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Lanczos type algorithms form a wide and interesting class of iterative methods for solving 
systems of linear equations. One of their main interest is that they provide the exact answer 
in at most n steps where n is the dimension of the system. However a breakdown can occur 
in these algorithms due to a division by a zero scalar product. After recalling the so-called 
method of recursive zoom (MRZ) which allows to jump over such breakdown we propose 
two new variants. Then the method and its variants are extended to treat the case of a 
near-breakdown due to a division by a scalar product whose absolute value is small which is 
the reason for an important propagation of rounding errors in the method. Programming 
the various algorithms is then analyzed and explained. Numerical results illustrating the 
processes are discussed. The subroutines corresponding to the algorithms described can be 
obtained via netlib. 

Subject classifications: AMS(MOS) 65F10, 65F25. 

Keywords: Lanczos method, biconjugate gradient, projection, orthogonal polynomials, method of 
moments. 

1. Lanczos type algorithms 

Le t  us cons ide r  in C n the  system of  l inear  equa t i ons  

A x = b .  
Le t  E k = s p a n ( r  0 . . . .  , A k - l r o  ) and  F k = s p a n ( y ,  A * y , . . . , A * k - l y )  w h e r e  r 0 

and  y are  two n o n - z e r o  a rb i t ra ry  vec tors  and  w h e r e  A *  is the  con juga t e  

t r anspose  o f  A.  Le t  x k be de f ined  by 

A k (  Xk - Xo)  = - r o  = - (  A x o  - b ) 

w h e r e  A k = H k A H  ~, H k be ing  the  ob l ique  p ro jec t ion  on E k a long F ~ .  

T h e  res idual  vec to r  r k = A x  k - b  satisfies 

r~ = P k ( A ) r o  

w h e r e  Pk is a po lynomia l  o f  d e g r e e  at mos t  k such tha t  Pk(O) ---- 1 and  w h e r e  

( A * i y ,  rk )  = 0 for  i = 0 . . . . .  k - 1. 

�9 J.C. Baltzer A.G. Scientific Publishing Company 
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If we set c i = ( y ,  Airo) and if we define the linear functional c on the space 
of polynomials by c(s ci) -- ci for i = 0, 1 , . . .  then the preceding relations can be 
written as 

c ( s 1 6 3  f o r i = 0 , . . . , k - 1  

which shows that Pk is the polynomial of degree at most k belonging to the 
family of formal orthogonal polynomials with respect to c. 

A Lanczos type method (and among them the biconjugate gradient method of 
Fletcher [7]) consists in computing Pk recursively, then r k and finally x k such 
that r k = A x  k - b without, of course, inverting A. Such a method gives the exact 
solution of the system in at most n steps, see [4] for a review of such methods. 

The recursive computat ion of Pj, involves the computat ion of some scalar 
products which appear as the denominators  of the coefficients of the recurrence 
relations. Thus, if one of these scalar products is zero, then a breakdown occurs 
in the algorithm which has to be stopped. This is due to the non-existence of 
some of the polynomials Pk and the breakdown can be avoided by jumping over 
these polynomials and computing only the existing ones. The corresponding 
method was presented in [3] with its derivation and theoretical background. It 
was called the Method o f  Recursive Z o o m ,  in short the MRZ. This method  will be 
recalled in the next section and some new variants will be presented in section 3. 
Let us ment ion that breakdown can be similarly avoided in the conjugate 
gradient squared (cGs) method [9], see [5]. 

If the scalar products in the denominators  are different from zero but small in 
absolute value, an important  propagation of rounding errors could occur in the 
algorithm, a situation known as a near-breakdown. In section 4 we shall present  
some generalizations of the MRZ for treating this problem. Programming the 
various algorithms will be analyzed in section 5. Numerical results will be 
discussed in the last section. The subroutines (in FORTRArq 77) corresponding to 
the algorithms described in this paper  can be obtained via netlib. 

2. The MRZ 

As explained in the preceding section we shall consider only the existing 
orthogonal polynomials (called regular). Thus let Pk be the polynomial of 
degree at most n k satisfying the orthogonality relations 

c(~iek(~)) =0 for i = 0  . . . .  , n  k -- 1 

and normalized by the condition PI,(0) = 1. 
Let p~l) be the monic polynomial of degree n k belonging to the family of 

formal orthogonal polynomials with respect to the functional c <1) defined by 
C(1)(~/) = c ( ~ i + I ) .  
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Pk (1) satisfies 

C(l>(~ip(l>(~)) = 0  for i = O , . . . , n  k + m k - 2 
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( y ,  Ank+mkZk) q: O. 

If we set Wk(~) = flo + " ' "  -[-flmk--l~ mk-I  then  the fl's are given by 

' flmk_l(y, Ank+mkZk) = (y, Ankrk) 

~ m k - - 2 ( Y '  A n k + r n k Z k )  + ~ m / - - l ( Y ,  A#k+mk+lZk) = (Y, A'k+'rk) 
�9 . . �9 , . . . . . . . . . . . . . .  , . . . . . . . . . . . . . .  , . . . . .  �9 . . . . . . .  �9 . . . 

flo(Y, Ank+mkZk) + fll(Y, Ank+mk+IZk) + . . .  +flmk_l(Y, An,+2mk--lzk) 

=(y ,  Ank+m*--lrk). 

If we set qk(~)  = ao + " " " + a m , - l ~  ink-1 + ~ mk then  we have 

ck+,(y, A'*z,_l)= (y, ,4~*+m*z,) 
Otmk_l(y , Ank+mkZk)= Ck+1(y , Ank+IZk_l)- (y ,  Ank+m*+IZk) 

. . . . . .  ~ . . . . . . . . . . . . .  ~ . ~ . , ~ . . . . . �9 ~ . , . ~ . . . .  ~ . . . . . . .  �9 ~ . 

