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Particular rules for the @-algorithm

M. Redivo Zaglia

Dipartimento di Elettronica e Informatica, Universita degli Studi di Padova, via Gradenigo 6 / a,
1-35131 Padova, Italy

The @-algorithm is an extrapolation algorithm which can be very useful in accelerating
some slowly convergent sequences. Like the other acceleration algorithms, the @-algorithm
is quite sensitive to the propagation of rounding errors due to cancellation in the difference
between two almost equal quantities.

In order to (partially) avoid this drawback, particular rules are given. They have to be
used, instead of the usual rules of the algorithm, when two adjacent quantities in a column
are nearly equal. Numerical examples show that these rules can improve the numerical

stability of the algorithm in some cases while, in other cases, the improvement is non-ex-
istent.
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1. Introduction

Convergence acceleration methods are very useful tools which make it often
possible to use sequences and series that converge slowly. These methods have
been studied and developed for many years and they have a very wide range of
applications in numerical analysis [4].

Many sequence transformations T:(S,) —(7T,) are defined as a ratio of
determinants.

For example, in the case of Shanks’ transformation we have

Sn Sn+1 e Sn+k
ASn ASn+l e ASn+k

AS iy AS... 0 AS, ..

Tn=ek(S,,)= ;k 1 1+k ;2k 1
ASn A'Sn+l Tt ASn+k

AS k-1 AS,p 0 AS,
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If the determinants involved in the definition of 7, have a special structure,
then it is possible, by applying determinantal identities to the numerator and the
denominator, to obtain some rules for computing them recursively without
computing explicitly the determinants involved in their definition. These rules
are called an extrapolation algorithm.

For implementing Shanks’ transformation, it is possible to use the e-algorithm
of Wynn

e =0, =S, n=0,1,

(n) ("+1) 1

€hi1=E&1 ) +—m—), k,n=0,1,...,
Eg €

ceey

and we have &3} = ¢,(S,).
All the quantities computed by an extrapolation algorithm can be displayed in
a double entry table as follows (in the case of the e-algorithm)

£9 =0
(O
gD =0 e
el =8, gD
e =0 e eQ
e =38, gsh
e® D
e
e

Starting from the first two columns, (¢} =0) and (¢{” =S,), the rule of the
g-algorithm allows to proceed in this table from left to right and from top to
bottom (normal form of an extrapolation algorithm).

The rule of the e-algorithm relates quantities located at the four corners of a
rhombus

(n)
. S
™~

€k
8;("+1)

and we saw that the numbers £{} are approximations to the limit S, of the
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sequence (S,) while the &}, , are intermediate results. We are in fact not

interested in the auxiliary quantities £{,, and thus we can use the so-called

cross rule due to Wynn which only involves quantities with an even lower index.
Setting

N =g
a=gfty b=g%,,
W =3 C=ep™ E=ef),,
o= d=ey
§=g1*?

the cross rule is
(N-C) '+(S-C)'=(w-C) "+(E-C)",
that is, E can be computed by

E=C+[(N-C) '+ (s-C0) -w-0)]"

with £} = co.

2. Numerical instability

A crucial problem for every extrapolation method is the propagation of
cancellation errors due to the finite accuracy of the computer. The better the
extrapolation algorithm works, the more severe is the effect of rounding errors.
For example, in the case of the g-algorithm and the cross rule described in the
preceding section, there are two main problems:

- If N is different from C but very close to it (both quantities are approxima-
tions of §), then a cancellation error arises in the computation of b (near-
breakdown in the algorithm) which will be large and badly computed. If S is
also different from C but very close to it, then d will be large and badly
computed. Thus, in computing E, we have, in the denominator, the differ-
ence of two large and badly computed numbers. If N = C then b is infinity
(breakdown in the algorithm). If S is also equal to C then d is infinity. Thus
E is undefined.

— If a is different from e but close to it, C will be large and badly computed.
Thus b and d will be almost equal and E will be the algebraic sum of two
large and badly computed numbers (near-breakdown in the algorithm). If
a =e then C is infinity (breakdown in the algorithm). If N# C and S#C
then b =d and E will be undefined.

