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Particular rules for the O-algorithm 
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The O-algorithm is an extrapolation algorithm which can be very useful in accelerating 
some slowly convergent sequences. Like the other acceleration algorithms, the O-algorithm 
is quite sensitive to the propagation of rounding errors due to cancellation in the difference 
between two almost equal quantities. 

In order to (partially) avoid this drawback, particular rules are given. They have to be 
used, instead of the usual rules of the algorithm, when two adjacent quantities in a column 
are nearly equal. Numerical examples show that these rules can improve the numerical 
stability of the algorithm in some cases while, in other cases, the improvement is non-ex- 
istent. 

AMS(MOS) subject classifications: 65B05, 65G05. 

Keywords: Acceleration, extrapolation methods, rounding errors. 

1. Introduction 

Convergence acceleration methods are very useful tools which make it often 
possible to use sequences and series that converge slowly. These methods have 
been studied and developed for many years and they have a very wide range of 
applications in numerical analysis [4]. 

Many sequence transformations T: ( S , ) ~  (T.) are defined as a ratio of 
determinants. 

For example, in the case of Shanks' transformation we have 

an  S n + l  " " " S n + k  

A S  n ASn+ 1 ' ' '  ASn+k 

T~ = e k ( S . )  = 
A S h + k - 1  A S n +  k �9 . . A S n + 2 k _ l  

1 1 . . .  1 

A S  n A S h +  1 ' ' '  z~Sn+k 

z ~ S n + k -  1 A S n +  k �9 . .  A S n + 2 k _ l  

�9 J.C. Baltzer A.G. Scientific Publishing Company 
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If the determinants involved in the definition of Tn have a special structure, 
then it is possible, by applying determinantal  identities to the numerator  and the 
denominator,  to obtain some rules for computing them recursively without 
computing explicitly the determinants  involved in their definition. These rules 
are called an extrapolation algorithm. 

For implementing Shanks' transformation, it is possible to use the e-algorithm 
of Wynn 

eLq = O, e(o ") = S. ,  

1 

n = 0 , 1  . . . . .  

k, n = 0 ,  1 , . . . ,  e(n) = e(kn+ll) + k+ l  es l) -- es ' 

and we have e ~  ) = ek(Sn). 
All the quantities computed by an extrapolation algorithm can be displayed in 

a double entry table as follows (in the case of the e-algorithm) 

8(o ~ = S O 

e(o) = 0 -1 

e ( ' )  = 0 e{ ~ -1 

e~o" = S ,  

g (...2) 1 = 0  e{ 1) 8(3 O) 

e(31) 
e(22) 

e~ 2) 

e~o 2~ = S2 

Starting from the first two columns, (er = 0) and (er n) = S,), the rule of the 
e-algorithm allows to proceed in this table from left to right and from top to 
bottom (normal form of an extrapolation algorithm). 

The rule of the e-algorithm relates quantities located at the four corners of a 
rhombus 

e~k ") 

e,_,  . . / ,  e,+m 

6(k n+l)  

and we saw that the numbers e ~  ) are approximations to the limit S= of the 



M. Redivo Zaglia / Rules for the O-algorithm 3 5 5  

sequence (S n) while the o~n) are intermediate results. We are in fact not ~ 2 k  + 1 

interested in the auxiliary quantities o~") and thus we can use the so-called ' ~ 2 k + l  

cross rule due to Wynn which only involves quantities with an even lower index. 
Setting 

N =  e ~  

e (n+l) b = =(n) a = 2k-1 *2k+l 
W =  r C (n+l)  E = ~(n) 

" ~ 2 k -  2 = e2k ~ 2 k + 2  

__ = ( n + 2 )  d = ~ ( n + l )  
e - -  " 2 k -  1 O 2 k + l  

the cross rule is 

S ( n + 2 )  : 62k 

( N - C )  -I + ( S - C )  -I = ( W - C )  -1 + ( E - C )  - I ,  

that is, E can be computed by 

E = C  + [ ( N -  e l - '  + ( S - C ) - ' -  ( W -  C ) - ' ]  - l  

with e~2 ) = oo. 

2. Numerical instability 

A crucial problem for every extrapolation method is the propagation of 
cancellation errors due to the finite accuracy of the computer.  The better the 
extrapolation algorithm works, the more severe is the effect of rounding errors. 
For example, in the case of the e-algorithm and the cross rule described in the 
preceding section, there are two main problems: 
- If N is different from C but very close to it (both quantities are approxima- 

tions of S), then a cancellation error arises in the computat ion of b (near- 
breakdown in the algorithm) which will be large and badly computed.  If S is 
also different from C but very close to it, then d will be large and badly 
computed.  Thus, in computing E, we have, in the denominator,  the differ- 
ence of two large and badly computed numbers. If N = C then b is infinity 
(breakdown in the algorithm). If S is also equal to C then d is infinity. Thus 
E is undefined. 

