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ABSTRACT

Controllability questions for discrete-time nonlinear systems are addressed in this paper. In
particular, we continue the search for conditions under which the group-like notion of transi-
tivity implies the stronger and semigroup-like property of forward accessibility. We show that
this implication holds, pointwise, for states which have a weak Poisson stability property, and
globally, if there exists a global “attractor” for the system.

1 Introduction

This paper continues the study, initiated in [4] and then developed in [1], of some controllability
properties of discrete-time nonlinear systems, of the type:

x(t+ 1) = f(x(t), u(t)), t = 0, 1, 2, . . . , (1)

where x(t) ∈ X and u(t) ∈ U . We will deal, as in the above-mentioned papers, with the
class of invertible systems, that is with those systems for which the function f(·, u) is a diffeo-
morphism. Such systems arise, for instance, when dealing with continuous-time models under
digital controls via sampling. For futher motivations of the study of this class we refer to [4].

If Σ is a system of type (1), and x0 is any state, then we can define the reachable set from
x0, R(x0), and the orbit from x0, O(x0). We will see later (section 2.1) the precise definition of
these objects; intuitively, R(x0) is the set of all those states that can be reached from x0 using
arbitrary controls, and O(x0) consists of all those states to which we can steer x0 using both
the motions of Σ and negative-time motions. The concept of reachable sets is certainly more
natural than the concept of orbits, since negative-time motions are not allowed. However, orbits
are usually easier to study —they arise from group actions— and they have nicer properties.
For instance, it is known that each orbit has a natural structure of submanifold of X .

This paper studies some relations between these two concepts. In particular, we will focus
our attention on the relation between the notion of forward accessibility (i.e. intR(x0) 6= ∅) and
the weaker notion of transitivity (i.e. intO(x0) 6= ∅). We would like to see when transitivity
implies forward accessibility. It is a classical result, in the continuous-time framework, that this
implications holds always for analytic systems, and under some appropriate Lie-rank conditions
in the C∞ case ( this fact is often called the “positive form of Chow’s Lemma”). For discrete-
time systems it is known that, in general, this implication fails. However, for analytic discrete-
time systems, there are some cases in which it has been already established that transitivity
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implies forward accessibility. For instance, this is known when f is a rational map (see [5]), or
when x0 is a positively Poisson stable point for a some fixed diffeomorphism f(·, u0) (see [1]).
In this paper we will strengthen considerably this last result, by proving the implication when
x0 has a weak type of Poisson stability. Moreover it is shown that transitivity implies forward
accessibility when there exists a transitive state x0 which is also a global “attractor” for Σ .

The paper is organized as follows. In section 2 we introduce some basic definitions and
notations. In section 3 we associate to a discrete-time system Σ some families of vector fields
whose orbits will be correlated to the geometry of reachable sets and orbits. These families of
vector fields are an extension of those considered in the previous work [1, 2, 3, 4]; we consider
their introduction one of the main contributions of this paper. Section 4 presents some of the
connections between the sets of vector fields so introduced and reachability. In section 5 we
prove partial results for smooth systems. Finally, in section 6, which deals with the analytic
case, we give our main results.

2 Basic Definitions

In this paper we study discrete-time nonlinear systems Σ of the type (1), where the state space
X and the control space U satisfy the following properties:

• X is a connected, second countable, Hausdorff, differentiable manifold of dimension n,

• U is a subset of IRm such that U ⊆ clos intU , and any two points in the same connected
component of U can be joined by a smooth curve lying entirely in intU (except possibly
for endpoints).

Notice that when U ⊆ IR then the second assumption on U is automatically satisfied.
The system is of class Ck, with k =∞ or ω, if the manifold X is of class Ck and the function

f : X ×U → X is of class Ck (i.e., there exists a Ck extension of f to an open neighborhood of
X ×U in X × IRm). We call systems of class C∞ smooth systems and those of class Cω analytic
systems.

Definition 2.1 A system Σ is said to be invertible if for all u ∈ U , the function fu : X → X
with fu(x) = f(x, u) is a diffeomorphism.

We will be dealing with the class of invertible systems. For each u ∈ U , we will denote by f−1
u

the inverse function of fu.
From now on, and unless otherwise stated, we assume that a fixed smooth invertible system

Σ is given.

