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Summary. Lanczos type algorithms for solving systems of linear equations have 
their foundations in the theory of formal orthogonal polynomials and the method 
of moments which leads to a determinantal formula for their iterates. The various 
Lanczos type algorithms mainly differ by the way of computing the coefficients 
entering into the recurrence formulae. If the denominator in the formula for one of 
these coefficients is zero, then a breakdown occurs in the algorithm, and it must be 
stopped. Such a breakdown is in fact due to the non-existence of some orthogonal 
polynomial. In this paper we show how to jump over such a singularity by 
computing the next existing orthogonal polynomial by the block bordering 
method. The resulting algorithm, called MRZ, is equivalent to the nongeneric 
BIODIR algorithm (which is a look-ahead Lanczos type algorithm), but our 
derivation is much simpler. 

M a t h e m a t i c s  S u b j e c t  C l a s s i f i c a t i o n  ( 1 9 9 1 ) :  65F10, 65F25 

1 Introduction 

Let us assume that we want to solve in ~"  the system of linear equations 

A x  = b . 

An interesting and powerful class of methods, which received much attention, is 
that of Lanczos type methods. These are projection methods on Krylov subspaces 
consisting of solving successively the systems 

A k ( X k  --  XO) = --  ro 

for k = 1 . . . .  , n where Ak is an approximation of A such that xk is uniquely 
defined. A three-term recurrence relationship between the Xk'S holds. Its coefficients 
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are computed as the iteration proceeds, and the various Lanczos type algorithms 
mainly differ in the way of computing these coefficients. However, in all these 
methods they are ratios of two scalar products. If the scalar product in the 
denominator of one of them is zero, then a breakdown occurs in the algorithm, and 
it has to be stopped. 

The Xk'S are related by a three-term recurrence relation because the underlying 
theory involves (formal) orthogonal polynomials, and a breakdown in the algo- 
rithm is due to the non-existence of one of these orthogonal polynomials. It is 
possible to jump over such a singularity by solving the linear system arising in the 
recursive computation of the orthogonal polynomials by a block bordering 
method. Bordering the system by a new equation and a new column at each 
iteration leads to the usual three-term recurrence relation while bordering it by as 
many new equations and columns as necessary leads to a more general recurrence 
relation. Thus the purpose of the block bordering method is to avoid possible 
intermediate singular systems and to jump from one non-singular system to the 
next one after having determined the length of the jump. Applying such a recur- 
rence relation to our problem gives a Lanczos type algorithm, called the MRZ, 
with only a possible incurable hard breakdown. Using the connection with ortho- 
gonal polynomials, Gutknecht [15] recently derived quite similar algorithms and 
he gave their complete theory. Our approach here is characterized by the latest 
possible introduction of linear algebra and the focus on orthogonal polynomials. 
Such an approach will be useful in interpreting and generalizing other projection 
and e-type methods and will be the purpose of a forthcoming paper [6]. 

The theory of Lanczos type methods will be presented in Sect. 2. Such methods 
are based on a generalization of the method of moments of Vorobyev [26] and 
they are oblique projection methods. Thus formal orthogonal polynomials are 
introduced at an early stage of the theory. They provide a determinantal formula 
for the iterates produced by the method that will be of primary importance for 
jumping over singularities and avoiding breakdowns. Section 3 is devoted to the 
block bordering method which will be our basic tool in deriving the MRZ. 
Orthogonal polynomials form the subject of Sect. 4 where the block bordering 
method is used for obtaining their recurrence relationship in the non-regular case 
(that is when some of them do not exist). Then the MRZ is presented in Sect. 5 
together with the computation of the coefficients occurring in its recurrence 
relations. The method is discussed in Sect. 6. Programming such an algorithm 
requires to study the minimization of the number of vector operations and the 
amount of storage. This will be the subject of another paper, which will also 
contain the treatment of near-breakdown and numerical experiments [10, 11]. 

2 Theory of Lanczos type methods 

Let us consider in ~" the system of linear equations 

Ax  = b .  

Let Xo be any vector that is not a solution, and let ro = Axo - b be the correspond- 
ing residual. 

Let Ek = span(ro, Aro . . . . .  A k - l r o )  and Fk = span(y, A * y  . . . .  , A* k - l y ) ,  
where y is an arbitrary non-zero vector and where A* is the conjugate transpose 
of A. 
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Let X k be defined by 
X k - -  X 0 ~ E k 

A k ( X k  - -  XO) = - -  ro = - -  ( A x o  - -  b )  

with A k  = H k A H k  and with H k  being the oblique projection on Ek  with kernel 
F~- (that is along F~-). The matrix A k  is completely defined by 

A i r o  = A~kro, i = O . . . . .  k -  1 ,  

H k A k r o  =- A f r  o . 