- If a is different from e but close to it, C will be large and badly computed. 
Thus b and d will be almost equal and E will be the algebraic sum of two 
large and badly computed numbers (near-breakdown in the algorithm). If 
a = e then C is infinity (breakdown in the algorithm). If N ~ C and S 4= C 
then b = d and E will be undefined. 

There are two possible answers for avoiding numerical instability in an 
extrapolation algorithm: its progressive form and its particular rules. 
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3. Progressive forms 

To obtain the progressive form for the e-algorithm, we compute the first 
descending diagonal (e~ ~ by the bordering method or by the block bordering 
method with the reverse bordering method [5]. Then we write the rule of the 
e-algorithm as 

1 
e ( n + l ) _  o(n) ..{_ 

k+ l  - - ~ k + l  e(n) _ e ( k n + l )  " k+2 

In general a progressive form allows, starting from the first diagonal ((e~ ~ in 
the e-algorithm) and the second column ((e<o ~)= S n) in the e-algorithm) to 
compute all the other quantities in the table. Of course this rule still suffers 
from numerical instability since, when k is even, we have to compute the 
difference of two almost equal quantities. However, the instability is not so 
severe since, usually, c~) is a better approximation of S~ than e ~  +x) and both ~2k+2 
quantities have fewer digits in common than e~[] and e ~  + 1) (normal form of the 
e-algorithm). 

The progressive form of the cross rule of Wynn is 

S = C - k - [ ( W - C )  -1 + ( E - C ) - I - ( N - C ) - I ]  -1 

4. Particular rules 

The particular rules are obtained by modifying the rule of the algorithm in 
order to obtain a more stable algorithm. 

For instance in Aitken's A 2 process we have 

SnSn + 2 - S,2+ l 

Tn= S.+ z - 2 S . +  I + S . '  n = 0 , 1  . . . . .  

This formula is highly numerically unstable since, if S., S.+~ and S.+ 2 are 
almost equal, cancellation errors arise both in the numerator and in the 
denominator and Tn is badly computed. 

If we write 

( S . + 1 - S . )  2 

T,, = S ,, S , ,+2_2S, ,+1+S,,  n 0 ,1 , . . . ,  

we obtain a much more stable formula. Again, of course, cancellation errors 
arise in this formula when computing (Sn+ 1 - S.) 2 and S.+ 2 - 2S.+~ + S,,, but 
the term ( S . + a - S n ) z / ( g n + z - 2 g n + l  +Sn) is a correction term to S. which 
explains the better stability of this second formula. 
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Using the previous notations, the normal form of the e-algorithm gives 

C =  W +  1 / ( e  - a ) ,  

b = a + 1 ~ ( C - N ) ,  

d = e + l / ( S - C ) ,  

E = C + l / ( d - b ) .  

If a is nearly equal to e, C will be large and badly computed (close to 
infinity), b and d will be almost equal and, as previously said, E will be 
undetermined.  

After some algebraic manipulations, the cross rule of the e-algorithm can be 
written as 

E = r ( 1  + r /C)  -1, 

with 

r = S(1 - S / C )  -1 at- U(1 - N / C ) - '  - W(1 - W / C ) - '  

Wynn [11] proved that this rule can compute E in situations in which the normal 
rule given in section 1 fails. If C is infinity, which happens if a = e, this rule 
reduces to 

E = S + N - W ,  

thus allowing the computat ion of E, if S, N, and W are defined, by jumping 
over the singularity. If the normal rules of the e-algorithm would be used, a = e 
would lead to C being infinity, which would then imply b --d.  Hence, E could 
not be computed by the normal rule. 

This rule is only valid when there is one isolated singularity, that is, when only 
two adjacent quantities in a column (a and e in our example) are equal or 
almost equal. Obviously it can also be applied for computing in a more stable 
way a quantity with a lower odd index when two adjacent quantities in an even 
column are equal or almost equal. 

Wynn's particular rule was extended by Cordellier to the case of an arbitrary 
number  of equal or nearly equal quantities in the e-algorithm [6]. Wynn's 
particular rule can also be used for the first and second generalizations of the 
e-algorithm and in the p-algorithm. Wynn also proposed a particular rule for the 
qd-algorithm. Using the notion of Schur complement,  Brezinski [3] obtained 
particular rules for the E-algorithm and for some vector sequence transforma- 
tions, such as the so-called RPA, CRPA and the H-algorithm, by computing 
directly the elements of the column m + k of the table in terms of the elements 
of column k without computing the intermediate columns and then avoiding 
division by zero or numerical instability due to cancellation errors. Regarding 
the vector e-algorithm, the normal cross rule is the same as that for the scalar 
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e-algorithm and a particular rule was obtained by Cordellier [7] if N, S and W 
are different from C and if ( N -  C) -1 + (S - C) -1 is not equal to ( W -  C) -1 