2.1 Some Notations

For any fixed state x and any nonnegative integer k define:

ψk,x(u) := fuk,...,u1(x) (2)

where u = (uk, . . . , u1) ∈ Uk, and where fuk,...,u1 denotes fuk◦ . . . ◦fu1 . If there exists an integer
k ≥ 0 and a u = (uk, . . . , u1) ∈ Uk such that ψk,x(u) = z, we will write:

x;
k
z .
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For each u, let ρk,x(u) be the rank of ∂
∂uψk,x[u]. For each x ∈ X , let:

ρ̄x := max
k≥0

max
u∈Uk

ρk,x(u). (3)

Let: {
R0(x) := {x}
Rk(x) := { z | x;

k
z }, k = 1, 2, . . . ,

Rk(x) is the set of states reachable from x in (exactly) k steps. The following sets will also be
very helpful:

R̃k(x) := {ψk,x(u) | u ∈ Uk, ρk,x(u) = ρ̄x},
which represents the set of states that are maximal-rank reachable from x in (exactly) k steps,
and

R̄k(x) := {ψk,x(u) | u ∈ Uk, ρk,x(u) = n}
which represents the set of states that are nonsingularly reachable from x in k steps. We let:

R(x) :=
⋃
k≥0

Rk(x)

and analogously for R̃(x) and R̄(x). R(x) is the set of states reachable from x. The set R̃(x)
is always nonempty, but the set R̄(x) may be empty.

Recall that Σ is said to be forward accessible from x if and only if intR(x) 6= ∅. It can be
proved that, for analytic systems Σ ,

U connected ⇒ ∀ x ∈ X , R̃(x) is dense in R(x). (4)

For the proof of (4) we refer to Proposition 3.3 of [1]; the basic idea is to combine the analyticity
assumption, which guarantees that the set of control sequences giving maximal rank is open
and dense, with the assumption that U ⊆ clos intU , which gives that for each u ∈ U there
exists a sequence un ∈ intU converging to u.

We also define the controllable set to x, and the orbit from x, as follows. Let:{
C0(x) := {x}
Ck(x) := { z | z;

k
x }, k = 1, 2, . . . ,

then the controllable set to x is:
C(x) :=

⋃
k≥0

Ck(x).

Let: {
O0(x) := {x}
Ok(x) := { z | ∃z1 ∈ Ok−1 and (z1

;
1
z or z;

1
z1) }, k = 1, 2, . . . ,

then the orbit from x is:
O(x) :=

⋃
k≥0

Ok(x).

The system Σ is said to be backward accessible from x if and only if intC(x) 6= ∅; Σ is said to
be transitive from x if and only if intO(x) 6= ∅.

The following Lemma states a well known criterion for forward accessibility (for the proof
see Proposition 3.2 in [1]).
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Lemma 2.2 Let Σ be a smooth invertible system. For each x ∈ X , the following are equivalent:

1. intR(x) 6= ∅,

2. int R̄(x) 6= ∅.

There is an analogous result for the transitivity property.

Lemma 2.3 Let Σ be a smooth invertible system. Then, for each x ∈ X , and for any positive
integer k the following properties hold:

1. intOk(x) 6= ∅ if and only if there exist a sequence of control values u = (u1, · · · , uk), and
a sequence ε = (ε1, · · · , εk), with εi = ±1, such that, the following map:

Ψε : Uk → X : (v1, · · · , vk) 7→ f εkvk ◦ · · · ◦f
ε1
v1

(x)

has full rank at u.

2. intO(x) 6= ∅ if and only if there exists a positive integer k such that the previous conditions
are satisfied for this k.

Proof. We prove 1. The sufficient part follows easily from the Implicit Function Theorem, so we
need to see the converse. Notice that Ok(x) is given by the union, over all the different sequences
of length k of ±1’s, of the images of maps of the type Ψε. Thus, arguing by contradiction, since
this union is countable, the neccessary part follows by Sard’s Theorem and the fact that a
countable union of set of measure zero has again measure zero. The second claim follows
immediately from the first, by a similar argument.

3 A New Class of Vector Fields Associated to Systems

Some Lie algebras of vector fields L, L−, L+, Γ, Γ−, Γ+ were introduced in [4] (see also [2]
and [3] for previous work) to study the controllability properties of invertible systems. Here,
using the same vector fields, we will define slightly different Lie algebras, which allow us to
derive stronger results.

Let Σ be a given smooth invertible system. First, for each u ∈ U , and each i = 1, . . . ,m,
we let X+

u,i, and X−u,i be the following vector fields:

X+
u,i(x) =

∂

∂vi

∣∣∣∣
v=0

f−1
u ◦ fu+v(x), (5)

X−u,i(x) =
∂

∂vi

∣∣∣∣
v=0

fu ◦ f−1
u+v(x). (6)

Given a vector field Y and a control value u ∈ U , we can define another vector field from Y by
applying the change of coordinates given by the diffeomorphism fu,

(AduY )(x) = (dfu(x))−1Y (fu(x)). (7)
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Here dfu stands for the differential of fu with respect to x. This is sometimes called the “pull-
back of Y under the diffeomorphism fu”. In the same way, but now using the diffeomorphism
f−1
u , we also define Ad−1

u . We let:

Adεk···ε1uk···u1
Y = Adε1u1

· · ·Adεkuk Y. (8)

We define now:

Γ+ = {Aduk···u1X
+
u0,i
|k ≥ 0, 1 ≤ i ≤ m, u0, . . . , uk ∈ U},

Γ− = {Ad−1···−1
uk···u1

X−u0,i
|k ≥ 0, 1 ≤ i ≤ m, u0, . . . , uk ∈ U},

Γ = {Adεk···ε1uk···u1
Xε0
u0,i
|k ≥ 0, 1 ≤ i ≤ m, u0, . . . , uk ∈ U, ε0, . . . , εk = ±1}.