There are two possible answers for avoiding numerical instability in an
extrapolation algorithm: its progressive form and its particular rules.
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3. Progressive forms

To obtain the progressive form for the g-algorithm, we compute the first
descending diagonal (¢”) by the bordering method or by the block bordering
method with the reverse bordering method [5]. Then we write the rule of the
e-algorithm as

1

etV =gl + L e

In general a progressive form allows, starting from the first diagonal ((¢?) in
the e-algorithm) and the second column ((e{”=S,) in the e-algorithm) to
compute all the other quantities in the table. Of course this rule still suffers
from numerical instability since, when k is even, we have to compute the
difference of two almost equal quantities. However, the instability is not so
severe since, usually, €7, , is a better approximation of S, than £{;*" and both
quantities have fewer digits in common than &%} and &4} (normal form of the
g-algorithm).

The progressive form of the cross rule of Wynn is

-1

S=Cc+[W-c)"'+(E-C)' = (N-C)7]

4. Particular rules

The particular rules are obtained by modifying the rule of the algorithm in
order to obtain a more stable algorithm.
For instance in Aitken’s A% process we have
SnSn+2 - SI?+1

T = , =0,1, ....
" 822548,

This formula is highly numerically unstable since, if §,, S,,, and S, ., are
almost equal, cancellation errors arise both in the numerator and in the
denominator and 7,, is badly computed.

If we write

(Sn+1—Sn)2
T =85 — , =0,1,..
" 28,48,

-

we obtain a much more stable formula. Again, of course, cancellation errors
arise in this formula when computing (S, ., —S,)* and S,,,—2S,,,+S,, but
the term (S,,, —S,)?/(S,.,—2S,,,+S,) is a correction term to S, which
explains the better stability of this second formula.
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Using the previous notations, the normal form of the e-algorithm gives
C=W+1/(e—a),
b=a+1/(C—=N),
d=e+1/(S-C),
E=C+1/(d-b).

If a is nearly equal to e, C will be large and badly computed (close to
infinity), b and d will be almost equal and, as previously said, E will be
undetermined.

After some algebraic manipulations, the cross rule of the e-algorithm can be
written as

E=r(1+r/C)7",
with
r=8(1-S/C)" '+ N1 ~-N/C) ' —w(1-w/Cc)”".

Wynn [11] proved that this rule can compute E in situations in which the normal
rule given in section 1 fails. If C is infinity, which happens if a = e, this rule
reduces to

E=S+N-W,

thus allowing the computation of E, if S, N, and W are defined, by jumping
over the singularity. If the normal rules of the g-algorithm would be used, a =e
would lead to C being infinity, which would then imply b =d. Hence, E could
not be computed by the normal rule.

This rule is only valid when there is one isolated singularity, that is, when only
two adjacent quantities in a column (a2 and e in our example) are equal or
almost equal. Obviously it can also be applied for computing in a more stable
way a quantity with a lower odd index when two adjacent quantities in an even
column are equal or almost equal.

Wynn’s particular rule was extended by Cordellier to the case of an arbitrary
number of equal or nearly equal quantities in the g-algorithm [6]. Wynn’s
particular rule can also be used for the first and second generalizations of the
e-algorithm and in the p-algorithm. Wynn also proposed a particular rule for the
gd-algorithm. Using the notion of Schur complement, Brezinski [3] obtained
particular rules for the E-algorithm and for some vector sequence transforma-
tions, such as the so-called RPA, CRPA and the H-algorithm, by computing
directly the elements of the column m + k of the table in terms of the elements
of column k without computing the intermediate columns and then avoiding
division by zero or numerical instability due to cancellation errors. Regarding
the vector e-algorithm, the normal cross rule is the same as that for the scalar
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g-algorithm and a particular rule was obtained by Cordellier [7] if N, S and W
are different from C and if (N—C)" '+ (5 —C)"! is not equal to (W - C)~L.