5. The O-algorithm 

Let me now recall the B-algorithm obtained by Brezinski [1], 

o ~  = 0, o~0 -) -- s , , ,  

1 
o ( n )  = t ~ ( n + l ) +  

2 k + l  " 2 k -  1 o~7,+I>- o~7) ' 

( . )  = 0(2.k+1) + 2 k + 2  o(n  + 1) _ ~ ( n )  ' 
2 k + 1  "-" 2 k +  1 

n = 0 ,  1 , . . . ,  

k,  n = 0, 1 , . . . ,  

k , n = 0 , 1  . . . .  , 

with 

D(km= (O(k,+ 1) _ 0(2)) -1 

oJ~') = 
3o(27, + ,  o(27, +~> - o ~  + "  
A F~(n) 

~ ' 2 k  + 1 
t f f l ( n + 2 )  _ / f f ) (n+ 1)~ - 1  _ / / ' ~ ) ( n +  1) _ o ( n )  ~ - 1  " 
"-" 2k  + 1 '-" 2 k  + 1 ] ~,'-" 2k  + 1 2 k + 1 ]  

the quantities belonging to the odd columns are As for the e-algorithm, 
intermediate results. 

The numerical experiments conducted by Smith and Ford [8,9] show that the 
B-algorithm is among the algorithms which provide a good answer in the 
greatest number  of cases. 

The B-algorithm is also a quite powerful method for summing some divergent 
series, as exemplified in [2,10]. 

6. Particular rules for O-algorithm 

The rule of the B-algorithm for quantities belonging to odd columns, relates, 
as in the e-algorithm, quantities located at the four corners of a rhombus, 

o17,' 

8(.+.//" 2 k - 1  t ~ ( n )  
/ " ' 2 k +  1 
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but, in the case of  even columns, there are much more quantities involved in the 
rule 

( ~ ( ~ +  1) 

0 27, +2) 

o(n) 2k+1  

/ oi ;/ 
(~(n  +2) 

2k+1  

Thus, we shall have to consider separately two cases according to the 
presence of  two adjacent equal or nearly equal quantities in the same column, 
which may be odd or even. 

6.1. R U L E  F O R  E V E N  C O L U M N S  

We set 

N = ~ ( n )  " 2 k +  1 

a = O ~  +1) b = ~}(2~r 

W =  ( ~ ( n + 2 )  C = [k)(n + 1) E = r~(n) 
2 k - 1  V 2 k + l  V 2 k + 3  

e = 0(2~, +2) d = V2k+2/~(n+l) 

T = / ~ ( n + 3 )  S = / ~ } ( n + 2 )  
' J 2 k - I  v " 2 k +  1 

i = 0{2~: +3) 
V = / d l ( n + 3 )  

�9 --" 2k + 1 

Using the normal form of the algorithm we have 

1 
C = W + - - ,  

e - - a  

b = a + - -  
C - N '  

0 9 ( n + l )  

d = e +  - -  
S - C '  

1 
E = C +  - -  

d - b  

with ~o~ ") = - 
e - a  

(S-C)-'-(C-N)-" 
i - e  

w i t h  OJ(k " + 1) = __ 
( V _ S ) - I -  ( S - C )  - 1 '  
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If a and e belong to an even column and E belongs to an odd column, and if a 
is different from e but close to it, C will be large and badly computed. If N and 
S are not close to C, that is, if they are not large (isolated singularity), then w~ n) 
will be the ratio of two small and badly computed quantities and thus b will be 
badly computed. If also V is not large and i is not close to e, then d is nearly 
equal to e. Thus E will be computed from badly computed quantities. More- 
over, if i is close to a and e then the situation becomes worse because S is also 
large and badly computed and almost all the quantities involved in the computa- 
tion of E are badly computed. 

We shall now make some algebraic manipulations, similar to those of Wynn, 
with the intention of obtaining a formula for E that will possibly be more stable. 

1 
E = C +  - -  

d - b  

1 
= C +  

e + o J ~ " + l ) ( S - C )  -1 - a  - o J ~ " ) ( C - N )  -~ 

1 
= C +  

( C -  W )  - t  + r  C )  - t  - e o ~ " ) ( C - N )  - l  

C 
= C +  

C ( C  - W )  -1 - CoJ~n+t)(c  - S )  -1 - CoJ~,")(C - N )  - I  

= C +  

= C +  

( C - W  + W ) ( C -  W )  - I - o J ~ n + O ( C - S + S ) ( C - S )  - I  - m ~ n ) ( C - N  + N ) ( C - N )  - ]  

C 

= C -  

1 + W ( C  - W )  - '  - w~ "+ ')[1 + S ( C  - S ) -  ']  - co~")[ 1 + N ( C  - N ) -  '] 

