 1988.
- PALADE, P., C. DETTBARN, B. ALDERSON, AND P. VOLPE. Pharmacologic differentiation between inositol 1,4,5-trisphosphate-induced Ca²⁺ release and Ca²⁺- or caffeine-induced Ca²⁺ release from intracellular membrane systems. *Mol. Pharmacol.* 36: 673-680, 1989.

We thank Drs. Aileen K. Ritchie and Daniel Lang for comments on the manuscript, Monica "LG" Tzinas for excellent technical assistance, and Lynette Durant for typing the manuscript.

This work was supported by National Institutes of Health Grants GM-40068-02 (to P. Volpe) and HL-37943 (to G. A. Nickols).

Address for reprint requests: P. Volpe, Dept. of Physiology and Biophysics, Univ. of Texas Medical Branch, Galveston, TX 77550.

- SMITH, J. S., R. CORONADO, AND G. MEISSNER. Single channel measurements of the Ca²⁺ release channel from skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol. 88: 573-588, 1986.
- STANFIELD, P. R. Intracellular Mg²⁺ may act as co-factor in ion channel function. *Trends Neurosci.* 11: 474–476, 1988.
- STAUDERMAN, K. A., G. D. HARRIS, AND W. LOVENBERG. Characterization of inositol 1,4,5-trisphosphate-stimulated calcium release from rat cerebellar microsomal fractions. *Biochem. J.* 255: 677-683, 1988.
- 25. SUPATTAPONE, S., S. K. DANOFF, A. THEIBERT, S. K. JOSEPH, J.

STEINER, AND S. H. SNYDER. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. *Proc. Natl. Acad. Sci. USA* 85: 8747–8750, 1988.

- VOLPE, P., AND B. H. ALDERSON-LANG. Regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release. II. Effect of cAMP-dependent protein kinase. Am. J. Physiol. 258 (Cell Physiol. 27): C1086-C1091, 1990.
- WORLEY, P. F., J. M. BARABAN, S. SUPATTAPONE, V. S. WILSON, AND S. H. SNYDER. Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262: 12132-12136, 1987.