OtO(y , Ank+m*Zk) +Ot l (y  , Ank+mk+lZk) + . . .  +O~mk_l(y , Ank+2mi--lz,) 

= C k + l ( y  , Ank+mkZk_l)- ( y ,  Am'+2mkZk). 

and 

c<1)(~n, +m,-,p2)(~)). o 
then,  it was proved in [3] that  

Pk+ 1(~:) = Pk(~)  - ~wk(~ )P2>(~ )  
(1) P~ + 1(~:) = q k ( ~ ) P ( k l ) ( ~ )  _r,,.,k+ laD(l) k-  1(~) 

with PO~(~) = O, P0(1)(~ :) = 1 and C 1 = O. w k is a polynomial  of degree  m k - 1 at 
most  and qk is. a monic  polynomial  of degree  mk.  The i r  coefficients and Ck+ 1 
are d e t e r m i n e d  by imposing the or thogonal i ty  relat ions of Pk+~ and p(1) k+l" 

If we set 

r k = P k ( A ) r o  

z k =P(kr ) (A)ro  

then  the preceding  recur rence  relations give 

rk+ 1 =r k - A w k ( A ) z  k 
Xk+l =Xk--Wk(A)zk 
Zk+ 1 = q k ( A ) Z k  -- C k + l Z k _ l  

with z o = r o , z _ l = O a n d C l = O .  
m k is d e t e r m i n e d  by the condi t ions 

(y ,  A i + l Z k ) = O ,  f o r i = O  . . . .  , n k + m k - - 2  
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This method  has been  called the Method of  Recursive Zoom, in short the MRZ. 
It can only present  an incurable hard breakdown if (y,  A ' z  k) = 0 where  n is the 
dimension of the system to be  solved. 

3. V a r i a n t s  o f  the  M R Z  

In the MRZ the polynomial .P(1)k+l is computed  from Pk r and P ~ I  by the 
three- term recurrence relationship. 

W e  shall now see how to compute  "k+~r'r from p~l) and from ei ther  Pk or 

Pk+l" 
In the first case the variant has been  called the SMRZ, where  s stands for 

symmetric, since P~+l is also computes  from the same polynomials thus leading 
to a symmetry be tween  both relations. 

In the second case the variant has been  called the BMRZ, where  B stands for 
balancing, since the method  computes  Pk§ from Pk (1) and Pk by its first 
relation, then ,D(1)k+l from Pk+ 1 and pO) by its second relation, then goes back to 
the first relation and so on, thus balancing be tween  both  relations. 

In these variants the same letter has been  of ten used to designate different 
objects but  no confusion is possible. 

3.1. T H E  S M R Z  

In this variant, P(~) shall be  expressed as - t k +  1 

(1) P~, + ,( ~ ) = tk( ~ )P(k')( ~ ) - Dk + IPk( ~ ) 

where  t k is a monic polynomial of  degree m k and D/,+I is a constant.  
W e  set 

tk(~ ) = 8 0 . . [ _  . . .  q_~mk_l~mk--I q_~mk. 

We have 

c'l'( ~ip(l)+ l ) = ~oc'l)( ~ie (1,) + . . . -}.-(~mk_lC'l'( ~i+mt,-1p(1,) -{- c(l'( ~i+mkp(kl' ) 

- -Dk+lC(~i+lPk).  

Pk+~ must satisfy the orthogonali ty condit ions 

C 1)(cila(O ~ = 0 f o r  i = O, n k + mk - 1 I, b L  k + l ]  . . . ,  . 

But C(1)(~i+"kP(kl)) = 0 for i = 0 , . . . ,  n k - -  2 and c(~i+lp k) = 0 for i = 0 . . . .  , n k 
- 2. Thus  the orthogonali ty condit ions of  ak+ lp(1) are satisfied for i = 0, . . .  , n k - 2. 
Imposing these condit ions for i = n k -  1 . . . . .  n~, q- m k - -  1 leads to m k q- 1 rela- 
tions for determining the m k + 1 coefficients 60 , . . . ,  6ink-1 and Dk+ P 
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These  conditions give 

for i = n k - 1 

Dk + 1c ( ~ n k P k )  = C(1)(~n k + m  k - 1p(l)) 
for i = n k 

Ok  + 1c ( ~nk + lPk ) _ 6ink_ 1C(1)(~nk +ink--1Pk(l) ) = cO)(~:.~ + mk pkO) ) 

ior "i'- ;'2 "+'m - i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D k + lC(~'~ +m~Pk) -- 60CO'(~"~ +m~- ~p(O) . . . . .  6m~_ lC(l)(~.~ + 2m~-2pO)) 

= C(*'(~:n~ + 2m~- apk(1)). 

Thus the first equation gives Dk+l, the second one 6m,_1 , . . . ,  and the last 
one 6 o . 

Since c(l)(~nk+mk-lPk(1)) 4= 0 this system is regular if and only if C(~"kPk) r O. 
Let us now look at this condition. We have 

.. H (~ 
n k  nk.~._+ l 

c ( ~ " ~ P k ) = ( - 1 )  H(n,) �9 

Thus c (~"kPk)=  0 if and only if H m) = 0. Since Pk (I) exists, H (1) 4= 0 and 
n k + ) n k 

since p(a) exists, H r 4= 0. Thus we have K + I  n k +  I 

H(O) 
nk \ 

H (I)4=0 �9 \" H (~ ~k \ \--#k+, 
\ \ 

\ \ 
\ \ 

\ \ 
H (o) 

nk+l 

\ H ~1) 4= 0 g/k+l 

and we are in one of  the situations (see Draux [6], property 1.9, p. 25) 

Situation I Situation II 

\ 
\ 

\ \ \ 

\ \ 
\ 

\ 

\ \ \ \  
\ \ 

\ \ 
N \ 

\ 
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u(o)  4 :0  while,  in II, H (~ = 0 and  (o) In I, **,;~+1 nk+l S n  k 4: O. 
Thus ,  if c(~nkP k) = 0 we  are  in the  s i tua t ion II. It fol lows that  the  mon ic  

o r thogona l  po lynomia l  o f  d e g r e e  n k with respec t  to c exists. Le t  us call it Pk (~ 
W e  have 

o,) = o .  

W e  also have 

Hn( k.+l 
= ( - 1 )  - O. 

n k 

But  c(P(k l)) = c( t ) (sc- lP~l))= 0 which  shows ( D r a u x  [6], corol lary  2.2, p. 137) 
that  the  po lynomia l  Pk (~) is on the wes t  s ide of  a squa re  b lock bu t  not  at its 
nor th -wes t  corner .  Thus  p~0) is on  the  wes t  s ide or  at the  no r th -wes t  co rne r  of  a 
b lock and it is ident ical  to p~l) ( D r a u x  [6], p rope r ty  2.1, p. 100) which  m e a n s  
that  the  o r thogona l  po lynomia l s  are  in the  s i tua t ion  II as the  c o r r e s p o n d i n g  
H a n k e l  de te rminan t s .  M o r e o v e r  

= 0  for  i = 0  . . . .  , n k + m k - - 2  c(,)( ~ip~,)) = c(,)( ~ip~O)) = c( ~;+ ip~O)) 
�9 4:0 f o r i = n k + m k - - 1 .  