This is a generalization of the method of moments of Vorobyev [26]. Such 
a generalization was already considered in [2, 4, 17]. 

Since x k  - Xo  ~ E k  we can write it as 

(1) Xk - -  XO = a a r o  + . . . + a k A k - l r o  = a l r o  + . �9 �9 + a k A k - l r o  �9 

Thus 

A x k  - -  A x o  = a l  A r o  + . . . + a k A k r o  = A X k  - -  b - ( A x o  - b )  

and it follows that 

rk = A x k  - -  b = ro + a l A r o  + . . . + a k A k r o  = P k ( A ) r o  

with P k ( ~ )  = 1 + a l ~  + . . .  + a k ~  k. 

Let us now compute al ,  �9 �9 �9 ak. We set 

f k  -~- P k ( A k ) r o  �9 

We have 

But 

and thus 

rk - -  rk = a k ( A k r o  - -  A k r o ) e F ~ .  

- ro = A k X k  - -  A k X o  -~ a l  A k r o  + . . .  + a k A k r o  

0 = ro + a l A k r o  + �9 . . + a k A k r o  = P k ( A k ) r o  = r k  �9 

It follows that r k ~ F ~ ,  that is 

( A * i y ,  r k ) = O  for i =  0 . . . . .  k - 1 .  

If we set cl = (y, A l t o )  and if the linear functional c on the space of polynomials is 
defined by c ( r  i)  = c i ,  the preceding relations can be written as 

C ( ~ i P k ( ~ ) )  ---- 0 for i = 0 . . . . .  k - 1 , 

which shows that P k  is the polynomial of degree at most k, normalized by the 
condition Pk(O)  -~ 1, belonging to the family of formal orthogonal polynomials 
with respect to c [2]. 

Thus Lanczos type methods consist in determining implicitly the polynomials 
P k  aS defined above (the questions of existence and effective construction of P k  

will be discussed below), computing rk = P k ( A ) r o ,  and finally finding Xk from 
rk -~ A x  k - b without, of course, inverting A, which is possible as will be explained 
below. 
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But now, to complete the theory, let us give some useful formulae connected 
with xk. Let us write Pk as 

P k ( ~ )  = a~ k) + a(lk)r + . . .  + a(kk)~ k �9 

The condition Pk(O) = 1 implies a(~ ) = 1. Writing the orthogonality relations of 
Pk we obtain it as the solution of the system 

(2) 
(10 0 (i) 

CO C l " "  C k a (k) 

i " . . 

, . . .  

Thus it follows that 

(3) Pk(~)= 

1 ~ .. .  ~k 

CO C l  . . .  C k 

: : 

C k -  1 Ck " ' "  C 2 k -  1 

C1 " " " r  

Ck " " " C 2 k -  1 

and we obtain 

(4) Xk --  XO = 

0 ro . . .  A k -  1 ro 

CO C1 " ' "  Ck 

Ck - 1 Ck " ' "  C 2 k  - 1 

C1" " ' "  Ck" 1 ' 

C k � 9  C 2 k  - 

where the determinant in the numerator is the vector obtained by expanding it, by 
the classical rules, with respect to its first row. 

Let (ro, A r o  . . . . .  A k - l r o )  be the matrix whose columns are ro . . . . .  A k -  ~ ro.  

Then, from (1) and (2), we obtain 

(5) 

(!1 c)l(c  
Xk --  XO = --  ( ro ,  A r o  . . . . .  A k - l r o )  " " 

k " ' "  C 2 k -  1 Ck 1 

This formula, which extends the formula given in [3] when Xo = 0, can also be 
proved by using the generalization of Schur's formula obtained in [1]. 

