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I. Introduction.

In this paper we deal with control systems which evolve either
in discrete or in continuous time and whose dynamics is given
by:

x(t + 1) ( or ẋ(t)) = ~σ(Ax(t) + Bu(t))
x(0) = x0

(1)

where x(t) ∈ IRn, u(t) ∈ IRm, A ∈ IRn×n, and B ∈ IRn×m.
Moreover

~σ(x) = (σ(x1), . . . , σ(xn))

where σ : IR → IR is some assigned nonlinear function. For
continuous-time models we always assume that the control func-
tion u(·) is measurable essentially bounded and the map σ is at
least locally Lipschitz, so that the differential equation has an
unique local solution. Systems of this type, often together with
a linear output equation y(t) = Cx(t), are called recurrent neu-
ral networks.

Recurrent neural networks are often used as identification
models or as prototype dynamic controllers in many applica-
tions such as speech processing, signal processing (see [5]), and
control (see [6]). A typical problem in these applications con-
sists in determining the ’weights’ of the network (i.e. the entries
of the matrices in (1)) that provide the best fit to some train-
ing data, minimizing a given error functional. For an extensive
introduction on neural computation and other applications of
neural networks we refer to [4].

The purpose of this paper is to continue the analysis of the
system-theoretic properties of these models. In [1], [2], and [3]
characterizations of identifiability and observability have been
given. More precisely, under nonlinearity conditions on σ(·) and
non-degenericity conditions on the matrix B, necessary and suf-
ficient conditions for identifiability and observability are given,
in terms of algebraic assumptions on the matrices A, B, C. In
this paper we give similar results concerning controllability of a
system of type (1).

The study of these system-theoretic properties is important
from a pure mathematical point of view. In fact, neural net-
works are a very natural generalizations of linear systems. They
provide a class of ’semilinear’ models for which one might ex-
pect that the theory is easier and closer to the one of linear
systems than is the case of general nonlinear models. Besides
this mathematical interest the study of these basic properties
is also motivated by the applications of neural networks. As
we said before, usually recurrent networks are used as models
whose parameters must be fit to input/output data, minimiz-
ing a cost function; to perform this procedure some algorithms
are used (such as gradient descent). In this contest many nu-
merical and theoretical issues arise. One question that can be
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asked is about the possibility of having different networks which
give the same behavior; among these models one would like to
choose the one with the best features, like, for example, least
dimension (minimality: we say that a network is minimal if no
other networks have the same input/output behavior with state
space having strictly lower dimension). Connections between
minimality, controllability and observability are well known for
linear systems, but only weaker results can be given for general
smoooth nonlinear models (see [8]). In [2], and in the present
paper we contrubite to giving sharper results in this direction
for recurrent neural networks.

A system is said to be controllable if for every two states x1, x2

there is a sequence of controls u(0), · · · , u(k) in the discrete time
case, or a control function u(t) for t ∈ [0, T ] in the continuous-
time case, which steers x1 to x2. This notion is quite strong, and
is usually very hard to study for nonlinear systems. We therefore
restrict our study to the weaker notion of forward accessibility: a
control system is said to be forward accessible if, for every initial
state x0, the set of points to which x0 can be steered contains
an open subset of the state-space. In particular, this property
implies that the system is not confined in a submanifold of the
state space with positive codimension. Accessibility is a natural
and relevant property of nonlinear control systems. Unlike for
linear systems, we will see that the accessibility conditions for
models of type (1), and their relations with the minimality of the
network, differ substantially from discrete to continuous time.

We first looked (section II) at the discrete-time case. In
this context, our main result is the following: under some non-
degenericity conditions on σ(·) and B, a system of type (1) is
forward accessible if and only if rank [A, B] = n. Notice that
this rank condition is weaker than controllability for the linear
system (σ(x) = x), which is rank [A − λI, B] = n for every
λ ∈ C. The assumptions on σ(·) and B we need to make to get
this result are stronger than the ones in [1], [2], and [3]; however
for the choice σ(x) = tanh(x), such assumptions are satisfied for
B in a simple dense open subset of IRn×m (see section II-C).

This first part is organized as follows. In section II-A we
prove our main result for single-input systems (m = 1); the
extension to the general case is given in section II-B. Section
II-C is devoted to the discussion of the assumptions on σ(·) and
B. Section II-D gives a different kind of sufficient condition for
forward accessibility using a weaker condition on the map σ and
adding a non-degenericity condition on the pair A, B.

In the second part of the paper (section III) we deal with
continuous-time dynamics where the characterization of forward
accessibility is much easier.

II. Forward accessibility for discrete-time models

In this first part we deal with discrete-time dynamics. From
now on, we assume that a model of type (1) evolving in discrete-
time is given, i.e., a system where the dynamics is given by the
difference equation:

x(t + 1) = ~σ(Ax(t) + Bu(t))
x(0) = x0.

