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The E-algorithm is the most general extrapolation algorithm actually known. The 
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1. Introduct ion 

The E-algorithm is the most general extrapolation algorithm actually known. 
It was first obtained by an interpolation procedure by Schneider in 1975 [21] and then 
by Meinardus and Taylor [14] in the context of best uniform approximation. However, 
its present formulation as an extrapolation procedure was only given some years later 
by H~vie [12] and Brezinski [2]. H~vie's approach was by elimination while Brezinski 
used Sylvester's determinantal identity. The quantities computed by the E-algorithm 
can be expressed as ratios of determinants and they also satisfy a recursive scheme 
which generalizes the Richardson extrapolation process. All these approaches are 
reviewed and explained in [4]. The E-algorithm contains most of  the extrapolation 
algorithms found in the literature (see [7] for a review) and it has interesting acceleration 
properties [2, 13, 20, 24]. 

The aim of this paper is to give a new derivation of the E-algorithm. This 
derivation is based on the concepts of the annihilation difference operator and remainder 
estimate introduced by Weniger [25] and developed by Brezinski and Matos [6]. 
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W e  have 

S= 

This new approach also leads us to new results about  the E-algori thm and it 
clarifies its properties.  Some extensions will be discussed.  

2. The mechanism of ex t rapola t ion  

Let  u = (un) be an arbitrary sequence.  We shall denote by 1 the sequence  
whose  terms are all equal to 1. We shall define the sequence (Nk) of  di f ference 
operators  by 

N(O n) (u) = un, 

N(n) ( N(kn)(U) ) 
k+l(U) = A . , ( n )  : ~Vk ~.gk+l ) 

where N (n) (u) denotes the nth term of the sequence (Nk(U)) and where gi = (gi(n)) 
are given auxiliary sequence for i = 1, 2 , . . . .  

The sequence S = (S,,) to be transformed is assumed to satisfy, Vn, 

S= - S, = algl(n) + aEgz(n) + �9 �9 �9 �9 

This relation can be written as 

S•U(on)(1) - N(On)(S) = alN(on)(g,) + azN(on)(g2) + . . . .  

N0(n) (1) U(on)(s) U(on)(g2) U(on)(g3) 
- a 1 + a  2 N(o n) + a  3 + . . . .  N(o n) (gl)  N(o n) (gl)  (gl ) N(o n) (gl)  

Applying the operator  A to both sides we have, since Aa 1 = 0, 

S~A(.N(~ ] - A (  U(on)(s) ) = (U(on)(g2)~ + . . .  

[. U(o n) ( g l ) )  

that is, using the definition of  N1, 

S~N~ n) (1) - N~ n) (S) = azN(n)(g 2 ) + a3U(n)(g 3) + ' " .  

Obviously ,  the process can be repeated and we obtain for k = 0, 1 . . . .  

S=,N~n)(1) _ N~n>(S)= _ ~r(n) - ~,(n> 
U k + l t * k  (gk+l) +uk+z 'vk ( g k + 2 ) q - ' ' ' "  

Dividing both sides by nT(n)t_ iv k ~gk+l) '  we have 

S~ 
N(n)(1) N(n)(s) N(n)(gk+2) 

- -  .Jr_  , . . o  

U(n)(gk+l) U(n)(gk+l) ak+l +ak+2 N~n)(gk+l) 
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Applying A and since Aak+l = 0, we obtain 

(N(kn)(1) "] (Nin)(s) I (N(n)(gk+2)) S'A/N~I)J-A N(n)(gk+l) =ak+2A/~k(n)(g-~+l)~-t-''" 
that is, by definition of N~+I 

~(n)  (1) M(n) (S) (n) (n) _ = ak+2Nk+l(gk+2) + ak+3Nk+l(gk+3) + ' ' '  . . . .  k+l " k + l  

and so on. 
For any arbitrary sequence u = (un), we shall define the sequence trans- 

formation Ek by 

where 

Nk(">(u) 
el")(") - Ni  

By construction, the quantities Ek (n) (S) are the same as the quantities E (n) obtained 
by the E-algori thm as we shall see in section 3. 