5. The @-algorithm

Let me now recall the @-algorithm obtained by Brezinski [1],

@(_n;=0, @(()n)=S", n=03 1,-'-’
1
Oy, =0yt ¢ k,n=0,1,...
1 2k-1 +1) _ y? ’ y 45 »
0% O5%
(n)
05, =05V + :)k o kon=0,1,..,
" sees
@(2';(+1 _@27<+1
with
-1
) — (n+1) _
D;(" — (@kn ) @I((n)) ,
1 2 1
404 0%+~ 04
wg(n)= — = —

-1
+2 +1
(@(27&1) - @.(Z'l'cﬂ))

— +1) _
(0533

—1
01
2k+l)

As for the g-algorithm, the quantities belonging to the odd columns are

intermediate results.

The numerical experiments conducted by Smith and Ford [8,9] show that the
®-algorithm is among the algorithms which provide a good answer in the

greatest number of cases.

The @-algorithm is also a quite powerful method for summing some divergent

series, as exemplified in [2,10].

6. Particular rules for @-algorithm

The rule of the @-algorithm for quantities belonging to odd columns, relates,
as in the e-algorithm, quantities located at the four corners of a rhombus,

o5
@(n+ l) /

/y @g/lc)-i- 1

oy



M. Redivo Zaglia / Rules for the @-algorithm 359

but, in the case of even columns, there are much more quantities involved in the
rule

Thus, we shall have to consider separately two cases according to the
presence of two adjacent equal or nearly equal quantities in the same column,
which may be odd or even.

6.1. RULE FOR EVEN COLUMNS

We set
— @
N= @27(+1
a= @Z(Z'Ilc+ b b= @(Z'I‘c)+2
-64% =%y E=0f,s
e= 04" d=641
- 04" $= 6412

l _ @(n+3)
_ f(n+3
V= @27(+1)

Using the normal form of the algorithm we have

1
C=w+
e—a
(n) _
oY . e—a
b=a+ ,  with 0P = — — —,
C—-N g (s-¢)"'=(c-nN)"!
(n+1) i—e
d=e+ 2k ,  with @{"* D= — — >
s (V-5)"-(s-C)
E=C+——
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If a and e belong to an even column and E belongs to an odd column, and if a
is different from e but close to it, C will be large and badly computed. If N and
S are not close to C, that is, if they are not large (isolated singularity), then w{”
will be the ratio of two small and badly computed quantities and thus b will be
badly computed. If also V' is not large and i is not close to e, then d is nearly
equal to e. Thus E will be computed from badly computed quantities. More-
over, if i is close to a and e then the situation becomes worse because S is also
large and badly computed and almost all the quantities involved in the computa-
tion of E are badly computed.

We shall now make some algebraic manipulations, similar to those of Wynn,
with the intention of obtaining a formula for E that will possibly be more stable.

1
E-C+——
1

+

e+’ (S -C) ' —a —wf™C-N)!

1
C+
(C-W) Lt D(§—C)y '~ ™ C-N)"!

C
C
* C(C-W) '=Caol"*N(C-8)"~Ca{™(C-N)"!

C
C+
(C—WH+WYC—W) ' =" NC-S+SHC-8)"'—a{™(C-N+NYC-N)"!

c
C+
1+ W(EC-W) ' =1 +S(C-8)" ] —{f[1 +N(C-N)"]

C
- “’S("+l)+w$<")_ 1-W(C - W)_l +w$\."+l)S(C_S)—1 +L¢)§~.")N(C—N)_l

Clo N+ = 1) = C~ CW(C - W) '+ NCS(C~ §) ' + ofPCN(C = N) !
w n+l)+w$¢n)_ 1-— W(C— W)—l +w3\'n+1)s(c_s)—l +w$(")N(C—N)_l

Clof* M+ wf? = 2) + 0" " US(1 - §/C) '+ wf"N(1 -N/C) "' = W1 - W/C)~!
oV 4w — 14 CT WIS - S/C) T+ w{"N(1-N/C) = w1 -Ww/C)7!]