Since p~O) is o r thogona l  regu la r  c(P~~ = 0 and we finally have 

= 0  for  i = 0  . . . . .  n k + m k - - 1  
c(~iP~k~ 4:0 f o r i = n k  + m  k. 

But  

H (o) 
l~n* --nk p(O)(~ ~ 

P k ( g ) = ( - - * J  H ( , ) ' k  t s ,  
- - tl~ 

and thus  

= 0  f o r i = O , . . . , n k + m k - - 1  
c(~iPk) 4:0 f o r i = n  k + m  k. 

But,  by the first re la t ion of  the  MRZ 

Pk +, (~)  = Pk( ~ ) -- ~Wk('~ )P(~')( ~ ) 

w h e r e  w k is a po lynomia l  o f  d e g r e e  m k - 1. Se t t ing  

Wk( ) = + " ' "  

we have 

C( I~'Pk+ , ) = c( ~'Pk ) - floc(l)(sc'P~ ')) . . . . .  flmk-'c(l)( ~i+"k- 'p(k')). 

But  c(I)(~ i+m*- IPk(l)) = 0 for  i = 0, . ' . . ,  n k -- 1 and  c(f~iPk) = 0 for  i = 0 , . . . ,  n k 
+ m k -- 1 and it fol lows that  /3 o . . . . .  /3,,,_ t = 0. Thus  we  have  p roved  the  
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THEOREM 

c( ~"~Pk ) = 0 if and only if  Pk+ 1 is identical to Pk" 

If  c(~nkPk) ---- 0 the  re la t ion  of  the SMRZ canno t  be used  and  we shall look for  
a re la t ion  of  the form 

p ( 1 ) l ( ~ )  = tk( ~ )P~l)( ~ ) - uk( ~ )Pk( r ) k +  

w h e r e  t k and  u k are polynomials  of  degree  m k at most .  Thus  we have 2m k + 2 
unknown  coeff ic ients  to de te rmine .  

M or e ove r  

cO)(s 1~)=0 f o r i = 0  . . . . .  n k -  2 

and  

c(~i+1UkPk)=O f o r i = 0 , . . . , n  k -  2. 

Thus  c~ k+l) = 0 for i = 0,.  . . ,  nk - 2. Impos ing  this condi t ion  for i = n k 
-1 ,  . . . ,  n k + m k -  1 leads to m k 4- 1 relat ions.  Impos ing  tha t  ,P~ be monic  
gives one  more  re la t ion and thus  we have m k +  2 re la t ions  for 2 m  k + 2 un-  
knowns.  Le t  us give a numer ica l  example  showing tha t  this system is inconsis tent  

W e  take  c 0 = l ,  c 1 = 2 ,  c 2 = 4 , c  3 = c  4 = 8 , c  5 = c  6 = 0 .  
We  have H2 (~ = H2 m = H~ ~ = 0 and H2 (2)= -- 32. 
Thus  n 1 = 1, m I = 2 and  n 2 = 3. 
W e  find tha t  

p~O)(~)= p~U(~:) = p~2)(~:) = ~ _  2 

P , ( s  r = 1 - ~ / 2  

= _ 1 

P2~ = s ~3 - 2s ~2 + 4s ~ - 4 

P a ( s  r  is ident ical  to P l ( f )  

W e  shall try to express P2 ~ as a combina t ion  of  p~t) and  Pl tha t  is 

P2(')(~ :) = ( s  r - 2 ) ( a ~  :2 + b E + c )  4- (1 - ~ / 2 ) ( a ' s  ~2 + b 's  r + c ' )  

which leads to 

2a  - a ' = 2  

2 b -  2 (2a  - a ' )  - b '  = - 4  

2 c -  2(2b - b ' )  - c '  = 8 

2c - c ' - 4 .  

F r o m  the  first two equa t ions  we ob ta in  2 b -  b ' =  0. Replac ing  in the thi rd  
one  leads to 2c - c '  = 8 which is inconsis tent  with the  last equat ion .  

pO) Thus  the  SMRZ can only be used  if c(~nkP k) 4= O. If  this is no t  the case k+l 
canno t  be expressed,  in genera l ,  as a combina t ion  (with polynomial  coefficients)  
of/o(1) and  Pk. 
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This is the reason why we shall now try to e x p r e s s  P~I+) 1 as a combinat ion of  
Pk (') and Pk+," 

3.2. THE BMRZ 

In this variant, o (n  shall be  expressed as , t k + l  

(I) Pk+,(~) + Bk+IP(k')(~) P~,+,(~) = A k + ,  

where  A k+ 1 and Bk+ 1 a r e  constants.  
We  have 

C(')(~iP(k~,) = A k + , C ( ~ i + ' P k + , )  + B k +,c~ 

Since CCI)(~iP(kl)) = 0 for i = 0 . . . . .  n k + m k -- 2 and c(~i+lPk+ l) = 0 for i = 
0 , . .  n k + m  k 2, the orthogonali ty relations of  -(1) . ,  - rk+ ~ are also satisfied for 
these indexes. Writing this condition for i -- n k + m k - 1 gives 

Ak+,C(e"~+'" 'Pk+, )  + Bk+,C( ' ) (e" '+ '" , - 'P~  '>) = 0 .  
n(l) . Let us now impose that r~.+, is monic. Since lk+DO) l has the exact degree 

n k + m k  the relation of  the BMRZ can only hold if Pk+l has the exact degree 
n k + m k ,  that is if (0) H,,~+, ~ 0 or, in o ther  terms, if we are in the situation I 
described in the SMRZ. From the first relation of  the MRZ the coefficient of 
~n~+,,~ in Pk+l is equal to --/3,,,~_ I. Thus  we must take 

1 
A k + I -- 13,n~ - l 

and it follows that 

1 C(~" '+"*Pk+t)  c(~"*+'"*Pk+,) 

Bk+' = ~ m , - ,  c ' " (~" '+ ' "~- 'P~  ')) C(~"~Pk) 

This relation is, in fact, the same as that given by Draux [6] (pp. 397-398)  
since p(o~ exists because  H,I ~ v~ 0. It is a generalization of  the second relation �9 k +  I k + ,  

be tween  adjacent  families of  or thogonal  polynomials (that is the relation involv- 
ing e(k ~ see Brezinski [2] (relation 2.9, p. 92 or p. 95)). 

