
Virtual Parallelism Allows Relaxing the Synchronization
Constraints of SIMD Computing Paradigm

M. Migliardi♠ , P. Baglietto♥

DIST - University of Genoa
via Opera Pia 11a - 16145 Genoa, Italy

Tel. +39-10-353.2709 Fax +39-10-353.2154

and M. Maresca
DEI - University of Padova

Via Gradenigo - 35131 Padova, Italy
Tel. +39 49 827.7820 Fax +39 49 827.7826

Abstract

In this paper we propose to introduce execution autonomy in the SIMD paradigm
to overcome its rigidity while preserving the advantages of its synchronous
programming model and we show that Virtual Parallelism support is a necessary
condition to the profitable application of execution autonomy. We define execution
autonomy as the capability of each processing element of a massively parallel
computer to execute the instructions in a block of code of a single common program
autonomously and asynchronously. We define virtual parallelism as the capability to
emulate a n processors array on a m processor array with n/m performance
degradation. In past related works the relaxation of SIMD synchronization has been
already proposed, nevertheless its relation with Virtual Parallelism has never been
studied.

keywords: SIMD, Computational Paradigms, Execution Autonomy, Virtual
Parallelism, Data-parallelism.

1 INTRODUCTION

The SIMD computational model has progressively lost its popularity mainly because
of its rigidity. In particular the following two implementation constraints limit the
performance given by computers based on the SIMD paradigm. First the same clock
signal has to be distributed to all the Processing Elements (PE). This fact introduces
problems of crosstalk and clock skewing, and forces the whole computer to adopt a

♠
 Contact author: E-mail om@dist.unige.it

♥
 Presenting author: E-mail prp@dist.unige.it

low frequency clock. Second, the need to broadcast each single instruction from the
central controller to the PEs limits once again the clock frequency.
However SIMD massively parallel computers have demonstrated their suitability for
a number of computing tasks such as graph analysis, numerical analysis and
computer vision. Besides, it is much easier to extract massive parallelism by means
of data-parallelism than using control-parallelism and a single program that is
executed in a synchronous fashion on many PEs makes the task of developing and
debugging parallel algorithms on an SIMD machine by far simpler than it is on an
MIMD machine where many different programs interact asynchronously.
These facts have lead to two considerations:

• it is possible to separate the data-parallel programming model [4] from the
SIMD computational model;

• the SIMD implementation of the data-parallel programming model is over
synchronized.

In past related works it is possible to observe three different tendencies.
In order to improve the SIMD computational model, a first approach has been to
propose three different PEs autonomies [7], namely operation autonomy (OA),
addressing autonomy (AA) and connection autonomy (CA). OA provides the
massively parallel architecture with the capability of executing more than one
operation among the PEs; we can cite as examples of OA the activity bit of the
Polymorphic Torus and the multi-bit register of the CLIP7 system. AA allows each
PE to independently generate the data memory address or to independently modify
the data address broadcast from the central controller. We can cite as examples of
massively parallel SIMD computer with this capability the MasPar MP machines.
CA allows the massively parallel SIMD computer to modify the configuration of the
underlying inter-processor communication network at execution time in order to
optimally match the communication patterns of the algorithm; examples of
massively parallel computational models with CA are the Polymorphic Processor
Array [6] and the Mesh with Reconfigurable Busses[8].
In order to exploit the advantages of the data-parallel programming model without
mapping it on the SIMD computational model a second approach has been to go in
the direction of mapping it on a different computational model. Both the definition
of the SPMD computational model [9], the CM-5 system from the Thinking
Machines Corp. [5] can be classified in this stream.
Finally, following a third approach, other scientists have proposed to introduce a
limited degree of relaxation of the SIMD paradigm synchronization in such a way as
to keep it invisible to the machine users [1][10][12].
In our opinion the first approach has only partially solved the problems previously
mentioned in that it proposes enhancements that do not deal with the
implementation problems of the clock distribution and the instruction distribution.
At the same time the second approach has lead to computational models that are
often either biased toward MIMD or MIMD altogether and that discard positive
aspects of the SIMD computational model like its simplicity of architecture,
hardware and programming style. In order to preserve these positive aspects, it is
necessary to stick to the third approach, nevertheless past works have not formalized