Dividing both sides of the relation given above for an arbitrary value of  k 
by Nk(n)(1) and making use of  the definition of  E(n)(u), we obtain 

(n) S~ - E(kn)(s) = ak+lEin)(gk+l) + ak+2Ek (gk+2) + ' "  ", 

which is a known property of  the E-algorithm. 
The preceding definition of E(kn)(u) makes use of N~n)(u). The converse 

also holds and we have: 

PROPERTY 1 

(E(n-)l(U) I 
Proof  

We have 

and the result follows from the definition of  E(n)(u). [] 
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Let us now give some more properties of the difference operators N k and 
the transformations Ek. 

P R O P E R T Y  2 

Vk > 1, ' '(n)" E~ n) - lVk [gi) = (gi) = 0 for i = 1 . . . . .  k. 

Proof  

By induction. We have 

A I N ( n ) ( g l ) )  N}n'<gl) = ~ ~ )  = A(1)= O. 

Thus, the property is true for k = 1. Let us assume that it is true for k. 
We have, for i = 1 . . . .  , k, 

Nk+l(g i )  = = = 

For i = k +  1, we have 

g(n,  , A (N(n ' (gk+l ) ]g (n ) (gk+l )  ) O. k+ll, gk+l) = = A(1)= 

Thus, the property is true for any k. 
It follows that, Vk > 1, 

Ek = o 

for i =  1 . . . . .  k. 

We have 

N(n) k + l  ( U )  = 

N(n+l), , N(k n) k tu) (u) 

N(n+l)t_  ~ N(n)(gk+l)' k k , ~ k + l  ) 

[] 

which shows that the N~k n) (u)' s satisfy a triangular recursive scheme. Thus, following 
the theory developed by Brezinski and Walz [9], these quantities can be expressed 
as a ratio of two determinants. Moreover, using the property above and theorem 3.2 
of  Brezinski and Walz, we have: 
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PROPERTY 3 
U n . . .  Un+ k 

gl(n) "'" g l ( n + k )  

gk(n) "'" g k ( n + k )  
N(n)(u) = N(n)(go) , 

go(n) ... g o ( n + k )  

gl(n)  "'" g l ( n + k )  
: 

gk(n) ... g k ( n + k )  

where  go = (go(n)) is an arbitrary sequence such that k/k, n, N(k n) (go) r O. 

The usual  determinantal  expression for E ( ' ) (u)  immedia te ly  fol lows f rom 
this representat ion:  

PROPERTY 4 

E(n)(u) = 

U n . . .  Un+ k 

gl(n) "'" g l ( n + k )  

gk(n) "'" g k ( n + k )  

/ 1 "'" 1 

gl (n)  ... g l ( n + k )  

gk(n) ... gk(n + k) 

Denoting a determinant by its first column, we have, f rom Sylvester 's  deter- 
minantal identity 

[Ungl(n)"" gk (n)gk+l (n)[[ g l (n  + 1 ) ' ' -  gk (n + 1)[ 

= ]Ung 1 ( n ) . . .  gk  (n) l[ gx (n + 1 ) . . .  gk+l ( n  + 1) [ 

-[Un+lgl(n + 1).-" gk(n + 1 ) [ [ g l ( n ) - ' '  gk+l(n)[ ,  

that is, 

l ung l (n ) . . ,  gk+l(n) l lgl(n + 1 ) . . - g k ( n  + 1)1 

[gl(n) �9 �9 �9 gk+l(n)[[gl(n + 1 ) ' - - g k + l ( n  + 1)1 

lUngl(n)""  gk(n)l 

I g , ( n ) ' - "  gk+l(n)l 

lUn+lgl(n + 1) . . "  gk(n + 1)l 
I gl (n + 1 ) . . .  gk ( n  + 1) 1 

( ) = (-l)k+'A N(n)(gk+----------l) = (-I) k+'N~n)+l(u ). 
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Thus we  f inally obtain: 

P R O P E R T Y  5 

N(n)+l(U ) = ( _ l ) k +  1 lUng1(n) . . .  gk+l(n)l lgl(n + 1 ) . . .  gk(n + 1)1 

[g l (n)  �9 �9 �9 gk+l(n) l lg l (n  + 1 ) ' ' '  gk+1(n + 1)1' 

with  the convent ion  that Igl(n + 1) . . . gk(n + 1)1 = 1 i f  k = 0. 