Setting, as in the MRZ, r k = P k (A ) r o  and z k = P ~ ' ) ( A ) r  o we recover the usual 
formulation of  the biconjugate gradient  method  of  Fle tcher  [7], see also Brezin- 
ski [2] p. 91, in which Zk+ I is computed  from rk+ I and z k. 

If we are in the situation II described in the SMRZ then Pk +~ is identical to Pk 
and "k+,P(I) cannot  be computed  from P~ ' ) and  Pk even if the constants  Ak+ , and 
Bk+ ~ are replaced by polynomials. 

The BMRZ is, in fact, a simplified (and simplest) version of  the SMRZ since if 
Pk+l is replaced by 

Pk + ,(~) = Pk(~) -- ~Wk(~)P~')(~) 
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in the BMRZ we obtain 

p(1)k+ I~,~,[/~'~ = A k + I P k ( ~ )  + (Bk+x--Ak+I~Wk(I~))P(k')(~) 

which is the SMRZ since, in this method,  t k and Dk+ 1 are uniquely determined.  
However  since, in both methods,  the computat ions are not conducted  in the 
same way, their  numerical  stability has to be compared.  

4. Near-breakdown 

As explained in [3], a breakdown occurs in a Lanczos type method when 

--0. 

In that  case the monic orthogonal  polynomial of  degree  n k + 1 with respect  to 
c C1) does not exist. 

It is possible to avoid such a breakdown by using the first regular  orthogonal 
polynomial with respect  to c r following Pk (1). This polynomial was denoted  by 
pc1) its degree  was nk+ 1 § = nk + mk  where  m k is de te rmined  such that 

c ~  f o r i = 0  . . . . .  n k + m ~ - 2  

S O  f o r i = n ~ + m k - 1 .  

Pk ~1~ and Pk+ are then computed  recursively by two relations whose coeffi- + 1  1 

cients are given as solutions of a tr iangular system of linear equations with 
C(I)(~ nk+m~- 1pk(l)) on its diagonal. 

Of  course if [c(1)(~ nk+m~- 1ek(1)) [ is different  from zero but small (and possibly 
badly computed)  the coefficients of  the two recurrence  relations of the MRZ(Or 
its variants) could be large and badly computed  and thus rounding errors could 
affect the algorithm. The  same is true if the quantities [c(1)(l~ie~))[ are not zero 
for i = r i g , . . . ,  n~ + m k - -2  but small; in that case no breakdown occurs in the 
method  but numerical  instability could be present,  a situation called near- 
breakdown. 

It is possible to avoid such a near-breakdown by jumping over those polyno- 
mials which could be badly computed  and to compute  directly the first regular 
polynomial following them. Thus, let e >1 0 be given. We define m k >~ 1 such that 

[C(1)(~ie(kl')l<~e f o r i = n  k . . . . .  nk + m k - - 2  

and 

> ~ for i = n  k + m  k - 1. 

pO) the regular  orthogonai  polyno- Let nk + r = nk + mk. We shall denote  by k + l 
mial of  degree  rig+ ~ with respect  to c ~1~. As explained in the sequel if such a 
polynomial does not exist (and we shall be able to detect  such a case) the value 
of m k has to be increased until a regular polynomial has been obtained. We 
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shall denote  by Pk+l the corresponding orthogonal  polynomial of  degree nk+ 1 
at most with respect  to c normalized by the condition Pk+l(0) = 1 .  

Let us first compute  Pk+l" We shall write it under  the form 

Pk+l(~:) = Pk(~:) - ~ W k ( ~ ) P ( k l ) ( ~ )  - -  ~ V k ( ~ ) e k ( ~ )  

where  w k is a polynomial of degree m k - 1  at m o s t  and v k a polynomial of  
degree m k - 2  at most. Let  us recall that, in the case of a breakdown,  v k is 
identically zero. 

We have 

c(~iPk+l)  = c(~: iP~)-c~ ) - - c ( e i + l t ) k e k ) .  

But we have 

c ( ~ i P k ) = O  i = O , . . . , n k -  1 

Cm(~iwkPtk 1~) = 0  i = O , . . . , n k - - m  ~ 

C(~i+lUkPk) = 0  i = O , . . . , n ~ - m  k. 

Thus c ( ~ i P k + l ) = O  for i = O , . . . , n k - - m  ~. Writing that this condition is 
satisfied for i = n k - m k + 1 , . . . ,  n k + m k - 1 yields 2m~ - 1 relations for deter-  
mining the 2 m  k -  1 unknowns which are the m k coefficients of  w k and the 
m k - 1 coefficients of  v~. Of  course we must assume that n k - m k + 1 >/O. The 
case n k - m k + 1 < 0 will be  t reated below. 

We set 

Wk(~) =/30 nt- "'" +/3mk-l~ mk-1 

t . . .[_['~t ]2ink--2 vk( )=/330+ "" 

Writing the orthogonali ty conditions of Pk+l gives 

for i = n  k - m ~  + 1 

/3,,,~_ lc(l)(sc"~ P~ 1)) + / 3 " , _  2c( r ) = 0 

i o r ' i ' -  n~ "-" i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/3,cO)( ~",p~ 1)) + . . .  + /3mk_ lC(l'( ~nk +mk--2p(k 1,) 

+/3oC(~"*P~) + " '"  + /3 'm,_zC(r  

for i = n k 

/30c'l '(~nkp (1,) + . . .  +/3m,_lC(l'(~n*+'nk-lp(1,) 

- -  ~ !  [ ~glk +??l k -- +/3;c(~""+'Pk) + . . .  -t-15,,,,_2ct~ 1Pk) =c(~n*ek )  

ior'i '-  u i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ 3 0 c ( l ) (  ~nk  +mk--  lP(k 1)) .-~ �9 �9 �9 - 4 - / 3 m k _ l C ( l ) (  ~nk  + 2mk-- 2p(kl) ) 