(9)

These previous definitions are the same as those given in [4].
For any finite sequence of controls µ = (v1, · · · , vk), we will denote by |µ| the length k of

this sequence. Now, for any such µ we define the following Lie algebras:

L+
µ = Lie {X+

u,i, Adv1 · · ·AdvlX
+
u,i | 1 ≤ l ≤ k, 1 ≤ i ≤ m, u ∈ U},

L−µ = Lie {X+
u,i, Ad−1

v1
· · ·Ad−1

vl
X+
u,i | 1 ≤ l ≤ k, 1 ≤ i ≤ m, u ∈ U},

Lµ = Lie {X+
u,i, Adαv1

· · ·AdαvlX
+
u,i | 1 ≤ l ≤ k, 1 ≤ i ≤ m, α = ±1, u ∈ U}.

(10)

Notice that, if µ = (0, · · · , 0), then the previous Lie algebras coincide respectively with the Lie
algebras L+

k , L
−
k , and Lk defined in [4].

The way in which these algebras of vector fields will be used is as follows. We will show that
the integral manifolds that they give rise to help in describing the geometry of the sets R(x),
C(x), and O(x), in the sense that the corresponding motions (forward and/or backwards) of
our system lie in these orbits (see Propositions 4.4 and 4.5 given below). Moreover we will see
that the notions of forward and backward accessibility, as well as transitivity, are related to the
full dimensionality of the tangent subspaces at each point, corresponding to these families of
vector fields (see Proposition 6.1).

Along these lines, the following two results were proved in [4], Corollary 4.4 and Theorem
2 part (a) respectively. We repeat their statements here for the convenience of the reader.

Proposition 3.1 Let Σ be a smooth invertible system. If y ∈ R̃(x), and dim Lie Γ+(y) = n,
then Σ is forward accessible from x.

Proposition 3.2 Let Σ be a smooth invertible system, then the following conditions are equiv-
alent:

1. Σ is forward accessible from all x ∈ X ,

2. dim Γ+(x) = n for all x ∈ X ,

3. dim Lie Γ+(x) = n for all x ∈ X .
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4 Some General Properties

Definition 4.1 A map h : X → X is balanced (with respect to the given system Σ ) if it can
be written as f ε1u1

◦ · · · ◦f εkuk for some ui ∈ U , εi = ±1 and with
∑k
i=1 εi = 0.

Lemma 4.2 Assume that y = f ε1u1
◦ · · · ◦f εkuk(x), with ui ∈ U , εi = ±1 for each i = 1, · · · , k.

Consider the partial sums:

li =
i∑

j=1

εj for i = 1, · · · , k.

Assume that lk = 0, and let l = max { |li| | i = 1, · · · , k}. Pick any sequence v1, · · · , vl of
elements in U . Then one can write:

y = gk◦ · · · ◦g1(x), (11)

where each gi is a balanced map of the form:

gi = hi◦f εiui◦k
i,

and, for each i = 1, · · · , k, the maps hi and ki have the form:
hi = f

α(i)
v1 ◦ · · · ◦fα(i)

vµ(i)

ki = f
−α(i)
vν(i)

◦ · · · ◦f−α(i)
v1

and α(i) = ±1, |µ(i)− ν(i)| = 1.

Proof. Let α(i) = sgn (li) ∈ {0, 1,−1} and write also l0 = 0. For i = 1, · · · , k, define:

gi = hi◦f εiui◦k
i

as follows: 
ki = f

αi−1
v|li−1|

◦ · · · ◦fαi−1
v1

hi = f
−αi−1
v1 ◦ · · · ◦f−αi−1

v|li|
.

The gi are balanced maps, since li = εi + li−1. Moreover, by definition, it holds that:

ki = (hi−1)−1 i = 2, · · · , k.

We now prove, by induction on i, that:

gi◦ · · · ◦g1 = hi◦f εiui◦ · · · ◦f
ε1
u1
. (12)

If i = 1, then l1 = ε1 and l0 = 0, so (12) is obvious. The induction step for i > 1 is provided
by:

gi◦ · · · ◦g1 = (hi◦f εiui◦k
i)(hi−1◦f εi−1

ui−1
◦ · · · ◦f ε1u1

) = hi◦f εiui◦ · · · ◦f
ε1
u1
.