Let us now come back to formula (2). We shall call N k  the matrix of this system, 
dk its right hand side and Zk its solution. Obviously Pk exists and is unique if and 
only if N k  is regular, that is, if and only if its determinant (which is the Hankel 
determinant usually denoted by HI, 1), see [-2]) is different from z e r o .  Pk+ 1 is given 
by solving a system of equations obtained by bordering (2) by a new equation and 
a new column. Thus, applying the bordering method of Faddeeva [13] seems to be 
very appropriate. However it needs to be generalized before using it for our 
problem and this question will be the purpose of the next section. 
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3 The block bordering method 

Let Nk be an nk X nk matrix. We shall consider the (rig + mk)X (rig + ink) matrix 
Nk+I given by 

Nk U k ) 
Nk + 1 = Vk MR 

where Uk, Vk and Mk are matrices of the respective dimensions n k x ink, m k x n k 

and m k x mk.  N k is assumed to be regular. We set 

Bk = M k  --  V k N k a  U k .  

B k is a m k x m k matrix called the Schur complement of N k in Nk+ 1. By Schur's 
formula 

det N k + 1 = det Nk �9 det B k 

and, hence, N k+ 1 is singular if and only if B k is singular. 
It is easy to check that, if Bk is regular, 

Nk+~ = (  N / ~ +  N [ 1 U k B k l V k N [  1 -- N k l U k B k  1 )  

- B k  1 Ilk N k  a B k  x " 

Let us now consider the systems of linear equations 

(dk) NkZ k = d k and Nk+lY'k+l = dk+l = fk 

where f k  is a vector of dimension m k. From the preceding formula for Nk+~ we 
have 

where I is the rnk x mk unit matrix. 
These relations generalize the bordering method of Faddeeva [13] which 

corresponds to the case rnk = 1. They are also a recursive application of the 
formulae given by Keller [18]. 

We shall now apply this block bordering method to the solution of the system 
(2), which yields the orthogonal polynomials Pk used in Lanczos type methods. 

4 Recursive computation of orthogonal polynomials 

Let us now solve the system (2) recursively by the block bordering method. Of 
course we shall be only interested in those polynomials Pk which exist (they are 
usually called regular). Changing our notation we let Pk and Pk+ 1 be two success- 
ive regular polynomials of the respective degrees nk and nk+ 1 = nk +mk at most 

(k) nk Pk(~) = a~) k) + a(k)~ + . . .  + a . k ~  with a~ k) = 1 

= a~k+l)?.~+, with a~ +1) 1 P ~ + ~ ( ~ )  a~, k + "  + a ? + l ' ~  + . . .  + .~+1 o = 
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and 

t C n l -  1 

CO 

0 

Cl  

Cn k 

.~  

.o.  

0 

Cnk 

C2nk - 1 

Io )= 
\ a~ / 
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l 1 0 
CO C1 

Cnk - 1 Cnk 

Cnk Cnk + 1 

\Cnk + i - 1 Cnk + I 

0 
Cn k 

C2nk -- 1 

C2nk 

Cnk + i + nk -- 1 

0 ... 0 
Cnk + 1 " " " Cnk + 1 

C2nk " " " Cnk + 1 + nk -- 1 

C2nk + 1 " '  Cnk+l +nk 

Cnk+l +n k "'" C2nk+l  --1 

:/(~ + 1) ~ 1 

:/(lk + 1) ) " = 0 () 0 �9 

7(k+1)1 
-"'+' / 0 /  

Writing these two systems N k Z  k = d k and N k  + 1 Zk + 1 = dk + 1 as in the preceding 
section we have, by the block bordering method, 

(O k ) ( - - N [ 1 U k ) B k l V k Z k  with B k = M k - - V k N ; l U k ,  
Z k + l  = - -  I 

since fk is the zero vector (I is the mk X mk unit matrix). Taking the scalar product of 
both sides with (l, ~ . . . . .  ~.k+l )T we obtain 

where 

Q k + l ( ~ ) = ( 1 , ~ ,  ~"k+')(-NklUk) ... .  I B~ 1 Vkz~ . 

The polynomial Qk+ 1 has degree nk+ 1 at most and it satisfies 

(6) c(~iQk+ 1(~)) = c(~ipk(~)) -- C(~Pk+ 1(~)) 

=J'O for i = 0  . . . . .  n , - - i  
C(~Pk(~)) for i = nk . . . . .  nk + mk -- 1 

thanks to the orthogonality property of Pk and Pk + 1. Moreover, since the first row 
of Uk is zero, 

Qk + 1(0) = O .  
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The problem is now to determine this polynomial  Qk+ 1. Since Pk is regular, the 
Hankel  determinant  

C l  "'" Cm' 1 H ( 1 )  - - -  �9 
~ t l  k 

Cnk � 9  C2n k - 

is different from zero, which is equivalent to the existence of a unique monic  
polynomial  p}l) of degree nk satisfying 

c(*)(~iP~Xl(~)) = c(~i+lP~l)(~)) = 0 for i = 0 . . . . .  nk -- 1 . 