_l_tTtt [I.:nk+mkD ~ t , + . . .  
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It must be  noticed that, in the case of  breakdown,  that is when c(1)(~ip(kl)) = 0 

for i = n k , . . . ,  n k + m k -- 2, then the conditions for i = n k - m k + 1 , . . . ,  n k - 1 

give/3~ . . . . .  /3",_ 2 = 0 (even if c (~ iPk )  = 0 for i = n k , . . . ,  n k + rn k -- 2 since 
in this case the /3[s  are arbitrary) and the conditions for i = n ~ , , . . . ,  n k + m k - 1 

reduce  to those of  the MRZ which is exactly recovered.  
Let  us now examine the case n k - m k + 1 < 0. W e  now have n k + m k equa- 

tions, with n k + m k < 2m k - 1 ,  for determining the 2m k - 1  unknown coeffi- 
cients. This is the reason why we shall now take for v k a polynomial of degree  at 
most n k - 1 

vk " "  + / 3 ' . , _ 1 C  

The orthogonali ty condit ions of  Pk+l  give 

for i = 0  

~n,C(1)( ~n*e (1)) "k- "'" -k-~3m,_lC(a)( ~m*- le  (1)) q" ~tnk_lC( ~nkek) = 0 

for i -'nk" - ' I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

fllC(1)( ~"*e(k 1)) + . . .  -b flmk_ lC(1)( ~n* +m*- 2e(kl) ) 

+/3~c(~"*Pk) + " '"  +f l '~k_ ,c ( sCz"*- 'Pk)  = 0 

for i = n k 

f ioC")(  ~'*P(k ')) + . . .  + [~m,_lC(l)( ~nk +m*--lp(kl)) 

+[3~c (~"~+l pk )  + . . .  + ~ ; , k _ l C ( ~ 2 " ~ e k )  = c ( ~ ' * p k )  

fo r  i - ' n  i + m ~  - ' 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

[30c'l'( ~nk+m*-le(')) --[- �9 .. -I-j~mk_lC(l'( ~nk+ 2mk-2p(l) ) 

q-[3~c( ~n, +m*Pk ) q- . . . -F fl'n,_ lC( ~ 2nk +m*- lPk ) = C( ~n* +m*- lPk ). 

In the case of  b reakdown the conditions for i = 0 , . . . ,  n k - 1 give/3~) . . . . .  
[~tn,-1 = 0 and we recover exactly the MRZ again. 

Let  us now try to compute  recursively P(~) They are several possibilities " k + l "  

corresponding to the MRZ or its two variants, the SMRZ and the BMRZ. 

4.1. T H E  G M R Z  

W e  shall try to generalize (G stands for genera l  in the name of the method)  
the three- term recurrence relationship be tween  the polynomials Pk (l). 

Let  Pk(~I and Pk (1) be  two successive regular or thogonal  polynomials with 
respect  to c (1). By successive we mean that all the polynomials of  degree  
n k _  1 + 1 , . . . ,  n k -- 1 do not exist. We  shall try to de termine  ./)(1)k+l, which is the 
regular  or thogonal  polynomial  of  degree nk+ 1 = n~, + m k with respect  to c (~ but  
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not necessarily the successor of  Pk (I) (which means that some regular polynomi- 
als of degree be tween  n k + 1 and nk+ 1 - 1 can exist) under  the form 

Pk (') k(~:) k-  1(~) + 1(~:) = q k ( ~ ) e ~ l ) ( ~ )  + r e(l) 

where qk is a monic polynomial of  degree  m k and r k a polynomial of degree at 
most m k - 1. 

We must have 

C(1)[ yip(1) ) = 0 for i = 0 , .  n k + m k -- 1 I,~* k+l  "'~ �9 
But 

c(l)(~iqke(kl)  ) = 0  for i = 0  . . . .  , n k - - m  k -  1 

and 

C(1)(~irke(kl)_l) = 0  for i = O , . . . , n k - - m  k -  1. 

Thus the orthogonali ty conditions of  p,(l) K+l are satisfied for the same indexes. 
Imposing these conditions for i = n k - - m k , . . . , n k + m k - - 1  will lead to 2m~ 
relations for determining the 2mk unknown coefficients of qk and r k. Of  course 
we must assume that nk - m k/> 0. The case n k - m k < 0 will be t rea ted below. 

We set 

=c 0+ " ' "  

! t rk(s c ) = a  0 + ' ' "  + a m _ f m ~  -I  

For  i = n k - - m k , . . . , n  k + m k - -  1 we must have 

C(1)1~-i19(1) ~ �9 . . I,b "t k + l ] = ~  (1,) + ' ' "  +OZ,nk--aC'l'( ~'+'"k-- lP(kl') -~- c ' l)(  ~l+mkP(kl)) 

+ Ot'oC'l'( ~iP(kl)_ l ) + . . .  +OZ;nk_ lC(l'( ~i+mk-- lP(kl)_ l ) =O.  
We obtain 

for i = n k - m k 

c ~  ',) + a,'n~_ lC( l ' ( e  nk-  'P~I_) 1 ) = 0 

for i = n  k - m  k + l 

C~mk_lC(l ' (~nkp(l ' )  +c ' l ' (~nk+lP(k l ) )  + o l '  ~" l ' [~:n*- lo( l '1)  mk--2 ~ kb �9 k -  
, c( l )[cnkp(1)  +O~,nk-1 1,6 k - l )  = 0 

io'r i ' - n ~ - ' ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ozlc' l)( .~"~p(1,) + . . .  +Olmk_ le ' l ' (~nk+ 'nk -2p( l ' )  + c ' l ' (~nk+rnk - Ip ( l ' )  

+aoC")(~"k-XP(kl) - , )  + " ' "  + a ; .  _ , c ( " (~"k+m*-ZP(ka)_ l )=0  

for i = n k 

OtoC(l)(~n*e(kl) ) + . . .  +OZm~_lC(l'(~"*+'n*-Ip(kl '  ) +c(')(s 

+ . . .  +<~ 
. . . . . . . . . . .  o �9 . . . . . . . . . . . . . . . . .  , * . . . .  , . . . . . .  o . . . . . . .  ~ �9 �9 �9 

for i = n k  + m  k -  1 

CeoC(l ' (~",+'nk-lpk(l '  ) + . . .  +Olm~_lC( l ' (~nk+2'nk- -2p( l ' )+ c ' l ' (~nk+2mk-- lp(1))  

+~oC(l)(~:nk+mk--llo( ') l)" k -  -at- " ' '  "}-Olmk lC(l,(~nk+2mk--2p(1)a k - l ]  ~ = O. 



C. Brezinski  et aL / Lanczos  type algorithms 273 

In the case of breakdown these relations obviously reduce to those of the 
M R Z .  

Let us study the case n k - m  k < 0. We now have n k + m  k equations, with 
n k + m k < 2m k, for determining the 2m k unknown coefficients. Thus we shall 
now take for r k a polynomial of  degree  at most n k - 1 

rk(~)  = a '  o + . . .  -{-Oltnk_x~nk - 1 .  