C 

oJ~" + l) + oj~n) _ 1 - W ( C  - W ) - ' + w~ n + ' )S (C  - S )  - 1 + oj~nJN(C _ N )  - t 

C(~o~," + I) + w~,,) _ 1)  - C - C W ( C  - W ) -  t + ~o~,,+ t ) C S ( C  _ S ) -  1 + ea~n)CN( C _ N ) - 1  

w~"+~) + w ~  n ) -  1 - W ( C -  W )  - l  + w ~ n + ] ) S ( C -  S )  -1 + w ~ n ) N ( C - N )  -~ 

C (  oJ~"+ ') + oa~ " ) -  2)  + w~n+ l)S(1 - S / C ) - '  + ~o~,n)N(1 - N / C ) - '  - W(1 - W / C )  - [  

oJ~ "+ ' ) +  w~. n) - 1 + C - l  [ eo~" + ' )S(1 - S / C ) - '  + w~.n)U(1 - N / C ) - '  - W ( 1  - W / C ) - ' ]  

C(~o~. n + ') + oJ~, n) - 2 )  + ~o~_ " +  t ) s (1  - S / C )  - I  + co~n)N(l _ N / C )  - i  _ W(1 - W / C ) -  [ 

1 + C - ' [  C( to~  ~ + ') + w~"' - 2 )  + r n + " S ( 1  - S / C ) - '  + w~mN(1 - N / C ) - ]  _ W(1 - W / C ) - ' ] "  

If we set 

r =  C ( r  ( n + l )  -{- co (n)  - 2 )  -{- r + 1 ) S ( 1  - S / C )  - 1  n t- w ( k " ) X ( 1  - N/C)-' 

-W(1-W/C) - ' ,  

we obtain an expression of the same form as the particular rule of Wynn 

E =r(1 +r/C) -1 
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Now we shall modify also the computat ion of the quantities w~) and 

e - a  
O j  ( n  ) --_ _ 

( S - C ) - ' -  ( C - N ) - '  

( 1 - W / C )  -1 

( c - w )  

( C - S ) - ' + ( C - N )  -1 

(1  - S / C ) - '  + ( 1 - N / C ) - "  

i - e  
('O(k n + l ) =  ( V _ s ) - l _  ( S _ C ) - I  

0 -  T/S)-' 
(1  - V / S )  -1 + (1  - C / S )  -~ " 

Using the preceding formulae for the o)'s we have 

C ( 1 - V / S )  
r=C(OO(k"+') +OO(km-- 2)-- (1--  T / S ) ( 2 - C / S -  V/S)  

N ( 1 - S / C )  W 
+ 

(1  - W / C ) ( 2  - N / C  - S / C )  (1  - W / C )  

( 1 - V / S )  
= C  O)(kn+l) +O)(kn)-- 2 - ( 1 -  T / S ) ( 2 - C / S - V / S )  

N ( 1 - S / C )  W 
+ 

(1  - W / C ) ( 2  - N / C  - S / C )  (1  - W / C )  

and 

( S -  T ) - '  

( s - v ) - l + ( s - c )  -1 

(.O(k n+l) 

( 1 - V / S )  
r /C = tO(k ~ + 1) + o)(k.) _ 2 -- 

( 1 -  T/S)(2 - C/S - V/S)  

N/C(1 - S / C )  W / C  
+ 

(1  - W / C ) ( 2  - N / C  - S / C )  (1  - W / C ) "  

In the case of  one isolated singularity (for example a = e), we have C = oo. If 
T 4: S, V 4: S and S 4: 0, it follows from the particular rule 

O)(k ~) 1 / 2  and OJ(k n+') ( 1 -  T//)__S -1  = ---- :#0% 
( 1 - V / S )  -1 

r = a C  + /3 
where 

a = w~ n) + w~ ~ + 1) _ 2 v~ oo 

r /C = a 

and / 3 = N / 2 - W r  
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and then 

E = o o ,  

In practice, it is very difficult to have only one isolated singularity due to 
convergence because often when  we find, in an even column, two almost equal 
quantities, then on the same column all the other  successive quantities are also 
nearly equal to the first two. In this case, the preceding rule does not permit  to 
avoid completely the unstable computations.  For instance, when a = e = i then 
C = S = ~ and when computing the ~o's and r we have the unde te rmined  ratio 
s/c .  

However,  with the exception of the computat ion of O~ n), the use of the 
special rule permits to jump over the singularity. In fact, when the program 
implementing the O-algorithm finds two adjacent quantities in an even column 
exactly equal (due to the finite precision of  the computer) ,  it has to stop because 
a division by zero in the next odd column occurs. With this particular rule a 
quantity in an odd column can always be computed because the formulae relate 
only elements  belonging to the odd columns and these elements  are usually very 
large (when the preceding even column contains good approximations of the 
limit) but almost never  equal. 