This  property shows  that, in fact,  the def ini t ion o f  the d i f ference  operators 
Nk is equivalent  to Sy lves ter ' s  determinantal  identity. 

P R O P E R T Y  6 

with 

and 

k 

i = 0  

Bo (O'n) = 1 

B(k+l,n) _ n(k,n)lM(n) 
o - - o o  ""k (gk+1), 

B~k-'~'+ 1) B~k'n) i =  1 . . . . .  k, n~k + 1,n) 
�9 = ~ r ( n + l ) r  - ,~ N(k n) ' lVk. ~,Sk+l! ( g k + l )  

R ( k , n + l )  
R ( k + l , n )  "-'k 
" k  + 1 = ~ r (n+ l )  t - " 

lYk ~ ,~k+ l )  

Proof 
Obvious  from the def ini t ion of N(kn)+l(U). 

From this property, we  immediate ly  obtain: 

[] 

P R O P E R T Y  7 

with 

k 

E(k n)(u) = E A~ k'n)un+i' 
i = 0  

k 
A~ k'n) = n~ k'n) / E n~ k'n)" 

j = 0  

This  property was already g iven in [2] and [12]. 
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From the properties 3 and 4, we have: 

PROPERTY 8 

N(n)(Au) = N ( n ) ( E u ) -  N(n)(u), 

(n) = E~n)(Eu) E k (Au) -E(kn)(u), 

where Eu = (gn+l) and Au = (Aun). 

We shall see now how the E-algorithm can be recovered from the above 
recurrence relations. 

3. T h e  E - a l g o r i t h m  

We have 

E(k n) (u) - N(kn) (u) 
Nk(n)(1) 

A 
N~n)__ 1 (u) 

N(n) , k -1 (gk) 

N(n) (1) k- I  A 
Nk(n__)l (g/~) 

{( N~n-)l (U) N(n-)l(1) / 

A \  N~)I( I  ) N(n) (~  k-1 ~gk) 

N(n--)l (1).] 

A N(n) 1 (gk) J 

A(g(n_) 1 (u)[ g(n_) 1 (gk)) 

A(I/Ek(n--)l (gk ) ) 

Ek(n+l)l~ -1 I,,~k)E(n--)l(U) - ~(n) t -  '~E (n+l) �9 J k - ,  (u )  

E ( n + l )  : ,, (n) , ,  , Ek_, g j 

which is called the rule of the E-algorithm. It may also be expressed as 

- tzk_ 1 t,u) ~k-1 ~,gk) 

AE(n) A b-(n) �9 
k-1 (U) '-~k-1 (gk) 
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Thus,  sett ing 

we obtain 

e(: ) = (S), 

g<.) = 
k,i 

g ( n + l )  _ g(n) 
k - l , k  k - l , k  

k,i = g ( n + l )  _ g(n)  
k - l , k  k - l , k  

with E (n) S n and ,,(n)_ = 6o, i -  gi(n), which is the E-algori thm.  
In the case gi(n) 1-i where (xn) is an auxiliary known sequence, the W- = X n 

algorithm of Sidi [23] is recovered; see also [7]. 
The formulae  of the E-algor i thm are one-step formulae  a l lowing one to 

compute  the ~k+l~'(n) (u) 's f rom the E~ ")(u) 's .  It is also possible  to use mul t i s tep  
formulae  a l lowing one to compute  directly the E (n) (u) 's  f rom the E(mn)(u)'s k+m 
without  comput ing  the intermediate  steps. Such formulae  were given in [3]. We 
shall see now how they can be recovered  f rom our mechanism.  Let  m be a f ixed 
non-nega t ive  integer.  We define the operators Ark by 

f;,u, / 
N(n)+I(U) = A �9 

A 

with No (") (u) = N(n)(u) and ~i(n) = g,n+i(n). 
We define also the t ransformat ion Ek by 

We have: 

A A A 

E(kn)(u) = N(kn)(u)/N(n)(1). 

P R O P E R T Y  9 A A 

~(n) N(kn)(u) = " ' k + m  (u ) '  E ( n ) ( u )  = ~k+ml~(n) (U). 