The orthogonali ty conditions of p(1) give * k + l  

for i = 0  
Otnkr ) q- . . .  +Olin _ lC(X)(~mk-- le (k l )  ) +C(1 ) (~mke (k l )  ) 

J r o ~ t k _ l C ( 1 ) ( ~ n k - - l e ( l )  1) = 0 

io'r 7 -  - i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Ollr ~nke(kl '  ) Jr " ' '  - '}-Ogmt_lC(l'( enk+mk- -2e (1 )  ) "~- r  ~nk+mk-- le(k l '  ) 

.~_~t ,..(1)[ c n k - - l p ( 1 )  t . (1)[  r ) 
txOt- I, tj .t k - l )  J r  " ' "  - ~ - a n k _ l t .  ~5  " k - l )  = 0 

for i = n k 

O ~ 0 c ( l ' ( e n k e k ( "  ) + . . .  +Ogmk__lC( l ' ( enk+mk-- lP(k"  ) + r  ) 

..}_ ~ t ~(1)[ ,~nk D(1) t 't0t" ~ ,  * k - - l )  q- " ' "  q"O/;k--lC(1)(~2nk--l/~(X)*k--aJ "~ = 0  

i & " i " - ; +" m ",, "-" i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

aoCO)( ~,,~ +m~- ]pO)~ �9 k ] J r  " ' "  "~Olmk- lC(1) (~nk+2rn '~-2P(k l ) ) - l -C(1) (enk+im'~- lp (k l ) )  

"~-OltoC(1)( ~nk +rnk--lP(kl)_l ) "~- " " " ~ t 1C(1)( e 2nk + m k - - i p ( 1 ) l )  = 0 .  
n k -- 

In the case of breakdown we again recover the MRZ. 
If the systems giving P,(~) K+l are singular then ,P0)k+l does not exist and the value 

of m k has to be increased until a regular polynomial PkO+) l has been found. 
Once  p(1) has been de te rmined  by this method  its successor or its predecessor  k + l  
must be computed  in order  to be able to apply it again. If C(1)(~:iPk(1))= 0 for 
i = 0 , . .  ll k - { - m k  - -  2 and C(1)(~ nk+mk-li~(1)'~ P(k ]) �9 , " k " 5/= 0 t h e n  is the predecessor  of 
p(1)k+l (which means  that the regular  polynomials of degrees ng + 1 , . . . ,  nk+ 1 - -  1 
do not exist) and the 6MRZ can be re-applied from P(a) and pO) If this is not �9 k k + l "  
the case, the predecessor  of  p(1) has a degree  between n k + 1 and n k +  1 - -  1. * k + l  
However,  due to the conditions producing the near-breakdown, it will be badly 
computed.  Thus it will be better,  from the numerical  point of  view, to find its 
successor. First we have to de termine  m k s u c h  that 

c(1)[d:ip(1)l) = 0 for i = 0, + - 2 I,b * k+ " " " ' n k + l  m k + l  

--/=0 f o r i = n k + l + m k + l - - 1  

and then Do) has to be computed  by the GMRZ from Pk (1) and Pk(l_ ) The  �9 -/~ + 2 1" 
following polynomials could then be obtained by the OMRZ from p(1) and pC1) �9 k + l  k + 2  
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which are successive regular polynomials as required by the process. Of  course, 
due to rounding errors, mk+ 1 will be in general  equal to 1 since the quantity 
[,41)(j~,,+,po) ~1 will not be equal to zero exactly. 

4.2. THE BSMRZ 

Let  us now try to generalize to the near-breakdown the relations obtained for 
Pk ~ in the two variants of the MRZ. + 1  

Since the BMRZ was easier to use we shall first try to generalize it. For  that  
purpose, r~+~ shall be expressed as 

p k  1) + 

where qk is a polynomial of degree dk <~ m k. Thus we must determine d k q-2  
unknown coefficients. 

Since c (~ i+IPk+I )=O for i = O , . . . , n k + m k - - 2  and C(1)(~iqkP(kl))=O for 
i = O, n k - - d  k 1, the orthogonali ty conditions of  Do) �9 - . ,  - -  -r/~+l are satisfied for 
i = 0 , . . . ,  n k - d k - 1. Writing the missing orthogonali ty conditions and imposing 
that  ,P(1)k+~ is monic leads to m k + d k + 1 relations which is only possible if 
m k = l .  

If we try to replace the constant  Ak+ I by a polynomial we never obtain a 
number  of equations equal to the number  of unknown coefficients and thus the 
BMRZ cannot  be generalized to treat  a near-breakdown. 

Thus let us generalize the SMRZ. The method will be called the BSMRZ where 
B stands for block. We shall look for r,(1) under  the form ,t k + l  

(1)  
e~+,(~:) = qk(~:)p~l)(~:) + t k ( ~ ) e k ( ~ )  

where qk is a monic polynomial of  degree m k and t k polynomial of degree 
m k - 1 at most. Thus we have 2m k unknown coefficients and 

c(1)(~ip(1)+l ) =cO)(s ) + c ( s  

Since CO)(s = c (~ i+ l t kek  ) = 0 for i = 0 , . . . ,  n k -- m k -- 1 the orthogo- 
nality conditions of  r,(1) �9 k+l are satisfied for the same indexes. Writ ing these 
conditions for i = n k - m k . . . .  , n k + m k - 1 gives 2mg relations. Obviously we 
must assume that  n k - m k >10. The case n k - m k < 0 will be t reated below. 

We set 

qk(~)  = ao + " '"  -[-Olmk--l~ mk-I  + ~ ink 

tk(~:) = a 6 +  . . . - ] - O l ; n l , _ l ~ m k  -1 

and thus 

c(l)( ~ie(kl)+ l ) = OloC(1)( ~ie(kl) ) - 1 - . . .  -.]-Olmk_lC(1)( ~i+rnl~--Xe(kl) ) ..1- c(X)( ~i+mke(kl) ) 

t i+m k �9 q-Ot~oC(~i+lek) q- " '"  +Otrnk--lC(~ e k )  
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The orthogonali ty conditions of P~'+)I give 

for i = n k - m k 

for i = n  k - m  k + 1 

Ol.m,_ lC(1)(~nkPk(') ) § O~m,_ 2c(~nkPk) § Olm~_ ,C(f n* + 1P k ) = - c ( ' ) ( ~  nk + 1Vk(X) ) 

for i -'nk" "-'1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

alc( ' ) (  ~"*P(k') ) + . . .  § ,C(1)( ~"k +mk-- 2e(kl) ) § Otroc( ~nkek ) § . . .  