Now, since lk = 0, hk = identity, so (12) gives the desired conclusion.

If ∆ is a set of smooth vector fields and x ∈ X , we denote by Orb ∆(x) the orbit of ∆
passing through x. Recall that, by definition, y ∈ Orb ∆(x) if and only if there exists an
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absolute continuous curve γ : [a, b] → X such that γ(a) = x, γ(b) = y, and there exist ti with
a = t0 < t1 < · · · < tr = b, and vector fields Xi ∈ ∆ such that γ restricted to [ti, ti+1] is an
integral curve of Xi or −Xi.

The following fact about continuos-time systems is well known, we repeat it here since it is
needed in the proof of the next Proposition. Let Σ be a continuous-time system described by
the following set of controlled differential equations:

ẋ(t) = f(x(t), u(t)). (13)

(For a precise definition of continuous-time systems see for instance [7], [8], or [6].) Given two
states x1, x2, we say that x1 can be controlled to x2 if there exist some interval [0, T ], T ≥ 0,
and an essentially bounded measurable map u(·) defined on [0, T ], such that the solution of the
differential equation (13) with this u(·), and with x(0) = x1, is defined on all the interval [0, T ],
and x(T ) = x2. We say that x2 is weakly reachable from x1 if there exists a finite sequence of
states z1 = x1, z2, . . . , zk = x2 such that for each l = 2, . . . , k either zl−1 can be controlled to
zl or zl can be controlled to zl−1. Let:

∆ = {f(·, u)}u∈U .

Given these notations, the following fact holds (for the proof see Proposition 2.16 in [7]):

Lemma 4.3 x1 is weakly accessible from x2 ⇔ x1 ∈ Orb ∆(x2).

The following result generalizes [4] Proposition 5.2, which deals with the very special case
in which µ = 0, · · · , 0︸ ︷︷ ︸

k

.

Proposition 4.4 Let k be any nonnegative integer. Assume that Σ is a smooth system with
connected U. Then:

1. Rk(x) ⊆ Orb L−µ
(y) for all y ∈ Rk(x) and for all µ with |µ| ≥ k,

2. Ck(x) ⊆ Orb L+
µ

(y) for all y ∈ Ck(x) and for all µ with |µ| ≥ k − 1.

Proof. Note that in the above statements, it is always sufficient to prove the inclusion for
any particular y in Rk(x) or, for the second part, in Ck(x), since Orb ∆(z) = Orb ∆(y) if
z ∈ Orb ∆(y), for any set of vector fields ∆.

We prove now the first part. Let z ∈ Rk(x). Then:

z = fu1◦ · · · ◦fuk(x),

for some (u1, · · · , uk) ∈ Uk. Now take any µ with |µ| ≥ k, µ = (v1, · · · , vk, · · · , v|µ|), and consider
the state:

y = fv1◦ · · · ◦fvk(x) ∈ Rk(x).

We will prove that z is in Orb L−µ
(y). We have:

z = fu1◦ · · · ◦fuk◦f−1
vk
◦ · · · ◦f−1

v1
(y).

We can write the previous equation as:

z = g1◦ · · · ◦gk(y),
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where: 
g1 = fu1◦f

−1
v1

gi = fv1◦ · · · ◦fvi−1◦fui◦f
−1
vi ◦ · · · ◦f−1

v1
for i = 2, . . . , k.

Letting z0 = z, and, for i = 1, · · · , k, zi = g−1
i (zi−1), we have zk = y (see Fig. 1).
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Figure 1: case with k = 4

We prove that zi ∈ Orb L−µ
(zi−1), from which the desired conclusion follows by transitivity.

Given the assumptions on the set U , for i = 1, . . . , k, there exist smooth curves αi : [0, T ]→
U , such that αi(0) = vi, αi(T ) = ui, and αi(t) ∈ intU . Let

γi(t) = fv1◦ · · · ◦fvi◦f−1
αi(t)

◦f−1
vi−1

◦ · · · ◦f−1
v1

(zi−1), (14)

for i = 1, · · · , k, and t ∈ [0, T ].
Note that γi(0) = zi−1, γi(T ) = zi, and, for any fixed t,

γi(t+ ε) = fv1◦ · · · ◦fvi◦f−1
αi(t+ε)

(qi),

where
qi = f−1

vi−1
◦ · · · ◦f−1

v1
(zi−1) = fαi(t)◦f

−1
vi ◦ · · · ◦f

−1
v1

(γi(t)).