6 .2 .  R U L E  F O R  O D D  C O L U M N S  

We set 

N =  @(2~, ) 
/ffl(n+l) b = t~(n) a = 'J2k-1 "-'2k+l 

--'O t'+2) C = 0(2,~ +1) E = W =  t ~ ( n )  
2 k - 2  V 2 k + 2  

e = O(2~: +2)  d = t ~ ( , , +  1) 
- V 2 k + l  

T = "-'2k-2ta(" +3) S = O~: +2) 

i = ~ ( n + 3 )  h = gk'~(n + 2 )  
" - ' 2 k -  1 V 2 k  + 1 

v =  +3) 

Using the normal form of the algorithm we have 

. 0 ( n + l )  
k - 1  

C = W + ~  with ~o (n +1) k - 1  = - -  e - a  

that is, 

C - - W -  
T - W  

T - W  

(i - e )  -1 

( e - a ) ( i - e )  - 1 -  1 ' 

1 1 
b = a + - -  d = e + - -  h = i + - -  

C - N '  S - C '  

_(e_a) 

1 

S - V '  
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E = C +  - -  with ~o~ n)= - 
d - b  

S - C  

( h - d ) - l - ( d - b )  -1'  

that is, 

E = C -  
S - C  

( d - b ) ( h - d ) - l - 1  

If a is different  from e but close to it, then the denominator  of C will be 
nearly equal to - 1, and C will be almost equal to T. If e is different from i but 
close to it, then the denominator  of C will be large. In addition, C will be 
almost equal to W. In this case, instability is not a real problem for the 
computat ion of  C and all the other  quantities. The only unstable condition 
occurs when a, e and i are all nearly equal, but this possibility almost never 
happens in practice for adjacent quantities in an odd column. 

However,  the normal  form of the O-algorithm for the computat ion of quanti- 
ties in even columns cannot  be used if e and i (or h and d) are exactly equal. 
Thus we look again for a different  formula that makes it possible to avoid such a 
breakdown. 

We make some algebraic manipulations and we obtain 

T - W  
C = W -  

( e - a ) ( i - e )  - 1 -  1 

= W -  
( T - W ) ( i - e )  

( e - a ) - ( i - e )  

W(2e-a-i)-(T-W)(i-e) 
(2e - a - i) 

W ( e - a ) - T ( i - e )  

(2e - a  - i )  

If the two differences e - a and i - a are not almost equal, this formula also 
partially avoids the cancellation error  of  the normal form, when the even 
quantities W and T become very close. 

7. Numerical results 

We define a value m representing the number  of decimal digits that the user 
allows to lose due to the cancellation error. 
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The  part icular  rule for even columns of the O-algori thm shall be used for 
comput ing  t~(,) when,  for any k = 0, 1, and for any n = 0, 1, the V 2 k +  3 . . . . . .  , 
following relations hold 

O(n+2)  2k __ O(%+ 1) ~)(n + 1) o ( n )  V 2 k + 2  2k+2 
O(2~+1) < 10 - m  o r  ~(,)  < 1 0 - " .  

�9 ,-" 2k +2 

In our  case we apply the rule also when  there are several singularities, that  is, 
when  more  than two adjacent  quanti t ies  are nearly equal  according to the 
preceding  inequalities.  

The  part icular  rule for odd columns shall be used for comput ing  O(2"d+2 when  
~}(n +2) (k}(n + I) 

2k+l  - -  V 2 k + l  O ( ~  + 2 ) -  O(~r +1) 
< 10 -m or < 10 -m. 

o(n+1) 2k + 1 0(2~+ 1) 

In all the following examples the  number  of exact digits ( - l og10  I relative 
error  I) is shown. The  value 999.0 denotes  that  all the digits are exact. W h e n  a 
value is missing, it means  that  a breakdown occurs in the a lgori thm and the 
cor responding  entry of the table cannot  be computed .  The  sequence  of values 
given f o r ,  = 0, 1, 2 . . . .  is O (0), O (1,, O (2), O(?  ,, O (1,, O(21,, O(?  ), 010), O11) . . . . .  

The  computa t ions  have been made  on a PC with the Microsoft  F O R T R A N  
Optimizing Compi le r  and we have a precision of about  15-16 decimal digits. 

7.1. E X A M P L E  1 

We consider  the series 
OO 

e x = ~ x i / i !  

i=0  

and its sequence  of partial sums 

S O -- 0, 
n--1 

Sn= E xi / i ! ,  n = l , 2  . . . . .  
i=0  

This example was already cons idered  by Wynn [11] and its interest  is due to the 
fact that  it presents ,  when  x - - 2 ,  one isolated singularity in an odd  co lumn 
(O~ 1) = O~ 2) = 0.5) and another  one when  x = 4 (O~ 3) = O~ 4) = 9.3749999999999 
X 10-2). 