Hence, we have the 

Theorem. The polynomial  Pk with Pk(O) = 1 exists and is unique i f  and only i f  the 
monic polynomial  p~l) exists  and is unique. 

We shall try to express Q~ + i as 

= �9 �9 �9 = r (~) .  

This choice clearly satisfies QR § 1(0) = 0 as required, and moreover  also 

c(~iQk+l(~))  = c(ll(~i(flo + ' ' '  + fl,,,k-l~m~-X)P(kl'(~)) = 0 

for i = 0 . . . . .  nk -- 1 since, as proved by Draux [12], 

(7) c(1)(~iP~l)(~)) = 0 for i = 0 . . . . .  nk + mk -- 2 ,  

c . ) ( ~ . k  +, .k - 1 p ~ l ) ( O  ) 4: O . 

Imposing the remaining conditions (6) leads to 

I 
f l , .~  - 1 c ( 1 ) ( r  "~ +m~ - 1 p ~ l ) )  = c ( r  Pk) 

flm~ - z c ( 1 ) ( ~  "k + , . k  - 1 p ~ l ) )  + f l , .~  _ 1 c ( 1 ) ( ~  "k +m ~  p ~ l ) )  = c ( ~ . k  + 1 P R )  

(8) 

/ 

\ = c(~,~ +,"k - 1Pk) . 

This triangular system, which is non-singular since c(1)(~ ~ + ~ -  ~P~)) is differ- 
ent from zero, uniquely determines the coefficients flr~ - 1 . . . . .  fl0 of W,. Thus we 
finally have 

(9) Pk+l(r  - =  Pk(~) -- Cw~(r162 with w~(~) = flo + - . .  + fl , .~-l~ m~-~ 

As proved by Draux [12], mk is the smallest integer such that  the relations (7) 
hold and there is a recurrence of the form 

(I0) P(k*+ ) i (~) p(1) p(,) = q , ( ~ )  k ( ~ ) - - C k + l  k-l(~),  k = 0 , 1 , . . .  

with P ~  (~) = 0, pr = 1 and C,  = 0. q, is a monic  polynomial  of degree mR. Its 
coefficients and C ,+ ,  are determined by writing the or thogonal i ty  conditions of  the 
family {p~l)} with respect to c (~). If we set 

q ~ ( ~ ) = a o  + . - -  + a , . ~ - l ~ m " - *  +~, ,~ ,  
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if we multiply both sides of (10) by r apply c (~) and make use of (7), then we obtain 

( C(1)( ~"k +rnk - l p(kl)) = Ck + l C(1)( ~ "k - 1p(1_)  1 )  

I 

/ a m  k _ 1 C ( 1 ) ( ~  nk +mk - 1  p ( i ) )  q_ c ( 1 ) ( ~ n ~  +mk pil))  = Ck + 1 C(1 ) (~  nk Pl  1-) , ) 

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (ll) | ~ ~ 2 4 7 2 4 7  + 

k 0~mk - l C ( 1 ) ( ~  nk + 2m~ - 2 p ~ l ) )  -t-- c ( 1 ) ( ~  nk + 2ink - 1 p i l ) )  = Ck + 1 C(1)(~ nk +ink - 1 p~l 21) �9 

This triangular system, which is non-singular since c(1)(~ ~ +m~- 1p~1)) is differ- 
ent from zero, uniquely determines e,,~ _ 1, �9 �9 �9 %. 

We shall now apply formulae (9) and (10) to the recursive computation of the 
residual vectors r~ defined in Sect. 2. Such an application will lead to a new 
algorithm for solving recursively A x  = b in at most n steps, with no possible 
breakdown, except the so-called incurable breakdown (see [22]) since we are only 
working with the polynomials Pk and P~I) which are regular. This procedure, called 
the MRZ, thus appears as a generalization of Lanczos type methods such as the 
biconjugate gradient method of Lanczos [21] (already implicitly contained in [20] 
and popularized by Fletcher [14]), and the various other algorithms based on the 
idea of biorthogonalization (see [16, 19, 23, 27] for a review). 