Therefore:

∂
∂tγi(t) = ∂

∂ε |ε=0fv1◦ · · · ◦fvi◦f−1
αi(t+ε)

◦fα(t)◦f
−1
vi ◦ · · · ◦f−1

v1
(γi(t))

= −∑m
j=1 α

′
ij(t)Ad−1

v1
· · ·Ad−1

vi X
+
αi(t),j

(γi(t)),
(15)

where αij is the j−th component of the curve αi. For each i = 1, . . . , k, we may interpret
equation (15) as the equation of a continuous-time system with state trajectory γi(t) and
control (αi(t), α′i1(t), . . . , α′im(t), so by Lemma 4.3 it follows that zi ∈ Orb L−µ

(zi−1), as desired.

Now we prove the second part. The proof follows the same lines as the proof of the first
part. Let z ∈ Ck(x). Then:

z = f−1
u1
◦ · · · ◦f−1

uk
(x),
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for some (u1, · · · , uk) ∈ Uk. Now take any µ with |µ| ≥ k − 1, µ = (v1, · · · , vk−1, vk, · · · , vl). (If
|µ| = k − 1, we choose vk arbitrarily; it will be clear later that we need vk only for technical
reasons.) Let y ∈ Ck(x) be the following state:

y = f−1
v1
◦ · · · ◦f−1

vk
(x).

We will prove that z is in Orb L+
µ

(y). We have:

z = f−1
u1
◦ · · · ◦f−1

uk
◦fvk◦ · · · ◦fv1(y).

We can write the previous equation as:

z = g1◦ · · · ◦gk(y),

where: 
g1 = f−1

u1
◦fv1

gi = f−1
v1
◦ · · · ◦f−1

vi−1
◦f−1
ui ◦fvi◦ · · · ◦fv1 for i = 2, . . . , k.

Letting zk = y, and, for i = 1, · · · , k, zk−i = gk−i+1(zk−i+1), we have (see Fig. 2):
z0 = z

zi−1 = f−1
v1
◦ · · · ◦f−1

vi−1
◦f−1
ui ◦fvi◦ · · · ◦fv1(zi).
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Figure 2: case with k = 4

To prove our statement, it is now sufficient to show that, for i = 1, · · · , k, zi−1 ∈ Orb L+
µ

(zi).

As before, for each i = 1, . . . , k, there exists a smooth curve αi : [0, T ] → U such that
αi(0) = vi, αi(T ) = ui, and αi(t) ∈ intU . Let

γi(t) = f−1
v1
◦ · · · ◦f−1

vi−1
◦f−1
αi(t)

◦fvi◦ · · · ◦fv1(zi), (16)

for i = 1, · · · , k, and t ∈ [0, T ].
Arguing as in the first case, we conclude:
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∂
∂tγi(t) = ∂

∂ε |ε=0f
−1
v1
◦ · · · ◦f−1

vi−1
◦f−1
αi(t+ε)

◦fαi(t)◦fvi−1◦ · · · ◦fv1(γi(t))

= −∑m
j=1 α

′
ij(t)Adv1 · · ·Advi−1X

+
αi(t),j

(γi(t)).
(17)

We now give a similar result for the zero-time orbit of a point x. We introduce the following
notation:

O0
k(x) = {y = f εsus◦ · · · ◦f

ε1
u1

(x) | s ≥ 0,
s∑
i=1

εi = 0, uj ∈ U, and |
j∑
i=1

εi| ≤ k ∀ j = 1, · · · , s},

(18)
with k ∈ ZZ, k ≥ 0.

Proposition 4.5 Let k be any nonnegative integer, and assume that Σ is a smooth invertible
system with connected U. Then, for all x ∈ X , all y ∈ O0

k(x), and all sequences of control values
µ with |µ| ≥ k, we have:

O0
k(x) ⊆ Orb Lµ(y).

Proof. Notice first that x ∈ O0
k(x), by using the empty sequence. We will prove that for each

x,
O0
k(x) ⊆ Orb Lµ(x). (19)

The general statement follows from this, since y ∈ O0
k(x) ⊆ Orb Lµ(x) implies Orb Lµ(x) =

Orb Lµ(y).
Let y ∈ O0

k(x). Then:
y = f εsus◦ · · · ◦f

ε1
u1

(x)

with
∑s
i=1 εi = 0 and k ≥ |∑j

i=1 εi| for any j = 1, · · · , s. Now take any µ with |µ| ≥ k,
µ = (v1, · · · , vk, · · · , v|µ|). We can now apply Lemma 4.2, with l = k, and we obtain:

y = gs◦ · · · ◦g1(x).