With m -- 12 we obtain the results given in table 1. 
For  all values of x, when  two successive values of the given sequence  are not  

exactly equal,  the part icular  rules allow the computa t ion  of the whole  O-array. 
The  normal  rules instead run into a breakdown in the computa t ion  of  some 
values. Regard ing  the stability, when  both  values (without and with part icular  
rules) are computable ,  the part icular  rules give almost always the same n u m b e r  
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Table 1 

x = - 4.5 x = - 2.0 x = 2.0 x = 2.5 x = 4.0 

19 19 p.r. 19 19 p.r. 19 (9 p.r. 19 19 p.r. (9 19 p.r. 

3 - 0.68 - 0.68 0.32 0.32 0.06 0.02 0.02 0.00 0.00 
4 - 0.85 - 0.85 0.75 0.75 0.49 0.49 0.22 0.22 0.02 0.02 
5 - 0.84 - 0.84 1.26 1.26 1.28 1.28 0.80 0.80 0.12 
6 0.79 0.79 3.02 3.02 1.59 0.60 0.60 0.00 
7 1.17 1.17 3.92 3.92 3.67 3.67 2.53 2.53 0.17 
8 1.58 1.58 4.78 4.78 4.47 4.47 3.73 3.73 1.16 
9 4.11 4.11 6.98 6.98 4.82 4.44 4.44 0.61 

10 4.76 4.76 8.20 8.20 6.55 6.55 5.17 5.17 3.63 
11 5.36 5.36 9.49 9.49 9.16 9.16 7.10 7.10 4.02 
12 7.27 7.27 11 .56  11.56 10.25 8.20 8.20 3.64 
13 8.14 8.14 12 .33  1 2 . 3 3  1 1 . 1 0  1 1 . 1 0  1 0 . 2 1  10.21 4.46 
14 9.14 9.14 12 .76  1 2 . 7 6  1 1 . 6 7  1 1 . 6 7  1 0 . 8 2  10.82 8.29 
15 11.68 11.68 13 .21  13.21 12.10 9.46 9.46 9.70 
16 11.61 11.61 12 .93  1 2 . 9 2  1 2 . 1 2  1 2 . 1 2  1 1 . 5 3  11.53 11.68 
17 11.77 11.77 15 .21  1 5 . 0 9  1 2 . 5 3  1 2 . 5 3  1 1 . 9 8  11.98 10.06 
18 12.29 12.29 15 .39  15.39 11.80 1 2 . 0 2  12.02 10.07 
19 11.59 11.59 999.0 13.22 1 1 . 9 9  11.99 10.07 
20 13.32 13.32 999.0 14.31 1 2 . 0 7  12.07 10.07 
21 12.66 12.66 999.0 14.97 1 2 . 0 1  12.01 10.07 
22 15.81 999.0 999.0 11.80 10.06 
23 15.81 999.0 999.0 13.45 10.22 
24 15.81 999.0 999.0 12.16 10.07 

of  exact  digits. T h e r e  are  m a n y  cases whe re  the pa r t i cu la r  rules give a be t t e r  
result  (for  example  0 (15), 0 (18), 86 (11), 06(12), 06(13), 8(88), 8(89) and  vo,10 ,~(6) for  x = 2.5) 

and some  cases w h e r e  they are worse  (for  example  06 (11), ~10"a(1) and  "---10~(2) for 

x -- - 2 . 0 ) .  

7.2. EXAMPLE 2 

W e  cons ide r  the  fol lowing sequence  converg ing  to S~ = 1: 

S 0 = a ,  

Sn+ 1 =  S ~ ,  n = 0 ,  1, . . . .  

We  ob ta in  for  d i f fe ren t  values of  a and  m the results  of  table 2. 

A g a i n  the  par t i cu la r  rules  m a k e  it possible to j u m p  over  all the b r e a k d o w n s  

found  with the  no rma l  rules. Moreove r ,  they of ten  provide  be t t e r  approx ima-  

t ions to the  limit. 

W h e n  a = 5, the  par t i cu la r  rules canno t  con t inue  b e y o n d  n = 27 because  

the re  is a b r e a k d o w n  in the  par t i cu la r  rules for  even co lumns  due  to the  fact  

tha t  r / C  is exactly equal  to - 1. Moreover ,  with the same  value  of  a, for  n = 16 
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M. Redivo Zaglia / Rules for the O-algorithm 

n a = 5 a = 50 a = 500 a = 5000 

0 O p . r .  O p . r .  0 @p.r .  @p.r .  0 O p . r .  Op . r .  O O p . r .  O p . r .  
m - - 5  m = 1 2  m = 5  m = 1 2  m = 5  m = 1 2  m = 5  m - 1 2  