the programming feasibility of this approach and have not studied its relation with
Virtual Parallelism.
Thus we propose to introduce a fourth kind of autonomy for SIMD computers that
we name Execution Autonomy (EA) [1], and we study its relationship with the
concept of Virtual Parallelism. EA allows each PE of a massively parallel computer
to execute the instructions in a block of code of a single common program
autonomously and asynchronously. We categorize this enhanced SIMD model
between the classical SIMD computational paradigm and the SPMD computational
paradigm, and we call it Single Block of instructions Multiple Data (SBMD)
paradigm [1] 1. As it is pointed out in table 1 the SBMD computational paradigm is
different from both the traditional SIMD and the SPMD computing paradigm.
In the next section of the paper we explore in more depth the model proposed
defining it in a formal way and showing its requirements; in section three we study
its architectural requirements; in section four we formalize its programming
requirements and we propose a solution to those programming requirements; finally,
in section five we provide some concluding remarks.

2 REQUIREMENTS OF THE SBMD COMPUTATIONAL

MODEL

On an SIMD machine the time T necessary to execute n instructions can be
calculated using the following formula:
T = n (t1 + t2) (1)
where n is the number of instructions executed, t1 is the time needed to broadcast a
single instruction and t2 is the time needed to execute a single instruction
The technological solutions affordable in past years were such as to make t1 ∼= t2,

thus the necessity of broadcasting an instruction at each clock cycle did not
constitute a bottleneck in the general machine architecture. Besides, the similarity

1
 It is interesting to observe that the Data Flow computational paradigm has gone through a

similar process evolving from early single instruction Data-Flow machines like the Manchester Data Flow
or Sigma-1, to macro-block Data-Flow machines like EM-4 [11th].

SIMD
(e.g. MP-1)

SBMD SPMD
(e.g. PASM

Programming Model Implicitly
Synchronous

Implicitly
Synchronous

Usually Expli
Synchroniz

Program Control Flow Global Local Local
CPU Architecture Very Simple. Many

on a single Chip.
 Simple. Many on a

single Chip
Usually off-the

CPUs
Communication Completely

Synchronous
Block Synchronized Barrier Synchro

Execution Level Synchronous Asynchronous Asynchrono

Table 1 Features Summarize

between the values of t1 and t2 made possible to pipeline broadcasting and

execution of a single instruction, allowing to overlap the two activities in order to
achieve the result of an execution time given by the following formula:
T = n * max(t1 , t2) (2)
In these years the CPUs have quickly evolved both in architectural and in
technological aspects becoming by far faster than before. This development has
made the assumption t1 ∼= t2 very distant from the reality, in fact it is quite

common nowadays to have t1 at least one order of magnitude larger than t2. As an

example the clock frequency of the MasPar MP2 system is 12.5MHz, while the
clock frequency of current RISC systems is about 600MHz.
Thus it would be very desirable to eliminate the direct proportionality to the t1
factor from the calculation of the time necessary to execute n instructions.
In order to achieve this result it is important to notice that in a sequence of n
instructions some instructions are executed more than once (e.g. loops), thus in a
sequence of n instructions there are only m different instructions (with n ≥ m).

Definition 1
We define a block of m instructions any slice of the compiled program containing m
instructions.

Definition 2
We define reusability factor of a compiled program the value of the ratio n/m
averaged over any block of m instructions.
If we broadcast a whole block of m instructions with a reusability factor of n/m
before starting to execute it we obtain an execution time that can be calculated with
the following formula:
T = m*t1 + n*t2 (3)
If we pipeline the broadcasting of a block and its execution, the previous formula
can be transformed in:
T = max(m*t1 , n*t2) (4)
Given that usually n is larger than m and t1 is larger than t2, we want to achieve the

result of having n*t2 > m*t1. In this latter case the formula can be simplified to:

T = n*t2 (5)
This last result demonstrates that the computing speed of the machine can be made
limited by the single PE computing speed and no more by the time required to
broadcast the instructions. As a matter of fact if the number of executed instructions
can be made large enough then the time required to broadcast to the PEs the
instructions results completely hidden. Thus, any increase in the PEs computing
speed due to a faster clock or a better PE architecture will result in increased
machine performance.
In order to make this promising result usable and profitable, it is necessary to fulfill
the following requirements:
a) t2 < t1
b) n > m
c) n*t2 > m*t1.

3 PE EXECUTION AUTONOMY

One of the main obstacles that prevents an SIMD machine from having a short clock
cycle is the necessity of broadcasting the clock signal to every single PE of the
machine. In fact at higher clock frequencies the phenomena of crosstalk and clock
skewing become evident.
We propose as a solution to this problem to enhance the SIMD computing paradigm
with execution autonomy.