(2)

A. Forward accessibility in the non-degenerate case for single
input models.

In this section we restrict our attention to single input sys-
tems of type (2), i.e. where the dynamics is given by:

x(t + 1) = ~σ(Ax(t) + bu(t)) (3)



2

with b ∈ IRn, u(t) ∈ IR. Our aim is to give necessary and suffi-
cient conditions for these models to be forward accessible. These
conditions will be subject to a non degenericity assumption that
will be given as a joint property of the activation function σ and
the vector b.

Definition II.1: We say that the function σ and the vector
b satisfy the n-independence property (n-IP ) if the following
conditions hold:

1. σ is differentiable, σ′(x) 6= 0 for all x ∈ IR;

2. bi 6= 0 for all i = 1, . . . , n;

3. for 1 ≤ k ≤ n let Ok be the set of all the subsets of
{1, . . . , n} of cardinality k, and a1, . . . , an arbitrary real
numbers. Then the functions {fI : I ∈ Ok } with

fI(x) =
∏
i∈I

σ′(ai + bix),

are linearly independent.

Remark II.2: The n-IP property and some weaker properties
used later in the paper, are strong and presumably not necessary
for our results. Those assumptions, in particular, exclude linear
systems (σ(x) = x). Our techniques do not allow to fill the gap
to linear systems, since we strongly use nonlinearity of σ(·).

In section II-C we discuss more this property.

Now, we state the main result of this paper.

Theorem 1: Let Σ be a system of type (3), such that σ and b
satisfy the n-IP property. Then Σ is forward accessible if and
only if

rank [A, b] = n.

Notice that for n = 1 the result is trivial, thus we assume n ≥ 2.
The proof of Theorem 1 is preceded by some technical lemmas.
The leading idea is standard: we look for conditions that guar-
antee the input-state map (u(1), . . . , u(n)) → x(n) has a non-
degenerate Jacobian, for some value of the control sequence.
This is, of course, a sufficient conditions for forward accessibil-
ity. The computation of the Jacobian matrix of the input-state
map reveals a nontrivial algebraic structure.

Consider an initial state x0, a control sequence u(0), . . . , u(n−
1), and let x(0) = x0, x(i) = ~σ(Ax(i− 1) + bu(i− 1)) for i =
1, . . . , n. The state x(n) is a function of u(0), . . . , u(n − 1),
and we let Wn be the Jacobian matrix ∂u(0),...,u(n−1)x(n). For
each x ∈ IRn we denote by σ̂(x) the diagonal matrix whose i-th
element is σ′(xi), and we define, for i = 1, . . . , n:

D(i) = σ̂(Ax(i− 1) + bu(i− 1)). (4)

Lemma II.3: Let define, for i = 1, . . . , n− 2

g(i) = AD(n− 2)AD(n− 3) · · ·AD(i)b, (5)

and g(n− 1) = g(n) = b. Then

Wn = D(n)[AD(n− 1)g(1), AD(n− 1)g(2), . . . ,
AD(n− 1)g(n− 1), g(n)].

(6)

Proof: To get our result, we prove by induction on l ≥ 1,
that for all 0 ≤ k ≤ l − 1,

∂u(k)x(l) = D(l)A · · ·AD(k + 1)b.

Let l = 1, then x(1) = ~σ(Ax0 + bu(0)). This implies that
∂u(0)(x(1))i = σ′((Ax0)i + biu(0))bi; so we have ∂u(0)x(1) =
σ̂(Ax0 + bu(0))b, as desired.

Assume now that l > 1, then we have:

∂u(k)x(l) = ∂u(k)[σ(Ax(l − 1) + bu(l − 1))]

=

{
D(l)b if k = l − 1,
D(l)A∂u(k)x(l − 1) if k < l − 1,

which, by inductive assumption, implies the thesis.

Due to assumption 1. on σ′(·), it is clear that the matrix
D(n) is non-singular. Therefore Wn is singular if and only if
the matrix

Zn = [AD(n− 1)g(1), AD(n− 1)g(2), . . . ,
AD(n− 1)g(n− 1), g(n)]

is singular. In the next lemma we compute the determinant of
Zn (notice that Zn does not depend on u(n−1), which appears
only in D(n)).

Lemma II.4: For any control sequence u(0), . . . , u(n− 2) we
have:

det Zn =

n∑
i=1

det A(i)det G(i)

n∏
j=1,j 6=i

σ′(yj + bju(n− 2)),

where yj = (Ax(n− 2))j , and

A(i)l,k =

{
al,k if k < i
al,k+1 if i ≤ k < n
bl if k = n,

G(i)l,k =

{
(AD(n− 2) · · ·AD(k)b)l for l < i
(AD(n− 2) · · ·AD(k)b)l+1 for l ≥ i,

with, for n = 2, G(1) = b2, and G(2) = b1. Notice that A(i) ∈
IRn×n and G(i) ∈ IR(n−1)×(n−1).