Proof  

The second relation obviously  fol lows f rom the first one which is p roved  
by induct ion.  The property is true for k = O. Let us assume that  it is true for k. 
We have 
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(n) = " ' m + k + l  
~ Nk + m (gm+ k + l ) (U). [] 

By using property 4, a determinantal  formula expressing the quantities 
(n) Ek+m(U) in terms of the E(mn)(u)'s can be obtained. Such a formula  is useful  

when a division by zero (or by a quantity close to zero) occurs in the E-algorithm. 
It allows one to jump over the singularity (or the near-singulari ty) and to avoid 
a breakdown or a near-breakdown in the algorithm; see [5]. 

Let us consider a variant of  the E-algori thm where, now, we set 

N(k") (u) 
E~n)(u)- N(n)(o ) , 

where v is an arbitrary sequence such that the denominator in the preceding 
expression does not vanish. Then, the same relations as above hold after replacing 
the sequence l by the sequence v. Thus, the E-algorithm can still be used for 
computing recursively these quantities E(n)(u) but, now, with the initializations 

E(O n) = E(on)(S) = Sn/1) n and ,,(n) = E(on)(gi) gi(n)/l)n" 60,i = 

4. The Ford-Sidi  algorithm 

Thus 

Let us set 
IIt(") (u) = N~ n) (u)/ N(k ") (gk + 1)- 

N~n)+l(U ) = AIV (n) IV(n+1) I//~ n) k ( u ) =  k ( u ) -  (u), 

IV(n+l)  ~r(n) t _ AI/t(k n) (gk + 2 ) k ~Vk+l~,$k+2) = = ( g k + 2 )  -- Ipr(kn)(gk+2), 

N(n) (I) = AVe")(1) = v~n+')(1)-- V(n)(1), k+ l  

and it fol lows that 

E(n) k+l  (U) -- 

We have 
, (u) = (u) /  AV/k") (gk + 2 ) 

N (kn+)l ( U ) (n) (n) 
I[/k+l(U)A1D'k ( g k + 2 )  IPr(n)l (U) 

N(n) (1) ~(n) (1)A~/(kn)(gk+2) v/~n+)l(1 ) k+l  k+ l  

and we recover the algorithm proposed by Ford and Sidi [11] for implementing the 
E-transformation. 

The definition of E~ n) (u) does not make use of gk+ 1, while the computation 
of E~ n) (u) by the Ford-Sid i  algorithm does. This is an important drawback of this 
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procedure which, on the other hand, requires less arithmetical operations than the E- 
algorithm. However, it must be noticed that, if E~n+) l (u) is not to be computed, then 
the auxiliary sequence gk+l used in the computation of ~(n) k (u) can be arbitrarily 
chosen. 

It must be noticed that 

and thus 

N(n) (u) "'kM(n)(1) E~ n) (u) 
ii j(n) k ( u ) - -  N~n) (I) N ( n ) ( g k + l )  E ( n ) ( g k + l )  

i//(n) ,-,(n). (n) 
k (S )= t~  k /g~,k+l, 

= 

�9 "6k,k + I ' 

= I. 

In fact, the quantities ~(2 ) (u) are exactly the generalized divided differences 
introduced by Mtihlbach [15, 16] and the previous algorithm is exactly the recurrence 
relationship they satisfy [17-19, 3]. 

5. The general e-algorithm 

In [10], Carstensen proposed a general e-algorithm including the e-algorithm 
of Wynn [26] which is used for implementing Shanks' sequence transformation [22]. 
We shall see now, how this general e-algorithm can be recovered and we shall 
also give some new properties for it. 

We set 
n E~n) eEk = (S), 

n 
, eEk + l - AE ") (S) 

and 
/z~ = Aan, 

#~ ( n  "+' ) ' " + ~  ) 
_ _ e2k_ ,  , k :" e2k e2k_ 2 [e2k_l  n 

where tz = (txn) is an arbitrary sequence such that the quantities involving a in 
a denominator do not vanish. 