§ k_,c(~ nk+rnk- 'Pk)  = --C(')(~n*+m k- 1ek(,) ) 

for i = n k 

O~oC(1)(~nke ( ')) § " "" § ~nk +mk--'e(') ) § Oltoc( ~nk + lek ) -b "" " 

§ O~n,_ ,tT(~n* +mkek) = _ C(1)(~:nk +mkek(1)) 

for i - 'n ,"  + m ~  "- ' f  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OtoC'l)(~n*+mk--lP(kl) ) + . . .  +Otmk_lC(1)(~n*+2m*-2e(')) 

§ ~na+rnkek) § . . .  § ~nk+ 2rna--lek ) = --C(1)( ~nk+ 2mk--le(k')). 

In the case of  breakdown we recover the SMRZ. If c ( ~ P ~ )  = 0 this system is 
p(1) P(~) cannot  be obta ined as a combination o f . ,  singular and, as in the SMRZ, . , + ,  

and P , .  In this case it is mandatory  to use the GMRZ. However  this case will 
se ldom occur and most of  the time I c(r  will not be equal to zero but  
small. 

Let  us now consider the case n k - r n  k < 0. We  shall have n k + r n  k < 2mk 
equat ions for computing the 2rnk unknowns. Thus we shall now take for tk a 
polynomial  of  degree  at most  nk -- 1 

t k (r  ) = a '  o + . . .  § -1.  

We have 

c(l)[ ~ieO) !, k+, )  

n(1) and the orthogonali ty condit ions of  r~ +, give 
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for  i = 0 
OlnkC(l)(~nke(kl) ) a t - . . .  q--Olrnk_lC(l)(~mk--le(1) ) + C(1)(~mke (1)) 

+ a ' . ~ _ , c ( ~ " ~ P k )  = 0 

i o r ' i ' -  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ . . .  

for  i = n k 

OZoC(1)( ~nke(kl) ) -k- " " " -~ Olmk_ lC(l)( ~nk +mk-- l p(l)~a k ) -~- C(1)( ~nk +mke(kl) ) 

+ . . .  nk_lC(~2nkPk) = 0  
. . . . . . . . . . . . . . . .  , . , . . . . . . . . . . . . . . . . . . . . . .  , , . . . . . . . . . . . .  

for  i = n  k + m  k -  1 

OtoC'l'( ~nk +'nk--lP(kl) ) + . . .  -ptX,nk_lC(1)( ~n~+ 2mk-2p(kl) ) + C(1)( ~nk + 2mk--lP(kl) ) 

..~ ! /~-nk+mkr'~ \ -- t /.,-2nk+mk--ln aoC(tg r k )  -]- �9 " " -I-Olnk_lC[r r k )  = O. 

! . . . ! In the  case o f  b r eakdown  we have a 1 = = a ,~_ l  and  the  SMRZ is recov- 
ered.  I f  the  systems giving the coeff ic ients  are singular,  it m e a n s  tha t  P~I+~ 1 does  
not  exist and  the  value of  m k has to be increased  unt i l  a regular  po lynomia l  
p o) has been  obta ined .  K+I 

5. Programming the algorithms 

Le t  us now analyze the  coding of  the  algori thms.  It was done  such as to 
minimize  the  s torage  and  the  n u m b e r  of  vec tor  ope ra t ions  (scalar p roduc t s  and  
matr ix  by vec tor  mult ipl icat ions) .  Since the logical design of  the  a lgor i thms are 
qui te  similar,  it is suff icient  to give only two of  t h e m  in a pseudo-code ,  name ly  
the MRZ and the  BSMRZ. They  are as follows 

Algorithm MRZ ( A ,  b, x0, y)  

1. Initializations: 
z_ l  *-- 0 

r o ~ Ax o - b 

s o = z o = r 0 
n0 r 0 

2. For k = 0, 1, 2 , . . .  until convergence do: 
If n k = n then 

solut ion not  ob t a ined  af ter  n i terat ions.  
stop. 

end if 
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S 1 <--As o 
I f ( y ,  s 1) = 0 and n k = n -  1 then 

incurable breakdown.  
stop. 

end if 
m k < - - 1  

3. While (y ,  sink) = 0 and m k < n  - n k do: 
m k ~-- m k + 1 

Sm k ~-- A s m ~ -  1 
end while 
I f  m k = n  - n  k a n d ( y , s ~ k ) = O t h e n  

incurable breakdown.  
stop. 

end if 

d o ~ (y ,  rk)  

b o ~ (y ,  Sm k) 
f lm~-  1 ~ d o / b o  

4. For  i = 1 , . . . , m  k do: 
y ~ - -AT}y  

b i ..-- ( y ,  Sm k) 
I f  i :/: m k then 

d i . -  (y ,  rk)  
compute  /3., k_i_ 1 

end if 
I f k ~ O a n d i > m  k _ l t h e n  

Pi ~ (Y, Z k - 1 )  
end if 

end for 
5. compute  xk+ 1 = x  k - w k ( A ) z  k 

compute  rk + 1 = rk - A w k (  A ) z t ,  

If  r k + x = O t h e n  
solution obtained.  
stop. 

end if 

6. n k + l  ~--nk  + m k  
I f  k = 0 then 

C1 ~--- 0 
P o l O  

else 

Ck+ x ~ b o / P o  
end if 

7. For  i =  1 , . . . , m  k do: 
I f  k = 0 then 
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. 

pi<--O 
e nd  if  

compute Olmk_ i 

end  for  
F o r  i = O, . . . , m k do: 

Pi ~ bi 
end  for  

SO ~" Zk+l = q k ( A ) z k  -- Ck+ 1Zk - 1 
end  for  

A lgor i thm BSMRZ ( A ,  b, Xo, y, e) 

1. I n i t i a l i z a t i o n s :  

r o ~ - A x  o - b 

s o = z o : r o 
/do = r 0 
n 0 ~ 0  

2. F o r  k = 0, 1, 2, . . .  un t i l  c o n v e r g e n c e  do: 

I f  n k = n then  

solu t ion  no t  o b t a i n e d  a f t e r  n i tera t ions .  
stop.  

end  if  

d o *- (y ,  rk)  

I f  d o = 0 then  
imposs ib le  to use the  BSMRZ. 
stop.  

end  if 

31 t - - A s  o 

Co ~- (Y, s l )  
I f  I c ol 4 e  a n d  n k = n - l t h e n  

incurab le  n e a r - b r e a k d o w n .  
stop.  

end  if  

m k ~ l  

3. Whi le  Icm k - l l  ~<e and  m ~ < n - n  k do: 

m k 4-- m k + 1 
y <-- A T y  

Cmk_l <--- ( y ,  S 1) 

dmk_ l ~ ( y ,  rk)  

Smk ~ - A S m  k-  1 
end  while 

I f  m k = n - n  k a n d  Cmk_a ~< e th~/n 
incu rab le  n e a r - b r e a k d o w n .  
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. 