C(af D+ - 2) + " US(1 - S /C) '+ 0N - N/CY L =W - W/Cy~ !
1+ C7HC(wfr*V + 0’ - 2) + 0" US(1-5/C) ' + w{"N(1 - N/C) ' = w1 -W/C)" ']’

If we set
r=Clof™ P+ 0" -2)+ " H5(1-5/C) " +w{’N(1-N/C)™!
-wQa-w/c)”’,
we obtain an expression of the same form as the particular rule of Wynn

E=r(1+r/C)”".
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Now we shall modify also the computation of the quantities {” and w{**"

= e—a _ (C—W)_l
g (§—C)"'=(C=N)"" (C-8)'+(C-N)"
1-wyc)™!
Ta-s/oy v 1-NO)
Wt = — i—e _ (S_T)—l
g V-85"-(s-C)"" S-")'+s-0)!
(1-T1/8)""

T A—vS) v (1-c/s)

Using the preceding formulae for the w’s we have

S . C(1-v/S)
r=Clel" el =) - T sye—c/s—v/s)
N(1-S/C) v
T =w/O)@-N/C=5/C) " (1-W/C)
—_ n+ n — (1_V/S)
=Clo{"*V + (" -2 (1-T/S)(2-C/S—V/S)
N(1-5/C) il
Ta-w/OR-N/C=S/0) T - W/C)
and
— o+ n (I_V/S)
/€= O = 2= C/S - V/S)
N/C(1-S/C) w/c

T A=W/ O)2-N/C-S/C) (1-W/C)

In the case of one isolated singularity (for example a = ¢), we have C = o, If
T#S,V+S and S #0, it follows from the particular rule

1-T/8)""
w{=1/2 and wﬁt"“)=(—i—)j
(1-V/5)
r=aC+p
where

a=o{+wf*V—2%#0 and B=N/2-W+#owx,
r/C=a
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and then
E =,

In practice, it is very difficult to have only one isolated singularity due to
convergence because often when we find, in an even column, two almost equal
quantities, then on the same column all the other successive quantities are also
nearly equal to the first two. In this case, the preceding rule does not permit to
avoid completely the unstable computations. For instance, when a =e =i then
C = § = » and when computing the w’s and r we have the undetermined ratio
S/C.

However, with the exception of the computation of ®{”, the use of the
special rule permits to jump over the singularity. In fact, when the program
implementing the @-algorithm finds two adjacent quantities in an even column
exactly equal (due to the finite precision of the computer), it has to stop because
a division by zero in the next odd column occurs. With this particular rule a
quantity in an odd column can always be computed because the formulae relate
only elements belonging to the odd columns and these elements are usually very
large (when the preceding even column contains good approximations of the
limit) but almost never equal.

6.2. RULE FOR ODD COLUMNS

We set
N=-0%
a=0%"17? b=0%,,
W=6g53 C =g+ E=-6%,,
e =652 d =641}
@(n+3) S= @5}}1{+2)
i=053 h=035
V=089
Using the normal form of the algorithm we have
(n+1) T—-W
C=W+ with o{* V= —— — —,
e—a (i—e)  —(e—a)
that is,
T-W
C=w- : —1
(e—a)(i—e) —
b=a+ d=e+ h=i+——

C—-N’ §-C’ S-v’
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w{™ S-C
with w(®= — - —~,
d-b (h—d)” —(d-b)

E=C+

that is,
§S—C
(d-b)(h-d)' =1

If a is different from e but close to it, then the denominator of C will be
nearly equal to —1, and C will be almost equal to T. If e is different from i but
close to it, then the denominator of C will be large. In addition, C will be
almost equal to W. In this case, instability is not a real problem for the
computation of C and all the other quantities. The only unstable condition
occurs when a, e and i are all nearly equal, but this possibility almost never
happens in practice for adjacent quantities in an odd column.

However, the normal form of the @-algorithm for the computation of quanti-
ties in even columns cannot be used if e and i (or A and d) are exactly equal.
Thus we look again for a different formula that makes it possible to avoid such a
breakdown.

We make some algebraic manipulations and we obtain

o T-W
(e—a)(i—e) ' =1

o (T=W)i-e)
(c—a)—(i—e)

=W(2e—a——i)—(T—W)(i—e)

(2e —a—i)

=W(e—a)—T(i—e)

(2e —a —1i)

If the two differences e —a and i — a are not almost equal, this formula also
partially avoids the cancellation error of the normal form, when the even
quantities W and T become very close.