Here, each gi is a balanced map of the form:

gi = fα(i)
v1
◦ · · · ◦fα(i)

vµ(i)
◦f εiui◦f

−α(i)
vν(i)

◦ · · · ◦f−α(i)
v1

with α(i) = ±1, and |µ(i)− ν(i)| = 1. Now let:{
z0 = x
zi+1 = gi+1(zi) for i = 0, . . . , s− 1;

thus zs = y (see Fig. 3).
Let ρ(i) = max{µ(i), ν(i)}. Given the assumptions on the set U , for each i = 1, . . . , s, there

exists a smooth curve βi : [0, T ] → U , such that βi(0) = vρ(i), βi(T ) = ui, and βi(t) ∈ intU .
Let:

γi(t) = fα(i)
v1
◦ · · · ◦fα(i)

vµ(i)
◦f εiβi(t)◦f

−α(i)
vν(i)

◦ · · · ◦f−α(i)
v1

(zi−1) (20)

for i = 1, · · · , s, and t ∈ [0, T ]. Thus it holds that γi(0) = zi−1 and γi(T ) = zi. To prove (19),
it is enough to establish that zi−1 ∈ Orb Lµ(zi).
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Figure 3: case with s = 6,k = 3

If α(i) = 1 and ρ(i) = µ(i), then necessarily εi = −1. Thus equation (20) is of the same
type as equation (14), and, as in (15), we may conclude that:

∂

∂t
γi(t) = −

m∑
j=1

β′ij(t)Ad−1
v1
· · ·Ad−1

vµ(i)
X+
βi(t),j

(γi(t)),

where βij denotes the j−th component of the curve βi. If α(i) = 1 and ρ(i) = ν(i), then
necessarily εi = 1. In this case, instead of considering the curve γi(t), we consider the following
curve:

γ−1
i (t) = fα(i)

v1
◦ · · · ◦fα(i)

vν(i)
◦f−εiβi(t)

◦f−α(i)
vµ(i)

◦ · · · ◦f−α(i)
v1

(zi), (21)

which joins zi to zi−1. Since equation (21) is again of the same type as equation (14), now we
can conclude as before.

If α(i) = −1 and ρ(i) = ν(i), then necesarily εi = −1. Thus equation (20) is of the same
type as equation (16), and, as in (17), we may conclude that:

∂

∂t
γi(t) = −

m∑
j=1

β′ij(t)Adv1 · · ·Advµ(i)
X+
βi(t),j

(γi(t)).

Finally, if α(i) = −1 and ρ(i) = µ(i), then necessarily εi = 1. So we can argue as before by
considering the curve γ−1

i (t) instead of γi.

5 New Results on Accessibility

In this section we present some new results for systems with connected control space U.

Proposition 5.1 Let Σ be any smooth invertible system. If y ∈ Rk(x), and µ = (v1, · · · , vk)
are such that:

y = fv1◦ · · · ◦fvk(x),

then
dim Lie Γ+(x) ≥ dimLµ(y). (22)

Proof. Assume that dimLµ(y) = r, and let Y1, · · · , Yr be vector fields in Lµ so that
{ Y1(y), . . . , Yr(y) } is a basis of Lµ(y). Without loss of generality, we may assume that each
Yi is a vector field involving Lie brackets of a finite numbers of vector fields of the type:

X+
u,j1

, or Adv1 · · ·AdvlX
+
u,j2

, or Ad−1
v1
· · ·Ad−1

vl
X+
u,j3

,

11



with l ≤ k, and ji ∈ {1, . . . ,m}.
Consider, for i = 1, · · · , r, the following vector fields:

Zi = Advk · · ·Adv1Yi.

These are linearly independent at x; in fact:

Advk · · ·Adv1Yi(x) = d(fv1◦ · · · ◦fvk)−1(x)Yi(fv1◦ · · · ◦fvk(x)) = d(fv1◦ · · · ◦fvk)−1(x)Yi(y).

Moreover, it follows recursively from the fact that, for any two vector fields X1 and X2,

Adv[X1, X2] = [AdvX1,AdvX2], for any v ∈ U,

that Zi ∈ Lie Γ+ for each i = 1, · · · , r. Thus (22) holds.

Definition 5.2 For any nonnegative integer k, and for x ∈ X we say that:

1. x is k−forward accessible if intRk(x) 6= ∅,

2. x is k−backward accessible if intCk(x) 6= ∅,

3. x is k−transitive if O0
k(x) is open.

Recall that if µ = (v1, · · · , vk) is any finite sequence of controls, then we will denote by |µ| the
length k of this sequence.

Proposition 5.3 Let Σ be a smooth invertible system, with connected U. Then:

1. if x is k−forward accessible, then for all µ with |µ| ≥ k − 1, Orb L+
µ

(x) is open;

2. if x is k−backward accessible, then for all µ with |µ| ≥ k, Orb L−µ
(x) is open;

3. if x is k−transitive, then for all µ with |µ| ≥ k, Orb Lµ(x) is open.

Proof.
(1) Since x is k−forward accessible, there exists an open set V contained in Rk(x). Let

µ = (v1, · · · , vk−1, vk, · · · , vl), where if |µ| = k− 1, we choose vk arbitrarily, since it will be clear
later that vk is needed only for technical reasons. Let

W = f−1
v1
◦ · · · ◦f−1

vk
(V ).