12 11.05 11.05 11.05 7.83 7.83 7.83 6.86 6.86 6.86 6.57 6.57 6.57 
13 12.45 12.45 12.45 10.33 10.33 10.33 8.68 8.68 8.68 7.90 7.90 7.90 
14 13.73 13.73 13.73 12.22 12.22 12.22 11.20 11.20 11.20 10.05 10.05 10.05 
15 14.84 14.91 14.91 13.30 13.31 13.30 12.32 12.32 12.32 11.54 11.54 11.54 
16 10.63 12.23 12.70 14.88 14.75 14.88 13.37 13.37 13.37 13.14 13.13 13.14 
17 14.61 14.61 14.61 13.36 13.28 13.33 14.07 14.06 14.09 13.47 13.45 13.47 
18 11.64 13.26 13.68 13.43 13.27 13.38 14.51 14.48 14.51 13.92 13.90 13.91 
19 14.81 14.81 14.81 14.40 14.17 15.11 15.11 14.91 14.44 14.45 14.44 
20 14.51 14.45 14.57 14.44 14.45 14.45 14.81 15.26 14.51 14.51 14.51 
21 14.48 14.48 14.51 14.41 14.45 14.65 15.05 15.65 14.48 14.48 14.48 
22 14.33 14.22 14.42 14.46 14.46 15.11 15.65 15.35 14.56 14.57 14.56 
23 15.35 15.18 14.45 14.46 14.95 15.18 15.35 15.11 15.26 15.18 
24 15.35 15.18 14.44 14.46 15.00 15.26 999.0 14.91 14.78 
25 15.65 15.65 14.45 14.46 14.33 15.35 13.66 15.35 15.35 
26 15.65 999.0 14.45 14.45 13.31 13.78 12.63 15.35 15.05 
27 15.65 999.0 14.45 14.46 14.07 14.31 13.12 999.0 15.95 

and n = 1 8 ,  respectively, we have a good improvement of the number of decimal 
digits that are exact. 

7.3. EXAMPLE 3 

We consider the series 

7/.2 

6 E(i+ 1)-2 
i=0 

and the following sequence derived from the series 
n 

S,=E( i+ I )  n=0,1,.... 
i=0  

For different choices of m we obtain the results of table 3. 
As we can see, this example is very sensitive to the choice of m. If m = 5 or 

less, then both particular rules are applied nearly from the beginning for 
computing the values after the tenth of the third column and they continue to be 
used in the successive computations for all the values of the array. This 
behaviour permits to the algorithm to obtain in the first three values of the 
columns 18, 19, 20 and 21 (corresponding to n = 27 to n = 38) a number of 
digits more stable than that of the normal rules. Moreover, the results obtained 
with the particular rules (also if in some cases they are a little bit worse) do not 
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Table 3 