7. Numerical results

We define a value m representing the number of decimal digits that the user
allows to lose due to the cancellation error.
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The particular rule for even columns of the ®-algorithm shall be used for
computing @$?,, when, for any k=0, 1, ... and for any n=0, 1,..., the
following relations hold

(n+2) _ p(n+1) (n+1) _ ()
@Zk @Zk @2k+2 @2k+2
(n)

2k+2

<10™™ or <107,

(n+1)
@Zk

In our case we apply the rule also when there are several singularities, that is,
when more than two adjacent quantities are nearly equal according to the
preceding inequalities.

The particular rule for odd columns shall be used for computing @¢7, , when

(n+2) (n+1) (n+2) _ pn+1)
2k+l @2k+1 _ @" @Zk -
— 10" or | <107
@2k+l @2k

In all the following examples the number of exact digits (—log,, [relative
error |) is shown. The value 999.0 denotes that all the digits are exact. When a
value is missing, it means that a breakdown occurs in the algorithm and the
corresponding entry of the table cannot be computed. The sequence of values
given for n=0,1,2, ... is 80, 8, 6P, 6P, 6P, O, 6P, 00, 00, ...

The computations have been made on a PC with the Microsoft FORTRAN
Optimizing Compiler and we have a precision of about 15-16 decimal digits.

7.1. EXAMPLE 1

We consider the series

=Y x'/i!
i=0
and its sequence of partial sums
So=0,
n—1
S,= Y xi/il, n=1,2, ...
i=0

This example was already considered by Wynn [11] and its interest is due to the
fact that it presents, when x =2, one isolated singularity in an odd column
(@) =0 = 0.5) and another one when x =4 (0P = @ = 9.3749999999999
X 1072).

With m = 12 we obtain the results given in table 1.

For all values of x, when two successive values of the given sequence are not
exactly equal, the particular rules allow the computation of the whole @-array.
The normal rules instead run into a breakdown in the computation of some
values. Regarding the stability, when both values (without and with particular
rules) are computable, the particular rules give almost always the same number
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Table 1
n x=-—45 x=-2.0 x =20 x=25 x=40
0] Opr. 6 Opr. 6 @pr. O ®pr. 6 O p.r.
3 -068 -—0.68 0.32 0.32 0.06 0.02 0.02  0.00 0.00
4 -08 ~-085 0.75 0.75 0.49 0.49 0.22 022 0.02 0.02
5 -08 -084 1.26 1.26 1.28 1.28 0.80 0.80 0.12
6 0.79 0.79 3.02 3.02 1.59 0.60 0.60 0.00
7 1.17 1.17 3.92 3.92 3.67 3.67 2.53 2.53 0.17
8 1.58 1.58 4.78 4.78 4.47 4.47 3.73 3.73 1.16
9 411 4.11 6.98 6.98 4.82 4.44 4.44 0.61
10 4.76 4,76 8.20 8.20 6.55 6.55 5.17 5.17 3.63
11 5.36 5.36 9.49 9.49 9.16 9.16 7.10 7.10 4.02
12 7.27 727 1156 11.56 10.25 8.20 8.20 3.64
13 8.14 8.14 1233 1233 11.10 11.10 1021 1021 4.46
14 9.14 914 1276 1276 11.67 11.67 10.82 10.82 8.29
15 11.68 1168 13.21 13.21 12.10 9.46 9.46 9.70
16 11.61 11.61 1293 1292 1212 1212 1153 1153 11.68
17 11.77 11.77 1521  15.09 1253 1253 1198 11.98 10.06
18 12.29 1229 1539  15.39 11.80 1202  12.02 10.07
19 11.59 11.59 999.0 13.22 1199 11.99 10.07
20 13.32 13.32 999.0 14.31 12.07  12.07 10.07
21 12.66 12.66 999.0 14.97 12.01 12.01 10.07
22 15.81 999.0 999.0 11.80 10.06
23 15.81 999.0 999.0 13.45 10.22
24 15.81 999.0 999.0 12.16 10.07

of exact digits. There are many cases where the particular rules give a better
result (for example @', O'®, @'V, O?, O, OP), OF) and O, for x = 2.5)
and some cases where they are worse (for example @Y, @) and @% for

-2.0).

7.2. EXAMPLE 2

We consider the following sequence converging to S, = 1:

We obtain for different values of a and m the results of table 2.