We will prove that W ⊂ Orb L+
µ

(x), from which (1) follows.

Pick any y ∈ W ; then there exists z ∈ V such that y ∈ Ck(z). Moreover, since z ∈ Rk(x),
we also have x ∈ Ck(z); thus, applying the second result in Proposition 4.4, we can conclude:

y ∈ Orb L+
µ

(x)

as desired.
(2) We proceed as in (1). Thus if µ = (v1, · · · , vk, · · · , v|µ|), we let V, W be two open sets

chosen so that:
V ⊂ Ck(x),
W = fv1◦ · · · ◦fvk(V ),

12



and we will prove that W ⊂ Orb L−µ
(x).

Pick any y ∈ W , then y ∈ Rk(z) for some z ∈ V . Moreover, we also have x ∈ Rk(z); thus,
applying the first result in Propositon 4.4, we can conclude:

y ∈ Orb L−µ
(x)

as desired.
(3) This part is an obvious consequence of Proposition 4.5, since x ∈ O0

k(x) implies:

O0
k(x) ⊂ Orb Lµ(x).

Thus Orb Lµ(x) is open.

6 Analytic Case

Throughout all this section we asssume that an analytic invertible system Σ , with connected
control space U, is given. All the results presented here hold under these assumptions.

Proposition 6.1 Denote by µ a sequence of control values.

1. If x is k−forward accessible then for all µ with |µ| ≥ k − 1, dimL+
µ (x) = n.

2. If x is k−backward accessible then for all µ with |µ| ≥ k, dimL−µ (x) = n.

3. If x is k−transitive then for all µ with |µ| ≥ k, dimLµ(x) = n.

Proof. We will prove only the first statement; the second and the third follow using the same
arguments. Since Σ is analytic, applying a theorem of Nagano (see [9], section 9, or [7], Theorem
5), we know that the distribution associated to L+

µ is integrable. Moreover, if x is k−forward
accessible then, by the first result in Proposition 5.3, we have that Orb L+

µ
(x) is open. Thus we

can conclude that dimL+
µ (x) = n, as desired.

Proposition 6.2 If y ∈ Rl(x), and y is k−transitive for some k ≤ l, then:

dim Lie Γ+(x) = n.

Proof. The statement is an immediate consequence of Proposition 5.1, and Proposition 6.1 part
3.

We say that a system Σ is bounded transitive if there exists a nonnegative integer k such
that Ok(x) has non-empty interior for all x ∈ X . Notice that if Ok(x) has non-empty interior
then, clearly, O0

2k(x) is open. Thus the following Corollary is a consequence of the previous
Proposition and of Proposition 3.2:

Corollary 6.3 If Σ is bounded transitive, then Σ is also forward accessible.
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Remark 6.4 Notice that if the state space X is compact, Σ transitive implies Σ bounded
transitive. To see this fact we argue as follows. For each x ∈ X , denote by kx any positive
integer such that x is kx−transitive. Then, by continuity, there exists an open neighborhood
Ox of x such that if y ∈ Ox then y is kx−transitive. These open sets {Ox}x∈X cover X . Let
{Oxi}i=1,...,l be a finite subcover. Then, letting k = max{kxi}i=1,...,l, we have that Ok(x) has
nonempty interior for all x ∈ X ; thus Σ is bounded transitive.

So, in particular, the previous result implies that, if the state space X is compact, then a
system Σ is transitive if and only if it is forward accessible. This result was proved in a very
different way before, see [1] Theorem 2.

Definition 6.5 Given x ∈ X , we let:

ω(x) = {y ∈ X | ∃ xnk ∈ Rnk(x), xnk → y, nk →∞}.

Note that, for control space consisting of only one element, U = {u}, the previous Definition is
the standard ω-limit set.

Proposition 6.6 If y ∈ ω(x) and y is transitive, then dim Lie Γ+(x) = n.

Proof. Since y is transitive, there exists a nonnegative integer k such that O0
k(y) is open. Thus

there exists a neighborhood W of y, such that O0
k(z) is open for all z ∈ W . Since y ∈ ω(x),

there exists ỹ ∈ Rl(x)∩W with l ≥ k; thus, by Proposition 6.2, we conclude the desired result.

Recall that if Y is a vector field on a manifold X , one says that x ∈ X is a positively Poisson
stable point for Y if and only if for each neighbourhood V of x and each T ≥ 0 there exists
some t > T such that etY (x) ∈ V , where etY (·) represents the flow of Y .

Analoguosly, one can define positive Poisson stability in discrete time, for a given diffeo-
morphism f : X → X , as done in [1]. Next we define a generalization of this concept to
systems.