5 The M R Z  

Let us now apply the recursive procedure for computing the polynomials Pk ,  
described in the preceding section, to the computation of the residuals 
rk = AXk  - -  b = P k ( A ) r o  and the corresponding vectors Xk. From relation (9), after 
setting Zk = P ~ ) ( A ) r o ,  we obviously have 

(12) rk+ l  = rk - -  A W k ( A ) Z k  , 

and applying relation (10) gives 

Zk+l  = qk(A)Zk - -  Ck+ l Z k - 1  , 

where the coefficients of Wk and q~, and Ck+~ are computed by (8) and (11) with 

(13) 
{ C(~iPk)  = (y ,  A i  P k ( A ) r o )  = (y ,  A i r k )  

c(1)( r p~1)) = ( y ,  A i+  I p ~ l ) ( A ) r  o)  = (y ,  A i+  1 Zk) �9 

In addition to the residual vector rk+ i we need to compute the vector xk+ 1 such 
that rk + t = A x ,  + 1 - -  b. 

In view of (12) clearly 
xk+ 1 = x~ - wk(A)z~ . 

Summarizing we get the following algorithm: 
1. Choose Xo and y arbitrary, 
2. s e t z o = r o = A x o - b , z _ l  = 0 ,  k = 0 ,  no = 0 ,  
3. determine mk according to (7) and (13), 
4. compute the coefficients of Wk according to (8) and (13) and set 

r k + l  = rk - -  A W k ( A ) Z k  , Xk+l  = Xk - -  Wk(A)Zk ,  
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5. compute the coefficients of qk according to (11) and (13) and set 
Zk+ 1 = qk(A)Zk -- Ck+ 1Zk- 1, 

6. if rk+ 1 = 0, then Xk§ ~ = X and stop, 
7. set nk + l = nk + mk, 
8. if nk§ < n, then replace k by k + 1 and return to 3. 

Since the most important quantities computed at each step are mk, rk and Zk, 
this algorithm has been called the MRZ. Obviously this name is also a joke of the 
first and third authors (the French ones, of course) concerning the initials of the 
second author (the Italian lady). We looked for a possible meaning of these three 
initials. Since the recurrence relation for computing the polynomials PtklJ (that is in 
fact the Zk'S) has a varying length (depending o n  mk) it is quite similar to a zoom 
lens on a camera and thus the letters MRZ stand for M e t h o d  o f  R e c u r s i v e  Z o o m .  

6 Discussion 

In the Lanczos type methods previously used, such as BIODIR, BIOMIN, 
BIORES and others, a breakdown can occur when dividing by a zero scalar 
product. The occurrence of such a situation is due to the fact that, in these methods, 
the polynomials Pk are required to be regular, a requirement no longer mandatory 
in the MRZ. Jumping over those singular polynomials was made possible by using 
the generalized recurrence relation of Draux [12] between regular orthogonal 
polynomials. This recurrence relation, which was also given by Struble [24], but 
with a nonconstructive proof, and which can be directly obtained from (2) or (3) as 
in [8], is the basis for the derivation of two quite similar breakdown-free methods 
by Gutknecht [15] called nongeneric BIORES algorithm and nongeneric BIODIR 
algorithm, respectively. In the first of these two methods the polynomials Pk are 
initially required to be monic polynomials of exact degree k and then renormalized 
by imposing the consistency condition Pk(O) = 1. Except for the formulae (8) and 
(11) for computing the coefficients of Wk and qk the MRZ is equivalent to the 
nongeneric BIODIR algorithm. However our derivation, which was done indepen- 
dently, seems to be simpler and more elegant. Moreover it can be very easily 
extended to the other Lanczos type algorithms to avoid breakdown as, for 
example, in the CGS algorithm [7]. Let us mention that, in these algorithms, the 
only possible breakdown which can occur is the so-called incurable hard one 
corresponding to (y,  A n Z k ) =  0 where n is the dimension of the system. Such 
a breakdown is due to a very unfortunate choice of the starting vectors Xo and 
y and the algorithm has to be restarted with another choice. 

The very important questions concerning the practical implementation of our 
method with as few computations and storage as possible and the treatment of 
near-breakdown is discussed in [10, 11]. 

The simplicity of our approach using orthogonal polynomials instead of linear 
algebra techniques also allows us to derive algorithms for avoiding near- 
breakdown in Lanczos methods [10, 11], in the CGS [9] and in a new class of 
methods, called CGM [5], which includes the Bi-CGSTAB of Van der Vorst [25] 
as a particular case. 

Acknowledgements. We are grateful to M.H. Gutknecht for his constructive advices concerning an 
earlier version of this paper which helped to improve its presentation and to clarify some points. 
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