S, =a,

0,1, ....

Again the particular rules make it possible to jump over all the breakdowns
found with the normal rules. Moreover, they often provide better approxima-
tions to the limit.

When a =35, the particular rules cannot continue beyond n =27 because
there is a breakdown in the particular rules for even columns due to the fact
that r /C is exactly equal to — 1. Moreover, with the same value of a, for n =16
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Table 2
n a=>5 a=50 a=500 a = 15000

e ®pr. Opr. O @pr. Opr. O @ pr. Opr. O O pr. Opr.
m=5 m=12 m=5 m=12 m=5 m=12 m=5 m=12

12 11.05 11.05 11.05 783 7.83 783 6.86 686 686 6.57 657 6.57
13 1245 1245 1245 1033 1033 1033 8.68 8.68 8.68 790 790 7.90
14 1373 1373 13.73 1222 1222 1222 11.20 11.20 11.20 10.05 10.05 10.05
15 14.84 1491 1491 1330 1331 1330 1232 1232 1232 1154 11.54 11.54
16 10.63 1223 12.70 14.88 14.75 1488 13.37 13.37 1337 13.14 1313 13.14
17 14.61 14.61 14.61 1336 13.28 1333 14.07 14.06 1409 1347 1345 1347
18 11.64 1326 1368 1343 13.27 1338 1451 1448 1451 1392 1390 1391

19 14.81 14.81 14.81 1440 14.17 15.11 1511 1491 1444 1445 1444
20 14.51 1445 14.57 14.44 1445 1445 1481 1526 1451 1451 1451
21 1448 1448 14.51 14.41 1445 14.65 1505 15.65 14.48 1448 1448
22 1433 1422 1442 1446 1446 15.11 15.65 1535 14.56 14.57 14.56
23 1535 15.18 1445 1446 1495 1518 1535 15.11 15.26 15.18
24 1535 15.18 14.44 1446 15.00 15.26 999.0 1491 14.78
25 15.65 15.65 1445 1446 1433 1535 13.66 1535 1535
26 15.65 999.0 14.45 1445 1331 13.78 12.63 1535 15.05
27 15.65 999.0 1445 1446 14.07 1431 13.12 999.0 15.95

and n = 18, respectively, we have a good improvement of the number of decimal
digits that are exact.

7.3. EXAMPLE 3

We consider the series

7_‘_2

- L@+
6 2o
and the following sequence derived from the series
n
S, =Y (i+1)7% n=0,1, ....
i=0

For different choices of m we obtain the results of table 3.

As we can see, this example is very sensitive to the choice of m. If m =5 or
less, then both particular rules are applied nearly from the beginning for
computing the values after the tenth of the third column and they continue to be
used in the successive computations for all the values of the array. This
behaviour permits to the algorithm to obtain in the first three values of the
columns 18, 19, 20 and 21 (corresponding to n =27 to n=38) a number of
digits more stable than that of the normal rules. Moreover, the results obtained
with the particular rules (also if in some cases they are a little bit worse) do not
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Table 3
n @ O part. rules n © O part. rules
m=5 m=6 m=7 m=9 m=5 m=6 m=7 m=9