Definition 6.7 Given a system Σ , the point x ∈ X is said to be positively Poisson stable for
Σ if and only if for each neighbourhood V of x and each integer N ≥ 0 there exist some integer
k > N , and (v1, · · · , vk) ∈ Uk such that fvk◦ · · · ◦fv1(x) ∈ V .

The following result generalizes [1] Theorem 1, which deals with the very special case of
states which are positively Poisson stable for the diffeomorphism f0. The proof in this case
requires the full machinary just introduced.

Theorem 1 Let x ∈ X be a positively Poisson stable point for Σ . Then x is transitive if and
only if x is forward accessible.

Proof. Notice that x positively Poisson stable for Σ means that x ∈ ω(x). Thus from Proposition
6.6, we know that if x is transitive then dim Lie Γ+(x) = n. So there exists a neighbourhood W
of x such that dim Lie Γ+(y) = n for all y ∈ W . Since x ∈ ω(x), and, since by the analyticity
assumption R̃(x) is dense in R(x) (see (4), there exists some y ∈ W ∩ R̃(x). Thus we can
conclude that x is forward accessible, using Proposition 3.1.

The other implication being obvious, the statement is proved.
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Definition 6.8 Given a system Σ , we say that Σ is weakly asymptotically controllable to a
state x̄ if x̄ ∈ closR(x) for all x ∈ X .

Remark 6.9 Saying that x̄ ∈ closR(x) is not equivalent to saying that there exists a fixed
infinite sequence ui, i > 0, such that the sequence xi = fui,...,u1(x) converges to x̄, notion which
is sometimes is called asymptotic controllability. Our notion is weaker, in fact, as it is proved in
the next Lemma, it is equivalent to x̄ ∈ ω(x), which, in general, implies only that a subsequence
of the xi’s converges to x̄.

Lemma 6.10 Assume that (x̄, ū) ∈ X × U is not an equilibrium pair, that is, f(x̄, ū) 6= x̄.
Then the following properties are equivalent:

1. Σ is weakly asymptotically controllable to x̄,

2. x̄ ∈ ω(x) for all x ∈ X .

Proof. Obviously (2) implies (1); thus we need only to establish the converse. Let Wn be a
sequence of neighborhoods of x̄ such that if xn ∈ Wn then xn → x̄. We may assume that
W0 = X . We will prove, by induction, that for any x ∈ X , there exists a sequence {xn}n≥0

such that:
xn ∈ Rkn(x) ∩Wn with kn ≥ n. (23)

Clearly, from (23), Property 2 follows.
Pick any x ∈ X . Define x0 = x, and k0 = 0; then x0 ∈ Rk0(x) ∩W0. Assume that we have

already defined x0, · · · , xn−1. We let:

x̃n =


f(xn−1, ū) if f(xn−1, ū) 6= x̄

f(f(xn−1, ū), ū) if f(xn−1, ū) = x̄

then x̃n 6= x̄. By assumption there exists some xn ∈ Rk̃n(x̃n)∩Wn for some k̃n > 0. Thus xn ∈
Rkn(x)∩Wn, with kn = kn−1 +1+ k̃n, if x̃n was defined in the first way, and kn = kn−1 +2+ k̃n
otherwise. In any case, we have kn ≥ n since kn−1 ≥ n− 1. Thus (23) holds.

We now obtain one of our main results:

Theorem 2 Let Σ be an analytic invertible system. If Σ is weakly asymptotically controllable
to x̄, and x̄ is transitive then Σ is forward accessible from all x ∈ X .

Proof. Unless we are in the trivial case X = {x̄}, x̄ transitive implies that there exists ū such
that f(x̄, ū) 6= x̄. Thus, by Lemma 6.10, x̄ ∈ ω(x) for all x ∈ X , which, using Proposition 6.6,
gives dim Lie Γ+(x) = n for all x ∈ X . So the statement follows from Proposition 3.2.

Example 6.11 Let’s consider the following class of systems:

Σ : x(t+ 1) = Ax(t) +Bu1(t) + g(x(t), u2(t)),

with X = IRn, U = IRm1 × IRm2 , ui ∈ IRmi , and where A, B are matrices with A ∈ IRn×n, and
B ∈ IRn×m1 . Assume that g is an analytic function such that:

g(x, 0) = 0 ∀ x ∈ X .
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It is easy to see that the assumption that (A,B) is a stabilizable pair implies that Σ is weakly
asymptotically controllable to 0. Recall that (A,B) stabilizable is equivalent to say that there
exists a matrix F ∈ IRm1×n such that the matrix A + BF is Hurwitz, i.e. all its eigenvalues
have negative real part. So the previous Theorem applies in this case, in particular, we have
the following conclusion:

If A,B is a stabilizable pair and Σ is transitive from 0 then
Σ is forward accessible from all x ∈ X .
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