Proof: We denote by Sn the set of permutations on
{1, · · · , n}.

det Zn =
∑

π∈Sn

( sgn π)

n−1∏
i=1(

n∑
k=1

aπ(i),kσ′(yk + bku(n− 2))gk(i)

)
gπ(n)(n) =

=
∑

k1,···,kn−1

(∑
π∈Sn

( sgn π)aπ(1),k1 · · · aπ(n−1),kn−1gπ(n)(n)

)
n−1∏
j=1

gkj (j)

n−1∏
j=1

σ′(ykj + bkj u(n− 2)).

Letting

φ(j, i) =

{
j if j < i
j + 1 if j ≥ i,

we have:

det Zn =

n∑
i=1

 ∑
τ∈Sn−1

[
∑

π∈Sn

( sgn π)aπ(1),τ(φ(1,i)) · · · aπ(n−1),τ(φ(n−1,i))gπ(n)(n)]

n−1∏
j=1

gτ(φ(j,i))(j)

]
n−1∏

j=1,j 6=i

σ′(yj + bju(n− 2)) =
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=

n∑
i=1

det A(i)det G(i)

n∏
j=1,j 6=i

σ′(yj + bju(n− 2)).

The expression for det Zn given in lemma II.4 suggests how
the proof of Theorem 1 should go. In fact, by the n-IP property,
the functions

{
∏
j 6=i

σ′(yj + bju(n− 2)) : i = 1, . . . , n }

are linearly independent. Therefore, in order for det Zn to be
zero for every input-sequence it must be det A(i)det G(i) = 0
for i = 1, . . . , n. The relation between det A(i) and det G(i) is
analyzed in the following lemmas.

Lemma II.5: For k = 0, 1, . . . , n− 2 we let

i(k) = {i(k)
1 , . . . , i

(k)
k }

be an ordered subset of {1, . . . , n}, and we define G(i(k)) ∈
IR(n−k)×(n−k) by

G(i(k))r,s = (AD(n− k − 1) · · ·AD(s)b)φ(r,i(k))

where φ(r, i(k)) = r + |{j : i
(k)
j ≤ r}| (for k = 0 we define

G(∅)r,n = br and for k = n− 1, G(i(n−1)) = bi with i 6∈ i(n−1)).

Then, for 0 ≤ k ≤ n− 2, we have:

det G(i(k)) =
∑

i(k+1)

det A(i(k), i(k+1))det G(i(k+1))

∏
i6∈i(k+1)

σ′((Ax(n− k − 2))j + bju(n− k − 2))

where A(i(k), i(k+1)) ∈ IR(n−k)×(n−k) is obtained from A by:

• removing the rows i
(k)
1 , . . . , i

(k)
k ;

• removing the columns i
(k+1)
1 , . . . , i

(k+1)
k+1 ;

• adding, as a last column, the b without the components in
i(k).

Proof: Observe that for k = 0, G(∅) = Zn. So lemma II.5
for k = 0 coincides with lemma II.4. The proof for the other
values of k follows the same lines, and we omit it.

Next lemma is a simple technical fact which will be used later;
its proof is easily established.

Lemma II.6: Let V be a vector space, and v1, . . . , vp, w be
p + 1 vectors in V , with w 6= 0. Assume that for all i = 1, . . . , p
the vectors {vj , w |j 6= i} are linearly dependent. Then also the
vectors {v1, . . . , vp} are linearly dependent.

Now we can prove our main result.
Proof of Theorem 1. First assume rank [A, b] < n. Then let V
be the range of the map:

IRn+1 → IRn

(x, u) 7→ Ax + bu.

We have dim V = rank [A, b] < n. The reachable set from any
point is contained in ~σ(V ), which, clearly, does not contain any
open set.

Now assume that rank [A, b] = n. We will show that det Zn 6=
0 for some u(0), . . . , u(n − 2), and this implies forward acces-
sibility. By the way of contradiction, suppose det Zn = 0 for

every u(0), . . . , u(n − 2). As we have already observed, it fol-
lows that, for every i = 1, . . . , n, and every input sequence
u(0), . . . , u(n− 3):

det A(i)det G(i) = 0.