Definition 3
We define m-execution autonomy the capability of the PEs of a massively parallel
system to execute a block of m instructions without any need to synchronize among
each other.
The concept of m-execution autonomy is quite important; in fact its length
corresponds to the granularity of autonomous and asynchronous execution allowed
in the machine.
In a machine with m-execution autonomy any PE can work using a locally
generated clock signal for the number of consecutive clock cycles necessary to
complete the execution of a block of m instructions. Thus it is possible to make t2 <
t1 and to fulfill requirement a).
Improving SIMD computers with EA requires to introduce a local instruction
memory and a local program counter in each PE to allow the independent execution
of block of instructions and subprograms previously received from the central
controller. The program is still the same for all the PEs but the control flow can be
different in each PE depending on the local data flow and the conditional
instructions. Thus EA allows each PE to use a clock signal locally generated instead
of a clock signal generated in the program controller and then distributed.
Besides, the use of EA and the support for the SBMD paradigm overcomes the
rigidity of the traditional SIMD computational model allowing to avoid to have
large sets of PEs inactive during the execution of conditional statements.

Name Brief Program Description max BB mean BB min BB
p3pack Matrix operations 13 4.3 1
p3wrap Matrix operations 2 1.1 1
spfft Data Parallel FFT 19 3.06 1
fftwap FFT support and test 1 1 1
mpltest FFT support and test 5 1.39 1
realtest FFT support and test 5 1.28 1
dynamics Molecular dynamics simulation 87 4.81 1
p_convolve Snake sweep convolution 5 2 1
jplfdct JPEG Discrete Cosine Transform 180 119.67 1
jplquant JPEG Quantization of DCT coefficients 5 1.7 1
phuff JPEG Huffman coding 32 3.72 1

Table 2 Programs used to measure the dimension of basic blocks in data parallel programs
and maximum, minimum and mean dimension of their basic blocks.

A local program counter and the independent execution of subprograms allow to
overlap the local execution of the instructions with the distribution of the
instructions and of the data broadcast by the central controller. Instructions and data
broadcast can be overlapped to the instruction execution through memory interleave.
The local memory can be divided into two banks alternatively used locally during
instruction execution and for I/O operations with the central controller and the
external memory. The main additional cost of EA enhanced PEs with respect to
traditional SIMD PEs is the presence of a local program memory. This memory
needs to be large enough to store the m instructions that each PE is able to execute
asynchronously. Nevertheless, this memory is not large, in fact the basic blocks of
data parallel programs are small. In order to have a quantitative analysis of this
phenomenon we measured the number of instruction of basic blocks of several
programs implementing a set of tasks on a MP-1 machine. In table 2 you can see a
list of the program we measured with a brief description of each one. We define a
basic block of a data parallel program any block of instructions containing only PE
instructions and no instructions that need to be executed by the sequential controller
or communication primitives. In fact each inter-PE communication primitive forces
a synchronization among the PEs. In table 2 we can see the dimension measured in
instructions of the largest and smallest basic block of each program as well as the
mean number of instructions of each program basic blocks. As table 2 shows, in all
but one of the programs, these values are smaller than one hundred; this fact means
that in a massively parallel SIMD architecture such as the MP-2, common IPPR
programs do not execute more than one hundred parallel PEs instructions
consecutively, without a sequential controller instruction or a call to a
communication primitive. It is also interesting to notice that the smallest basic block
is always just one instruction long. This means that, in every program, it is possible
to find at least on occurrence of at least two consecutive sequential controller
instructions or calls to a communication primitive.
The measurements we made seem to suggest that, if we adopt a local instruction
memory dimensioned in such a way as to contain one hundred instructions, the
machine is almost always able to store a program basic block inside the PEs. The
ability to never split a single basic block is important because by splitting a basic
block we may be unable to use some of the code reusability. In fact (see figure 1 in
next page) if we have a loop ten statements long and an instruction memory only
five statements long we will not be able to execute asynchronously ten times the
loop body inside each PE; on the contrary the controller will need to broadcast a
new half of the loop body every five statements.

4 A RESTRICTED VERSION OF THE REUSABILITY

FACTOR

A sufficient condition to fulfill requirement b) is to have a rather large value of the
reusability factor for the program to be executed. Anyway, this condition is too
restrictive and unnecessarily difficult to realize.

Definition 4
We define restricted reusability factor the value of the ratio n/m calculated on a
single block of m instructions.
In the SBMD model the controller divides the compiled program in blocks of code
of length m. The controller then broadcasts to the PEs blocks of instructions instead
of single instructions.