Replacing the quantities e~ by their definitions and using the rule of the 
E-algorithm we immediately obtain: 

PROPERTY 10 
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In order to recover the general e-algorithm of Carstensen, we also have to 
prove that 

( n+l , l  n+l n )  
la~ = e~k +l - e 2 k - 1  ] ~e2k -- eZk �9 

We compose the identity 

aEk (') (a )  k- l (r + ,x 

E~n) (n+l) ) (a)-- Ek__21 (a) 

But, from the rule of the E-algorithm, the quantity (E(k ")(u) - E(n+t)k-I {,U))lZXl3k-l(U)(n) 

is equal to E(kn_+ll)(gk)/AE~n?l(gk), which shows that it is independent  of the 
sequence u. Thus, writing this quantity with the sequence S instead of a, we have 

(n) (n+l) 1 AE~n)(a) (n+l) E k ( S ) - E k _  1 (S) 
= A 

(n+l) _.~ 
= AEk-1 (t~) + 

(n+l) Nx 
AEk_ 1 (~,) 

(n+l) 
Z~k_ l (S) 

(n+l) 

( fiE (n) (~S))I + A / ~ k - I  (~+1) (s)). 

AE(n+O Multiplying and dividing the first term in the right hand side by k-I (S) and 
using the above expressions together with the rule of the E-algorithm, we obtain 

n + l  Ar(n) : r  ~ln 
I~E n ) ( o  0 = e2k_lt..W~k t o )  + k '  

which is the second relation of Carstensen. 
Thus, we finally obtain Carstensen's  algorithm 

n n+l 
e2k - 2  e2k = + n+l n ' 

e 2 k - 1  -- e 2 k - I  

n n+l 
e2k+l = e 2 k _  l + 

u'; 
n+l n ' 

r -- e2k 

with ~t~ as given in the property above. Let us remark that Carstensen defined / -tnk 
as a ratio of a product of determinants and thus property 10 provides a new 
expression for it. 



472 C. Brezinski, M. Redivo-Zaglia, A general extrapolation procedure 

Let us now prove some new results about  this algorithm. We  set 

~[(on)(u) = un ,  

_ ] 
N(?I (u)= h t~i.)(Agk+l).' 

~ n )  (U) -- ~[(n)(U) 

~i.)(1)" 

(~(n) (u)) is the sequence obtained by applying the E-algorithm to the sequence u 
but with the (Agi)'s as auxiliary sequences instead of  the gi's. 

We have: 

PROPERTY 11 

where ct and fl are two arbitrary sequences.  

Proof 

By induction. For k = 0, we have 

~ ( n ) ( a )  _ A a  n _ E ( n ) ( A a )  

aeo(n)(~) A~n E(on)(a~)' 
which shows that the property is true for k = 0. 

Let  us assume that the property is true up to the index k. We  have 

�9 (~i-)(Au) ] 

= At~(n)(Agk+l) 

= A  

by the induction assumption.  
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Thus 

E(n21(Aa) z-x~ kA ~'(n+l)t~'~A r(n)t~~,t~,1---~-~k t~k+l )~ -- AE(kn)(a)~(kn+l)(gk+,) 
~(n21 (Aft) A ~ , (n+l ) .o , ,  ,-,(n)[_ ~ (n) (n+l) Z-~k (P)l--~k ' , S k + I ) - A E k  ( f l )AEk  (gk+l )  

By the rule of the E-algori thm 

and 

Thus 

Ein2l(U)-- ]7(n+l) -~ (u) - aE(k") (u) 
AE(n) (gk + 1 ) 

E ( n  + 1) 
k (gk+l )  

aE~"+')(u) ~ ( .+1 ) ,_  
~k ~,$k+l)" 

E (n+l) E ( n + l ) ( u  ) _ 
k+l (g) --- a r ( n + l ) r ~  

z-x~ k ~,$k+ 1 ) 

E(n+l)t_ k kJ~k+l) (n) .'~A~(n+l) 
(AEk  (u)z-~r-'k (gk+l )  

z-x~ k ~,Sk+l)Z-u-~ k +l) (gk+l )  

_AE~n+ 1)(u)AE(n)(gk + 1)) 

and the result follows. [] 

This property is a generalization of property 10 of [5]. It can be written as: 

PROPERTY 12 

is independent of the sequence a.  

AEk(")(a) 

~:k(")(Aa) 

Proof 

From the preceding property we have 

aEk(")(a) _ AEk(")(/~) 
~:k(") (Aa)  ~:k(") (A~) ' 

which proves the result. 