Notice that A(i) is a constant matrix, while G(i) is a function
of u(0), . . . , u(n− 3). Suppose that there is i ∈ {1, . . . , n} such
that det A(i) 6= 0. Then, necessarily, det G(i) = 0 for every
u(0), . . . , u(n− 3). We expand det G(i) using lemma II.5:

det G(i) =
∑
i(2)

det A(i, i(2))det G(i(2))

∏
j 6∈i(2)

σ′((Ax(n− 3))j + bju(n− 3)).

By the n-IP property, we have that, for every i(2) and every
u(0), . . . , u(n− 3),

det A(i, i(2))det G(i(2)) = 0.

Now we argue as before. We assume that there is an i(2) such
that det A(i(2)) 6= 0, and therefore det G(i(2)) = 0, and we ex-
pand det G(i(2)) using lemma II.5. We proceed in this way until
we find an i(k) such that det G(i(k)) = 0 and det A(i(k), i(k+1)) =
0 for every i(k+1). Notice that this must be true for some
k ≤ n − 2, since, otherwise, there would be some i(n−1) with
det G(i(n−1)) = 0; this is impossible since G(i(n−1)) = bj 6= 0,
with {j} = {1, . . . , n} \ i(n−1).

So let i(k) be such that det A(i(k), i(k+1)) = 0 for every i(k+1).
We show that this implies that, for every i, det A(i) = 0, so
that the above procedure indeed stops at the first step. The
determinant det A(i) can be expanded with respect to the n−k
rows in i(n−k) = {1, . . . , n} \ i(k). All complementary matrices
in this expansion are either of the form A(i(k), i(k+1)), whose
determinant is zero, or are submatrices of A of dimension n −
k, whose determinant is again zero by lemma II.6. Therefore
det A(i) = 0 for i = 1, . . . , n, which means that b and any n− 1
columns of A are linearly dependent. Then, again by lemma
II.6, also the n columns of A are linearly dependent; thus we
have that rank [A, b] < n, which contradicts our assumption.

Remark II.7: The n-IP property in definition II.9 is stronger
than a similar property used in [2] for proving identifiability
results for recurrent neural networks (see section II-C for the
precise definition). In particular, it follows from [2] (Theorem
1), that any observable recurrent network satisfying the n-IP
property is minimal. As a consequence of Theorem 1, these
minimal networks are not necessarily forward accessible, since
observability does not imply rank [A, b] = n (see [3]).

Remark II.8: Assume that rank [A, b] < n, and let V =
[A, b](IRn+1). Then, except for the initial condition, the state
in the dynamics (3) is confined in ~σ(V ). Suppose also, for sim-
plicity, x(0) = 0, and σ(0) = 0. Then the control system with
state space V , control space IR and dynamics:

v(t + 1) = A~σ(v(t)) + Bu(t), v(0) = 0,
y(t) = C~σ(v(t)),

(7)

has the same input/output behavior of (3) with output equation
y(t) = Cx(t). The state space of (7) has lower dimension than
the one in (3), but (7) is not a neural network. Thus this does
not contradict the minimality result given in [2]. We believe,
however, that it is of some interest the fact that, supposing the
n-IP , either a network is forward accessible or a state-space
dimension reduction can be easily performed as in (7).
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B. Multiple input systems.

In this section we extend Theorem 1 to systems of the type:

x(t + 1) = ~σ(Ax(t) + Bu(t)), (8)

where u(t) ∈ IRm and B ∈ IRn×m. Although notations become
rather heavy, the extension is conceptually straightforward; not
all the details will be given.

Definition II.9: We say that the function σ and the matrix
B satisfy the n-IP property, if

1. σ is differentiable, σ′(x) 6= 0 for all x ∈ IR;

2. denote by bi, i = 1, . . . , n, the rows of the matrix B; then
bi 6= 0 for all i = 1, . . . , n;

3. for 1 ≤ k ≤ n let Ok be the set of all the subsets of
{1, . . . , n} of cardinality k, and a1, . . . , an arbitrary real
numbers. Then the functions {fI : I ∈ Ok }, fI : IRm →
IR given by:

fI(u) =
∏
i∈I

σ′(ai + biu),

are linearly independent.

Theorem 2: Let Σ be a system of type (8), such that σ and
B satisfy the n-IP property. Then Σ is forward accessible if
and only if

rank [A, B] = n. (9)

Sketch of the proof. The necessity of condition (9) is verified
as in Theorem 1. For the converse , we compute the Jacobian
matrix

Wn = ∇u(0),...,u(n−1)xn ∈ IRn×nm.

As in Section II-A we define:

D(i) = σ̂(Ax(i− 1) + Bu(i− 1)) ∈ IRn×n,

and

g(i) = AD(n− 2)AD(n− 3) · · ·AD(i)B ∈ IRn×m,

with g(n − 1) = g(n) = B. We repeat the proof of lemma II.3
and we get:

Wn = D(n)[AD(n− 1)g(1), · · · , AD(n− 1)g(n− 1), g(n)]

:= D(n)Zn.