Definition 5
We define single shot block an autonomously executable block of code of maximum
length and broadcast by the controller in a single transmission.
The definition of single shot blocks is tightly coupled with the definition of the m-
execution autonomy, in fact it requires that the transmitted block is of the maximum
length autonomously executable.
In order to fulfill the requirement b) it is enough that any single shot block of code
of length m has a value of the restricted reusability factor larger than one. As a
matter of fact, we overlap the execution of a single shot block with the broadcast of
the next one. Thus we don't need to impose any constraint on a non single shot
block, i.e. on any block of code that is not transmitted or executed in a single step.
In a program, a high reusability factor is mainly due to the presence of loops. In
sequential programs, iterations are very common and so it is possible to have high
values of the reusability factor in compiled programs even without the use of smart
compilation techniques. In data-parallel programs, the loops are usually unrolled on
the PEs of the machine, and the iterative constructs are by far less frequent than in
sequential programs.

These facts seems to
imply that it is not
possible to have an
adequate value of the
reusability factor, not
even in its restricted
form, in data-parallel
programs.
However, in data-
parallel programs the
amount of data that can
be processed in parallel
is usually much larger
than the number of
physical PEs of the
machine. As a matter
of fact, while to
process data matrices
of size 512×512, or
even larger, is quite
common, one of the
largest data-parallel
machine ever realized,

Figure 1 Split basic blocks may reduce code reusability
introduced by iterative structures.

the CM-2, has only
256×256 PEs in its
largest configuration
and the MasPar
systems have 128×128
PEs in their largest
configuration. Thus it
is necessary to
simulate the operations
of many virtual PEs on
a single actual PE, i.e.
to map many virtual
PEs on a single actual
PE. The choice of how
to do this mapping
may result particularly
critical for some
applications, because it
affects the way in
which inter processor

communication among the virtual PEs is to be realized.
In past related works [3] different kind of mapping have been proposed, in this paper
we focus our attention only on contraction mapping.

Definition 6
k-way contraction mapping: we define k-way contraction mapping of a virtual
processor array of size n on a physical processor array of size m the mapping of a
group of virtual processor on a single physical processor in a way such that virtual

processor Pi,j is mapped onto physical processor Ps,t (where i, j = 0, 1, ... , n-1

and s,t = 0, 1, ... , m-1) if and only if s ≤
i

k
 ≤ s+1 and t ≤

j

k
 ≤ t+1 (where k =

n
m

and n, m, k are integers).
This means that the virtual mesh of processor is divided in sub-meshes of constant
dimension and each one of them is simulated inside a single real processor (see
figure 2).
Mapping many virtual PEs on a single actual PE increases the value of the
reusability factor of data-parallel programs, namely a n-way contraction mapping
increases the reusability factor of each one-shot block n times. Besides, if we adopt
contraction mapping a large number of inter-PE communications become intra-PE-
memory data movements. This transformation trades some of the actual load of the
interconnection network with an increased load of the local memory system of each
PE. This increment of the memory system load can be prevented in the case of an
architecture supporting AA. In fact, if each PE is able to generate locally its
memory addresses, each memory copy due to the simulation of inter-virtual-PE
communication can be translated into the recalculation of some pointer. The
reduction of the actual number of inter-PE communication primitives allows

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

Actual PEVirtual PE

Virtual interconnection Actual interconnection

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

a) A virtual processor array of 8×8 Pes. b) Mapping a virtual
processor array on a
physical processor
 array of 4×4 PEs

Figure 2 Contraction mapping. In b) the physical
processor are showed as square boxes.

reducing the bandwidth and the cost of the interconnection network of the
architecture.
In order to make the guaranteed reusability of instructions due to an n-way
contraction mapping profitable it is necessary that the repetition of the program
instructions n times does not produce a slow down of more than n times. We call
this property of a machine virtual parallelism support.
We claim that a n-way contraction mapping and the support for virtual parallelism
are sufficient condition for allowing a PEs clock speed-up of n on execution
autonomy enhanced machines.
The presence of a n-way contraction mapping guarantees that each instruction of a
data-parallel program needs to be executed no less than n times, thus each single-
shot block of the program is guaranteed to have a restricted reusability factor not
smaller than n. This property holds true even if the instruction memory dimension
forces us to split some basic blocks of the program, in fact this reusability does not
come from program iterative structures. This fact guarantees that the PEs can
execute instructions at a rate up to n times faster than the rate at which the central
controller broadcasts them without starving.
At the same time the support of virtual parallelism guarantees that each PE will be
able to complete the execution each single shot block of the program in no more
than n*p cycles, where p is the number of cycles required to execute the single-shot
block in parallel on n PEs. In fact if the sequentialized execution of single-shot bloc
S requires more than n*p cycles the complexity of the partially sequentialized
algorithm containing S is more than n times larger than the complexity of the
parallel algorithm and this is in contradiction with the definition of virtual
parallelism support.