n 0 0 part. rules n 0 0 part. rules 

m = 5  m = 6  m = 7  m = 9  m = 5  m = 6  m = 7  m = 9  

27 8.57 8.49 8.57 8.57 8.57 63 -3.81 4.38 5.54 -3.82 -3.83 
28 8.05 8.29 8.05 8.05 8.05 64 -5.19 7.88 8.16 -5.18 -5.19 
29 7.23 8.59 7.23 7.23 7.23 65 -6.12 6.84 7 .45  -6.09 -6.11 
30 7.50 8.37 7.50 7.50 7.50 66 -6.33 7.24 7.53 -6.31 -6.33 
31 6.77 8.73 6.77 6.77 6.77 67 -7.27 6.23 7.00 -7.22 -7.25 
32 7.65 8.73 7.65 7.65 7.65 68 - 8.55 5.20 5.61 - 8.49 - 8.52 
33 6.34 8.73 6.34 6.34 6.34 69 -8.41 5.29 5.95 -8.35 -8.38 
34 7.70 8.73 7.55 7.70 7.70 70 - 9.70 4.68 5.07 - 9.62 - 9.65 
35 7.97 8.73 7.27 7.98 7.98 81 4.22 3.96 3.97 5.90 6.02 
36 7.78 8.73 7.42 7.79 7.79 72 -10.85 4.28 4.66 -10.74 -10.78 
37 8.14 8.73 7.12 8.15 8.15 73 3.89 3.65 3.66 5.69 5.89 
38 9.98 8.73 8.07 9.94 9.94 74 3.48 3.45 3.45 5.63 5.73 
39 8.29 8.73 6.95 8.31 8.31 75 3.57 3.37 3.37 5.65 5.77 
40 8.73 8.72 6.68 8.74 8.74 76 3.16 3.17 3.17 4.55 5.61 
41 7.85 7.21 4.87 7.86 7.86 77 2.62 2.68 2.68 2.78 5.39 
42 8.06 8.71 5.36 8.07 8.07 78 2.83 2.91 2.90 3.12 5.49 
43 7.39 6.91 3.56 7.40 7.40 79 2.29 2.42 2.42 1.43 5.28 
44 6.77 6.92 2.33 6.77 6.77 80 1.58 1.87 1 .87  -0.45 5.01 
45 7.10 6.93 2.23 7.10 7.10 81 1.97 2.16 2.16 0.08 5.18 
46 6.63 6.75 0.90 6.63 6.63 82 1.26 1.61 1.61 -1.80 4.97 
47 6.48 6 . 9 1  -0.85 6.48 6.48 83 4.76 4.53 4.53 -3.32 4.71 
48 6.67 6.82 -0.50 6.61 6.61 84 0.93 1.35 1.35 -3.15 5.09 
49 6.48 6 . 5 1  -2.24 6.48 6.48 85 4.30 4.16 4.16 -4.67 4.24 
50 6.42 6.80 6.92 6.42 6.42 86 3.75 3.19 3.19 -5.79 3.73 
51 6.42 6.96 -3.60 6.41 6.41 87 3.83 3.75 3 .75  -6.02 3.77 
52 6.13 6.91 7.04 6.07 6.07 88 3.29 2.75 2 .75  -7.15 3.26 
53 4.47 7.11 7.26 4.45 4.45 89 2.59 0.93 0.93 -8.77 2.58 
54 4.72 7.03 7.17 4.68 4.68 90 2.82 2.32 2.32 -8.50 2.80 
55 3.28 7.25 7.40 3.25 3.25 91 2.12 0.50 0.50 -10.12 2.12 
56 1.56 8.85 8.02 1.52 1.52 92 0.55 4.15 4.15 -12.57 0.55 
57 2.10 7.40 7.51 2.07 2.07 93 1.66 0.06 0.06 -11.47 1.65 
58 0.41 7.89 7.33 0.37 0.37 94 0.09 3.90 3.90 -13.93 0.08 
59 -1.52 6.67 6.69 -1.55 -1.55 95 -0.28 3.65 3.65 -15.21 -0.29 
60 -0.74 6.83 6.74 -0.78 -0.78 96 -0.38 3.65 3.65 -15.28 -0.38 
61 -2.66 5.54 6.11 -2.69 -2.69 97 -0.75 3.40 3.40 -16.56 -0.75 
62 -4.04 7.99 8.35 -4.05 -4.06 98 -1.78 3.10 3.10 -18.59 -1.79 

su f fe r  f r o m  the  in s t ab i l i t y  p r e s e n t  in s o m e  a r e a s  o f  t he  a r r a y  a n d  they  give an  

a c c e p t a b l e  a p p r o x i m a t i o n  a lso  fo r  g r e a t e r  va lue s  o f  n ( for  e x a m p l e  w h e n  n = 96 

wh ich  c o r r e s p o n d s  to  19(6]~). 

I f  m = 6 the  p a r t i c u l a r  ru les  a r e  a p p l i e d  l a t e r ,  s t a r t i n g  a f t e r  t he  t w e n t i e t h  

e l e m e n t  of  t he  t h i r d  co lumn .  T h u s  in c o l u m n s  18, 19, 20 a n d  21 we do  no t  f ind  

any  i m p r o v e m e n t  a n d  on  the  c o n t r a r y  t he  p a r t i c u l a r  ru l e s  p r o d u c e  an  a r e a  o f  



368 M. Redivo Zaglia / Rules for the O-algorithm 

instability near  n = 48 which is not present  with the normal rules. But  in this 
case the particular rules are able to recover the results as in the case of  m -- 5. 

If m = 7 or rn = 9, due to the late application of  the particular rules (for 
m = 9, for example, they are used only from column 5) the algorithm with 
particular rules behaves almost chaotically with some values bet ter  than the 
normal ones and other  values very worse. 

For  any choices of  m the number  of exact digits of the results obta ined in 
columns 2 to 16, with and without  particular rules, are almost the same. 

8. Conclusions 

The existing theory of the (k-algorithm does not permit  to construct examples 
which must contain, in a column of the array, algebraic known values or an 
isolated singularity in a column of the array. This is possible for o ther  extrapola- 
tion algorithms, for example for the e-algorithm. The only possibility is to 
compare  the results with those obtained using greater  precision or symbolic 
computat ion.  Doing that for some sequences,  we have remarked that the values 
of column 1 (for which particular rules cannot be used) were yet affected by an 
error and thus in some cases the particular rules were not able to correct the 
instability of the results. 

The main interest  of using the particular rules is to avoid the breakdown of 
the normal rules (except when the breakdown occurs in column 1, when two 
values of the sequence  of  input data are exactly equal, and the unlucky case 
r / C  = - 1). 

Regarding the gain in decimal digits, in general it is not really impressive and 
it is probably due also to the fact that the singularities are not isolated but  there 
are areas (somet imes wide) of  adjacent singularities and in this case the 
particular rules are not applicable (in theory). 
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