Since D(n) is nonsingular, all we have to show is that if (9)
holds, then rank Zn = n for some sequence u(0), . . . , u(n − 2)
(again u(n−1) appears only in D(n)). In what follows we denote
by ai, bj , the columns of A and B respectively. If rank [A, B] =
n, then there are indexes λ1, . . . , λr, µr+1, . . . , µn such that the
n× n matrix:

C(λ, µ) = [aλ1 , . . . , aλr , bµr+1 , . . . , bµn ]

is nonsingular. As in Theorem 1, using Lemma II.6, one show
that it is not restrictive to assume that C(λ, µ) has at least one
column taken from the columns of B.

Now let ν1, · · · , νr and ρ1 ≤ ρ2 ≤ · · · ≤ ρr be elements of
{1, 2, · · · , n}, and define

Zν,ρ,µ
n = [AD(n− 1)gν1(ρ1), · · · ,

AD(n− 1)gνr (ρr), b
µr+1 , · · · , bµn ].

Moreover, for k = {k1, k2, · · · , kr} ⊂ {1, · · · , n} with k1 < k2 <
· · · < kr we let

G(k, ν, ρ) =

 gν1
k1

(ρ1) · · · gνr
k1

(ρr)
...

...
gν1

kr
(ρ1) · · · gνr

kr
(ρr)

 ∈ IRr×r.

Then, similarly to Lemma II.4, we get

det Zν,ρ,µ
n =

∑
k

det C(k, µ)det G(k, ν, ρ)
∏
j 6∈k

σ′(yj + bju(n− 2))

with yj = (Ax(n − 2))j . By using the n-IP we have that if Σ
is not forward accessible then

det C(k, µ)det G(k, ν, ρ) = 0 (10)

for every k, ν, ρ and any sequence u(1), · · · , u(n − 3). At this
point one has to prove an analog of Lemma II.5, to give a re-
cursive formula for det G(k, ν, ρ). It is not hard to see that, if
ρr = n− 1, then the structure of the matrix G(k, ν, ρ) is similar
to the one of Zν,ρ,µ

n , and the recursion can be performed. As in
the proof of Theorem 1 such recursion has to stop, in the sense
that at a certain step one sees that a family of square submatri-
ces of C(k, µ) must be degenerate, and this implies that C(k, µ)
itself is degenerate (in this part of the argument the arbitrari-
ness of ρ in (10) is used). We therefore obtain det C(k, µ) = 0
for every k, which is false since det C(λ, µ) 6= 0.

C. Some remarks on the n-IP .

The n-IP property, as stated in Definition II.1, is given as
a joint property of σ(·) and b. This is not, indeed, what is
desirable in applications, since usually σ is a given elementary
function. So, for a given activation function σ, we would like to
give simple and hopefully ”generic” sufficient conditions of b to
guarantee that σ(·) and b satisfy the n-IP . A related problem
has appeared in [1], [2], and [3] where, to obtain observability
and identifiability of systems of type (2), a property weaker than
the n-IP has been used. Such property, that will be called IP,
is obtained from Definition II.1 replacing 3. with

3’. for a1, · · · , an arbitrary real numbers the functions {σ(ai+
bix) : i = 1, · · · , n} are linearly independent.

The extension of this property to the multiple input case is
similarly obtained from Definition II.9. It has been shown (see
[3]) that, for a wide class of activation functions (e.g. arctan(·)
and tanh(·)), the IP is implied by the following ”genericity”
condition on b:

bi 6= 0 and |bi| 6= |bj | for every i, j = 1, · · · , n , i 6= j. (11)

The question is whether, for some commonly used activation
function σ, condition (11) implies the n-IP too. We first give
an example where the answer is negative, which shows that the
n-IP is strictly stronger than the IP .

Suppose σ(x) = arctan(x), n ≥ 4 and b arbitrary. If the n-IP
were satisfied, then the functions

σ′(b1u)σ′(b2u)σ′(b3u), σ′(b1u)σ′(b3u)σ′(b4u),

σ′(b1u)σ′(b2u)σ′(b4u), σ′(b2u)σ′(b3u)σ′(b4u)

would be linearly independent. By multiplying a linear combi-
nation of those functions by [

∏4

i=1
σ′(biu)]−1 we get that the

functions 1
σ′(biu)

, i = 1, · · · , 4 are linearly independent. But

this is impossible, since 1
σ′(biu)

= 1 + b2
i u

2, and 4 polynomials

of degree 2 cannot be linearly independent.