5 CONCLUDING REMARKS

In this paper:

• we have proposed a new autonomy in the SIMD computational paradigm,
namely Execution Autonomy;

• we have proposed the SBMD computational paradigm based on Execution
Autonomy;

• we have discussed some implementation problems of the SBMD paradigm.
• we have shown that virtual parallelism support is a necessary condition to

exploit a relaxation of the SIMD strict synchronous execution;
• we have shown that an m-way contraction mapping and the support for virtual

parallelism constitute a sufficient condition for the exploitation of m-execution
autonomy.

The execution speed and the performance of machines based on the SBMD
computing paradigm are not bound by the time needed to broadcast instructions and
data as they are in the SIMD computing paradigm.
The EA allows the PEs of a machine based on the SBMD computing paradigm to
adopt a faster clock than the PEs of a machine based on the SIMD computing
paradigm.

Given these results, it is possible and convenient to increase the performance of the
PEs, both from the technological and from the architectural point of view; as a
matter of fact any such increase directly increases the machine performance because
the time needed to broadcast the instructions does not bind it any more.
Besides, the use of EA and the support for the SBMD paradigm overcomes the
rigidity of the traditional SIMD computational model and it allows avoiding to have
large sets of PEs inactive during the execution of conditional statements.

6 References

[1] P. Baglietto, M. Maresca, M. Migliardi, Introducing Execution Autonomy in
the SIMD Computing Paradigm, Proc. of the International Conference on
Massively Parallel Processing Applications and Development, Delft (The
Netherlands), June 21-23, 1994.

[2] G. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick and R. A. Stokes,
The ILLIAC IV computer, IEEE Trans on Computer, C-17 (8), pp.746-757,
Aug. 1968.

[3] Y. Ben-Asher, D. Gordon and A. Schuster, Optimal Simulations in
Reconfigurable Processor Arrays, Technion ITT technical report, Haifa
(Israel), 1992.

[4] W. D. Hillis and G. L. Steele Jr., Data-parallel Algorithms, Communications
of the ACM, Vol. 29, No. 12, pp. 1170-1183, Dec. 1986.

[5] W. D. Hillis and L. W. Tucker, The CM-5 Connection Machine: a Scalable
Supercomputer, Communications of the ACM, Vol. 36 No. 11, pp. 31-40, Nov.
1993

[6] M. Maresca, Polymorphic Processor Array, IEEE Trans. on Parallel and
Distributed Systems, Vol. 4, No. 5, pp. 490-506, May 1993

[7] M. Maresca, M. A. Lavin and H. Li, Parallel Architectures for Vision,
Proceedings of the IEEE, Vol. 76, No. 8, August 1988.

[8] R. Miller, V. K. Prasanna-Kumar, D. Reissis e Q. F. Stout, Parallel
Computations on Reconfigurable Meshes, IEEE Trans. on Computers Vol. 42,
No. 6, giugno 1993, pp. 678-692.

[9] M. A. Nichols, H. J. Siegel and H. G. Dietz, Data Management and Control
Flow Aspects of an SIMD/SPMD Parallel Language/Compiler, IEEE Trans. on
Parallel and Distributed Systems, Vol. 4, No. 2, pp. 222-234, February 1993.

[10] S. Rehfuss and D. Hammerstromm, Comparing SFMD and SPMD
Computation for On-chip Multiprocessing of Intermediate Level Image
Understanding Algorithms, Proc. of the Fourth IEEE International Workshop
on Computer Architecture for Machine Perception, Cambridge, Massachusetts,
October 20-22, 1997.

[11] M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi and Y. Koumura, Thread-Based
Programming for the EM-4 Hybrid Dataflow Machine, Proc. of ISCA92, pp
145-155, 1992.

[12] C. Weems, Asynchronous SIMD: An Architectural Concept for High
Performance Image Processing, Proc. of the Fourth IEEE International
Workshop on Computer Architecture for Machine Perception, Cambridge,
Massachusetts, October 20-22, 1997.