Using these results, we have 

~:k(")(Aa) 

[] 
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From the determinantal expressions given above, this is exactly the definition 
of e~k+l given by Carstensen. We also have 

~(n)  ( t a ) ~ n - ~ l )  ( ~ )  ~(n)  1 -{n+l)  B,(n+ I) 
k-1 - - -  (AS)Ek_I  (Aa)'-'k-1 (gk) 

--(n+l) ,~ Ek_ 1 (AS; E~n)l(Agk) 

which is the definition of/.t~ given by Carstensen. 
We have: 

PROPERTY 13 

n 
e2k+l = 

Ek(n+)l(g ) -- E(n)(g) 

Proof 
By the rule of the E-algorithm, we have 

E ( n )  E(kn)(o:)=_ AEk(n) (t~) 
k+l (t~) - AE(n) (gk+l) 

E(n):• k ~,,~k +1 ) 

and a similar expression for Ek("2: {S} - E(kn)(S). Taking the ratio of these two quantities, 
the result follows. [] 

When Vn, Aan = 1 then bS~ n) (Aa) = 1 and it follows that 

e2k+l = 1 / (AS), 

which generalizes a well known property of the e-algorithm of Wynn. Moreover, 
when gi(n) = AiSn, which corresponds to Wynn's algorithm, it is easy to see, from 
the determinantal expressions given above, that p~ = 1. For another derivation of 
Wynn's e-algorithm from the E-algorithm, see [1]. 

6. Extensions 

The preceding approach to the E-algorithm can be easily generalized thus 
giving rise to new extrapolation procedures. For example, let us replace the operator 
A appearing in the definition of Nk by A 2, that is, let us define the new operators M k 
by 

M(n}(u)  = Un, 

(n) A2( M~n)(u) ") 
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and the new sequence transformation Fk" (Sn) ~ (F (n)) by 

F (n) (S) - M(n) (S) 

M(~)(1) " 

When k = 1 and gl(n) = AS~, the first column of  the O-algori thm is recovered,  
that is 

= 

The other columns of  the O-algori thm do not seem to be related to this new 
transformation which should be studied in detail since, as shown by some numerical 
experiments we conducted, it seems to be quite promising. Obviously, the operator 
A in the definition of  N k could be replaced by A p, where the exponent  p can even 
depend on k. 

Another  possible  extension of  the procedure consists in assuming that the 
sequence S = (S~) to be transformed satisfies, Vn, 

S~ - S  n = al(n)gl(n) + a2g2(n) + a3g3(n) + . . . ,  

where a2, a3, �9 �9 �9 are unknown constants and (al(n)) is an unknown sequence for 
which a linear difference operator  L such that, Vn, L(al(n))  = 0 is known.  For 
example,  if  al(n) is a polynomial  of  degree k -  1 in n, L is A k. If  al(n) is a 
polynomial  of  degree k -  1 with respect  to an auxiliary sequence Xn, then L is 
the divided difference operator of  order k. 

For dealing with this case, we shall define the sequence (Lk) of  di f ference 
operators  by 

L(on) (u) = Un, 

: 

and then treat the sequence (Sn) as above,  that is, consider  the sequence of  
t ransformations D k �9 (Sn) ~ (D (n)) given by 

D(kn)(S)_ L(kn)(1--- ~ �9 

We  intend to return to these extensions in a subsequent  paper. 
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Let  us ment ion that the conf luent  forms of  the E-a lgor i thm [2] and o f  the & 
a lgor i thm [27] can be t reated as above.  These  conf luent  forms al low one to obtain 
approximat ions  o f  

S~ = l im f ( t )  
t ----> ,*,  

f o r  a f unc t i on  f such that,  gt ,  

S~ - f ( t )  = alg l ( t )  + a2g 2(t)  + . . . ,  

w h e r e  the gi's are g iven  func t ions  taken  as g i ( t )= f ( i ) ( t )  in the case  o f  the & 
a lgor i thm.  The  m e c h a n i s m  of  this type  o f  co n t i n u o u s  p r ed i c t i o n  a l g o r i t h m  is 
s imi la r  to the m e c h a n i s m  e x p l a i n e d  in sec t ion  2 a f te r  r ep lac ing  the o p e r a t o r  A 
by  the o p e r a t o r  D = d/dt. See  [7] fo r  an expos i t i on  o f  this t ype  o f  a lgo r i thm.  

The  app roach  d e v e l o p e d  in this pape r  has also been  e x t e n d e d  to the v e c t o r  
and  ma t r ix  cases  [8]. 
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