The example above seems to be exceptional, since the pathol-
ogy is caused by the fact that σ′(x) is a rational function. An-
other typical activation function, σ(x) = tanh(x), appears to
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have a better behavior, in the sense that reasonable conditions
on b can be given so that tanh and b satisfy the n-IP . To see
this let us take vectors a, b ∈ IRn. We first observe that to show
that the functions

{
∏
i∈I

σ′(ai + biu) : I ∈ On−k}

are linearly independent is equivalent to showing that

{
∏
i∈I

1

σ′(ai + biu)
: I ∈ Ok}

are linearly independent. In other words we have to give condi-
tions on b so that the functions

{
∏
i∈I

cosh2(ai + biu) : I ∈ Ok}

are linearly independent, for every 1 ≤ k ≤ n− 1. Notice that,
for I ∈ Ok (we write |I| = k) and letting αi = 2ai, βi = 2bi we
get ∏

i∈I

cosh2(ai + biu) =
1

2k

∏
i∈I

(1 + cosh(αi + βiu))

=
1

2k

∑
J⊂I

∏
i∈J

cosh(αi + βiu)

=
1

2k

∑
J∈I

1

2|J|

∑
λ∈{−1,1}J

cosh(λT α + λT βu).

Thus, for given real numbers cI , I ∈ Ok, we have

2k
∑

I∈Ok

cI

∏
i∈I

cosh2(ai + biu)

=
∑

I∈Ok

∑
J⊂I

1

2|J|
cI

∑
λ∈{−1,1}J

cosh(λT α + λT βu)

=
∑

J:|J|≤k

 1

2|J|

∑
|I|=k,I⊃J

cI

 ∑
λ∈{−1,1}J

cosh(λT α + λT βu)

=
∑

λ∈{−1,0,1}n,|λ|≤k

 1

2|λ|

∑
|I|=k,I⊃ supp λ

cI

 cosh(λT α + λT βu)

(12)
where |λ| =

∑n

1
|λi| and suppλ = {i ∈ {1, · · · , n} : λi 6= 0}.

Now we denote by Λk the set of those λ ∈ {−1, 0, 1}n such that
|λ| = k, modulo the equivalence relation λ ∼ λ′ if λ = ±λ′, and
Λ = ∪n

k=0Λk = {−1, 0, 1}n/∼. We also let gb be the function
Λ → IR+ defined by g(λ) = |λT b|.

Proposition II.10: A sufficient condition for tanh and b to
satisfy the n-IP is that, for every 1 ≤ k ≤ n − 1 and every
I ∈ Ok, there is a λI with supp λI = I such that gb is 1-1 on
the set Γk = {λI : I ∈ Ok}, and

gb(Γk) ∩ gb((∪k
h=0Λh) \ Γk) = ∅.

In particular this is true if gb is 1-1 on all Λ.

Proof: This is a straightforward consequence of (12) and
the fact that if h1, · · · , hp are real numbers and k1, · · · , kp are
positive distinct real numbers, then the functions {cosh(hi +
kiu) : i = 1, · · · , p} are linearly independent.

We now make some comments on the assumptions in Proposi-
tion II.10. First we notice that the assumption on b is ”generic”,
i.e. is satisfied for b in the complement of an analytic subset of
IRn (in particular b may vary in an open dense subset of IRn).
Moreover the stronger condition that gb is 1-1 on all Λ is a natu-
ral generalization of (11), that says that gb is 1-1 on Λ0∪Λ1. All
these conditions, however, appear stronger than what is needed
for the n-IP . We indeed conjecture that, for every dimension n,
conditions (11) implies the n-IP for tanh and b. This is trivial
to check for n = 2, 3 and we could make it for n = 4, although
we do not show details here.

D. Another sufficient condition

In this section we present another sufficient condition for for-
ward accessibility, using a weaker condition on the map σ but
adding a new non-degenericity condition on the pair A, B. We
deal with the multiple-input case directly (see equation (8)).

Definition II.11: We say that the function σ and the matrix
B satisfy the n-WIP (n-weak independence property) if:

1. σ is differentiable, σ′(x) 6= 0 for all x ∈ IR;

2. denote by bi, i = 1, . . . , n, the rows of the matrix B; then
bi 6= 0 for all i = 1, . . . , n;

3. let a1, . . . , an be arbitrary real numbers, then the functions
from IRm to IR (σ′(ai+biu))−1, for i = 1, . . . , n, are linearly
independent.

Remark II.12: Notice that the n-WIP is weaker than the n-
IP given by definition II.9, in fact the third requirement of the
previous definition is exactly the third requirement of definition
II.9 for the case k = n− 1 (see also discussion in section II-C).

We now have the following Theorem:

Theorem 3: Let Σ be a system of type (8), such that σ and
B satisfy the n-WIP . If there exists a matrix H ∈ IRm×n such
that:

(a) the matrix (A + BH) is invertible,

(b) the rows of the matrix [(A + BH)−1B] are all non-zero,

then Σ is forward accessible.