27 8.57 8.49 8.57 8.57 8.57 63 -—3.81 438 554 —-382 -383
28 8.05 8.29 8.05 8.05 8.05 64 —519 788 8.16 —-518 -5.19
29 723 8.59 723 7.23 7.23 65 —6.12 684 745 —-6.09 -—6.11
30 7.50 8.37 7.50 7.50 7.50 66 —633 724 153 —-631 —6.33
31 6.77 8.73 6.77 6.77 6.77 67 —-727 623 7.00 -722 =725
32 7.65 8.73 7.65 7.65 7.65 68 —855 520 561 —849 —-852
33 6.34 8.73 6.34 6.34 6.34 69 —8.41 529 595 —835 838
34 770 8.73 7.55 7.70 7.70 70 —-9.70 468 5.07 -962 —9.65
35 797 8.73 7.27 7.98 7.98 81 422 396 397 5.90 6.02
36 7.78 8.73 7.42 7.79 7.79 72 -10.85 428 466 —10.74 -10.78
37 8.14 8.73 7.12 8.15 8.15 73 3.89 3.65 3.66 5.69 5.89
38 998 8.73 8.07 9.94 9.94 74 348 345 345 5.63 5.73
39 8.29 8.73 6.95 8.31 8.31 75 357 337 337 5.65 5.77
40 8.73 872 6.68 8.74 8.74 76 3.16 3.17 3.17 455 5.61
41 785 17.21 4.87 7.86 7.86 77 262 268 2.68 2.78 5.39
42 8.06 8.71 5.36 8.07 8.07 78 2.83 291 290 3.12 5.49
43 7.39 6.91 3.56 7.40 7.40 79 229 242 242 1.43 5.28
44 6.77 6.92 2.33 6.77 6.77 80 158 1.87 187 —0.45 5.01
45 7.10 6.93 223 7.10 7.10 81 197 216 216 0.08 5.18
46 6.63 6.75 0.90 6.63 6.63 82 126 161 161 —1.80 497
47 6.48 6.91 —0.85 6.48 6.48 83 476 453 453 -3.32 471
48 6.67 6.82 —0.50 6.61 6.61 84 093 135 135 -3.15 5.09
49 6.48 6.51 —-2.24 6.48 6.48 85 430 416 4.16 —4.67 4.24
50 642 6.80 6.92 6.42 6.42 86 375 319 319 -5.79 3.73
51 6.42 6.96 —3.60 6.41 6.41 87 383 375 375 -6.02 3.77
52 6.13 6.91 7.04 6.07 6.07 88 329 275 275 -17.15 3.26
53 447 1711 7.26 445 445 89 259 093 093 —8.77 2.58
54 472 17.03 7.17 4.68 4.68 90 2.82 232 232 —8.50 2.80

55 3.28 725 740 325 3.25 91 212 050 050 -10.12 2.12
56 1.56 8.85 8.02 1.52 152 92 055 415 415 -—1257 0.55
57 210 7.40 7.51 207 207 93 166 006 006 —11.47 1.65
58 0.41 7.89 7.33 037 037 94 0.09 390 390 -—13.93 0.08
59 —-1.52 6.67 6.69 —155 -—1.55 95 -—-0.28 365 365 -—1521 —0.29
60 -—-0.74 6.83 6.74 -078 -0.78 9% —038 365 365 —1528 —038
61 —2.66 5.54 6.11 -269 -269 97 —-075 340 340 -1656 —0.75
62 —4.04 799 835 —405 —-406 98 —178 310 310 -1859 -—179

suffer from the instability present in some areas of the array and they give an
acceptable approximation also for greater values of n (for example when n =96
which corresponds to O).

If m =6 the particular rules are applied later, starting after the twentieth
element of the third column. Thus in columns 18, 19, 20 and 21 we do not find
any improvement and on the contrary the particular rules produce an area of
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instability near n = 48 which is not present with the normal rules. But in this
case the particular rules are able to recover the results as in the case of m = 5.

If m=7 or m=29, due to the late application of the particular rules (for
m =9, for example, they are used only from column 5) the algorithm with
particular rules behaves almost chaotically with some values better than the
normal ones and other values very worse.

For any choices of m the number of exact digits of the results obtained in
columns 2 to 16, with and without particular rules, are aimost the same.

8. Conclusions

The existing theory of the @-algorithm does not permit to construct examples
which must contain, in a column of the array, algebraic known values or an
isolated singularity in a column of the array. This is possible for other extrapola-
tion algorithms, for example for the e-algorithm. The only possibility is to
compare the results with those obtained using greater precision or symbolic
computation. Doing that for some sequences, we have remarked that the values
of column 1 (for which particular rules cannot be used) were yet affected by an
error and thus in some cases the particular rules were not able to correct the
instability of the results.

The main interest of using the particular rules is to avoid the breakdown of
the normal rules (except when the breakdown occurs in column 1, when two
values of the sequence of input data are exactly equal, and the unlucky case
r/C=—1).

Regarding the gain in decimal digits, in general it is not really impressive and
it is probably due also to the fact that the singularities are not isolated but there
are areas (sometimes wide) of adjacent singularities and in this case the
particular rules are not applicable (in theory).
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