Before giving the proof of this Theorem, we make some com-
parison between this statement and Theorem 2. It is easy to
see that condition (a) of the previous Theorem is equivalent to
rank [A, B] = n, thus (a) is also a necessary condition for for-
ward accessibility. So Theorem 3 adds a new non-degenericity
condition on A, B (condition (b)), and guarantees forward ac-
cessibility with weaker assumption on σ. Moreover it is inter-
esting to notice that for the single-input case condition (b) is
independent on H. In fact the following claim holds:

Claim 1: Let h, k ∈ IRn×1 be such that A + bht and A + bkt

are invertible. Then

((A + bkt)−1b)i 6= 0 ∀ i ⇐⇒ ((A + bht)−1b)i 6= 0 ∀ i.

Proof: It is not restrictive to assume k = 0. Let w = A−1b
and v = (A + bht)−1b, to get our claim it is sufficient to prove
that there exists λ 6= 0 such that v = λw. Since A + bht is
invertible, we have that htw 6= −1, otherwise (A + bht)w =
b− b = 0. Thus we may let:

λ =
1

1 + htw
.

Let v′ = λw then (A+bht)v′ = λ(Aw+bhtw) = λb(1+htw) = b.
So we may conclude v′ = v, as desired.
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Proof of Theorem 3. Given Σ and H as in the statement, let:

A′ = A + BH,

and Σ′ be the system whose dynamics is given by:

x(t + 1) = ~σ(A′x(t) + Bv(t)).

Notice that we can transform Σ into Σ′ (and viceversa) by using
the feedback u(t) = Hx(t)+v(t) (and v(t) = u(t)−Hx(t)). Thus
Σ is forward accessible if and only if Σ′ is forward accessible.
So, without loss of generality, we may assume that the matrix
A is itself invertible and that the matrix A−1B has all nonzero
rows.

It is easy to see that if the pair A, B satisfies these conditions
then we can find a vector ū ∈ IRm satisfying:

• (Bū)i 6= 0 for all i = 1, . . . , n;
• [(A−1B)ū]i 6= 0 for all i = 1, . . . , n.

So, by taking controls of the form u = αū with α ∈ IR, it is
enough to prove the statement for the single-input case, assum-
ing the matrix A invertible, and the vectors b and A−1b with
all nonzero components.

Let x0 be any initial state and u(0), . . . , u(n − 1) a control
sequence. Using notations similar to those of lemma II.3, we
let:

x(0) = x0, x(i) = ~σ(Ax(i− 1) + bu(i− 1)), i = 1, . . . , n;
D(i) = σ̂(Ax(i− 1) + bu(i− 1)), i = 1, . . . , n;
gk(i) = AD(n− k) · · ·AD(i)b, for k = 2, . . . , n− 1,

and i = 1, . . . , n− k.

Moreover we let:

H(2) = [AD(1)b, b],
H(k) = [AD(k − 1)gn−k+2(1), · · · ,

AD(k − 1)gn−k+2(k − 2), AD(k − 1)b, b],

for k = 3, . . . , n. Notice that H(k) is a matrix in IRn×k. If
Wn denotes the Jacobian matrix ∂u(0),...,u(n−1)x(n), then lemma
II.3 says that:

Wn = D(n)H(n).

Claim 2: For k = 3, . . . , n, if rank H(k) < k for every
u(0), . . . , u(k − 2), then rank H(k − 1) < k − 1 for every
u(0), . . . , u(k − 3).

Before proving the claim we see how our Theorem follows from
this claim.

Assume, by the way of contradiction, that Σ is not for-
ward accessible. Then, since D(n) is invertible, we must have
rank H(n) < n for all u(0), . . . , u(n− 2). Thus, by applying re-
cursively the previous claim, we get rank H(2) < 2 for all u(0).
Since A and D(1) are invertible matrices, this rank condition is
equivalent to:

rank [b, D(1)−1A−1b] < 2, ∀u(0).

Denoting by v = A−1b, the previous condition means that:

bj
1

σ′[(Ax(0))i + biu(0)]
vi − bi

1

σ′[(Ax(0))j + bju(0)]
vj = 0,

for all u(0) and all 1 ≤ i, j ≤ n. Since all components of the
vectors b and v are nonzero by assumption, the previous equa-
tion (when i 6= j) contradicts the fact that 1/σ′ is n-WIP ; so
we may conclude that Σ is forward accessible.

Now we give the proof of the previous claim. If rank H(k) < k
for all u(0), . . . , u(k − 2), then:

rank [gn−k+2(1), · · · , gn−k+2(k − 2), b, D(k − 1)−1A−1b] < k

for all u(0), . . . , u(k − 2). Letting v(i) = gn−k+2(i), for i =
1, . . . , k−2, v(k−1) = b, and v(k) = A−1b, the previous equation
becomes:

rank [v(1), . . . , v(k − 1), D(k − 1)−1v(k)] < k,

for all u(0), . . . , u(k − 2). Notice that [D(k − 1)−1v(k)]i =
1

σ′([Ax(k−2)]i+biu(k−2))
v(k)i. Fix a sequence u(0), . . . , u(k − 3),

and choose i1 < . . . < ik indices in 1, . . . , n. Then we have
that the determinant of the submatrix of H(k) corresponding
to these rows has to be identically zero for all u(k − 2). By ex-
panding the determinant with respect to the last column, and
denoting by Mij the minor corresponding to the ij-row, we have:

(−1)k

k∑
j=1

Mij v(k)ij

1

σ′([Ax(k − 2)]ij + bij u(k − 2))
= 0

for every u(k − 2) ∈ IR. This equation together with the facts
that the map 1/σ′ is n-WIP , v(k)i 6= 0 for all i = 1, . . . , n,
and Mij , x(k − 2) are independent on u(k − 2), gives us that:

Mij = 0 ∀ ij .

So we may conclude that:

rank [v(1), . . . , v(k − 1)] < k − 1 ∀u(0), . . . , u(k − 3). (13)

Equation (13) proves our claim, since

v(i) = AD(k − 2)gn−k+3(i), for i = 1, . . . , k − 3,

v(k − 2) = AD(k − 2)b, and v(k − 1) = b, thus H(k − 1) =
[v(1), . . . , v(k − 1)].

III. Forward accessibility for continuous-time models.

In this Section we discuss forward accessibility for recurrent
neural networks evolving in continuous-time, i.e. systems evolv-
ing according to the equation:

ẋ(t) = ~σ(Ax(t) + Bu(t))
x(0) = x0

(14)

where A, B and ~σ are as in (1). We will show that such models
are forward accessible as soon as σ and B satisfy the weaker
condition IP (see section II-C), with no restriction on the pair
A, B.

In what follows we let Xu be the vector field defined by

Xu(x) := ~σ(Ax + Bu).

Lemma III.1: Let x0 ∈ IRn and suppose σ and B satisfy the
IP . Then there are controls u1, · · · , un such that the vectors
Xu1(x0), · · · , Xun(x0) are linearly independent.

Proof: Denote by v := Ax0, by bi the i-th row of the ma-
trix B, and let M(u1, . . . , un) be the matrix whose columns
are the vectors Xui(x0) = ~σ(v + Bui). Saying that there exist
u1, . . . , un such that the vectors Xui , i = 1, . . . , n, are linearly
independent, it is equivalent to say that there exist u1, . . . , un

such that det M(u1, . . . , un) 6= 0.
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We now give the proof of the lemma by induction on n. The
case n = 1 is obvious; let n > 1, then we have:

det M(u1, . . . , un) =

=
∑

π∈Sn

sgn (π)σ(vπ(1) + bπ(1)u1) · · ·σ(vπ(n) + bπ(n)un)

n∑
i=1

( ∑
π∈Sn,π(n)=i

sgn (π)σ(vπ(1) + bπ(1)u1) · · ·

· · ·σ(vπ(n−1) + bπ(n−1)un−1)
)
σ(vi + biun).

If det M(u1, . . . , un) = 0 for every u1, . . . , un, by the IP we
must have

0 =
∑

π∈Sn,π(n)=i

sgn (π)σ(vπ(1) + bπ(1)u1) · · ·

· · ·σ(vπ(n−1) + bπ(n−1)un−1) =

= (−1)i
∑

τ∈Sn−1

sgn (τ)σ(wτ(1) + b̃τ(1)u1) · · ·

· · ·σ(wτ(n−1) + b̃τ(n−1)un−1),

where

wj =

{
vj if j < i
vj+1 if j ≥ i

b̃j =

{
bj if j < i
bj+1 if j ≥ i

By inductive assumption we get that this last expression can
not be zero for all u1 . . . , un−1, and so also det M(u1, . . . , un)
can not be identically zero.

Given the vector fields Xu, it is known that if Lie {Xu |u ∈
IRm} has full rank at x then the system is forward accessible
from x (see [7]). This result together with the previous lemma,
gives the following:

Theorem 4: Let Σ be a model of type (14), assume that σ
and B satisfy the IP . Then Σ is forward accessible.

Remark III.2: From the previous theorem, together with
Theorem 1 in [2], we have that a system of type (14), with
a linear output equation y(t) = Cx(t), and satisfying the IP ,
if it is observable is both minimal and forward accessible.
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