. 

. 

stop. 
end if 
y 4 - A T y  

94-y 
Cm, 4 -  ( y ,  S 1) 
If  n k 4= 0 then dm~ 4 -  (y ,  r k )  
94-y 
If  rn k 4= 1 then 

For i = 1 , . . . , m  k -  1 do: 
94- AT9 
Cmk +i 4- ( 9 ,  S1) 
If  i ;(  n k then d m k + i  4 -  ( 9 ,  r k )  

If  i ~< n k then u i 4 - A u i _  1 

end for 
end if 
R e p e a t  

If  mk ~ nk then 
compute  f l i ,  ( i  = 0 , . . . ,  m k - -  1) 

I compute  flj, ( j  = 0 . . . . .  m k - -  2) 
compute  a i, (i = 0 , . . . ,  m k - -  1) 
compute  a;,  ( j  = 0 , . . . , m  k -  1) 

else 
compute  3 i ,  ( i  = 0 , . . . ,  m k - -  1) 
compute  fl;, ( j  = 0 , . . . , n  k -  1) 
compute  a i, (i = 0 , . . . ,  m k - -  1) 
compute  a), ( j  = 0 , . . . , n  k -  1) 

end if 
If  singular system then 

m k  4 - m k  + l 

If  mk + n k = n + l  then 
incurable near-breakdown.  
stop. 

end if 
y 4 -  A T y  

For i = 2 downto 1 do: 
9 4- ATy 

C2mk_i 4-- (~ ,  $1 ) 
d2mk- i  4- (9, rk) 

end for 

Sm k 4- ASm k-  1 
If  m k - 1 <~ n k then umk_ 1 4 - A U m k _  2 

end if 
until  not singular system. 
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7. c o m p u t e  Xk+ 1 = X  k -- W k ( A ) z  k -- O k ( A ) r  k 
c o m p u t e  r k + 1 = rk -- A W k ( A ) Z k  -- A V k ( A ) r k  
I f  rk+ 1 = 0 then 

solution obtained.  
stop. 

end if 
8. nk+l  ~--nk + m  k 

S 0 <'-- Zk+ 1 = qk(A)Zk + tk(A)r k 
U 0 <--- rk+ 1 

end for 

This coding needs the storage of m + 6 vectors where  m = m a x e m  k. Thus, in 
the case where  no breakdown occurs, m = 1 and 7 auxiliary vectors are used 
which is exactly the number  of  auxiliary vectors needed  in the mODIR algorithm 
and shows the optimality of  our  programming with respect  to storage. 

The  subroutines have been  p rogrammed in FORTRAN 77. They can be  ob- 
tained by electronic mail via netlib. The command to be  used is 

ne t l ib@research .a t t .com 

and the name of the library is NUMERALGO. TO obtain the program xxx ask 

send xxx from numeralgo 

They are the following 

MRZ 
BMRZ 
SMRZ 
BSMRZ 

algorithm MRZ 
algorithm BMRZ 
algorithm SMRZ 
algorithm BSMRZ 

They are given together  with the corresponding main programs (same name 
as the subrout ine preceded  by an M). 

It is possible to compute  differently the scalar products  needed  in the 
algorithms. Indeed,  since p~l) has the degree  n~ exactly, the relations c(~iP~+l ) 
= 0 for i = n k , . . . , n  k + m k -  1 can be replaced by c(s l) = 0 for i = 
0 , . . . ,  m k -- 1. Thus, in the MRZ, we have 

i (1) = ._ c(~ P~ Pk+l)  c(~iP(~')Pk) -- floC(1)(l~iP(k 1):) . . . . .  flrnk ,C(1)(i{i+mk-lP(kO2)" 

But CO)(~ip(kl)2) = 0 for i = 0 , . . . ,  rn k -- 2 since p o) is or thogonal  to any polyno- 
mial of  degree  at most n k + m k - 2 and we obtain 

~mk--lC'l'(~mk--l/~'l'2]'k ] = c(p~I)P k) 

~mk_2c ' l ) (  ~m*- lP  (1,2) + fl,nk_lC'l)( ~m'p(k 1,2) = c(  ~p(kl)Pk ) 
. . . . . . . . . . . . . . . . . . . . .  . . ~ �9 �9 , �9 . . . . . . . . . . . . .  * �9 ~ * * �9 �9 ~ 

f l0C(1)(~  m k - l P  (1)2) -I" "" " " [ - ~ r n k _ l r ( 1 ) ( ~ 2 m k - - E P  (1)2) = C ( ~  mk-lP(kl)P k) .  
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Thus  we need  to compute  CO)(~ip(kl)~) for i >t m k 
i ~> O. We have 

c(1)(~ip(1) 2 ) = ( y,  Ai+ l pO,( A )p(,)(  A )r o ) 

= ( p ( 1 , ( A ) *  y, A i+ 'P(kO( A ) r  o). 

If we set z k = P(kl)(A)ro and Zk = P(kl)(A)*Y = P(~I)(A*)Y then  

c'l)(~ie(kl'2) = (7"k, Ai+lZk) " 

Similarly 

c(~ip(1)Pk) 
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- 1  and CO)(~iP(kOP k) for 

= (y ,  Aip(kl) (A)Pk(A)rO) 

= ( p~O( A ) * y ,  AiPk( A )ro) 

= (z'k, A irk) .  

In the th ree- te rm recurrence  relat ionship of the polynomials  Pk (1), the relations 
cO)(cipo) ) = O f o r i = n k , . . . n k + m  k l c a n b e r e p l a c e d b y , .  , s - k  -k+l  ~s �9 k+l -- t'(1)(Eiio(l)D(1) ) = 0 
for i = O , . . . , m  k - 1  since Pk (1) has the exact degree  n k. Moreover  

= P~  1) = 0 since Pk~ I is c(1)(~ nk-l~ k+l, ~ 0 can be replaced by C(1)(scmk-'-I Pk(~l k+ 
exactly of degree  n k_ 1 and n k_ ~ + m k_ ~ = n k. Thus  we have 

C(I)[tZnk--ID( , )=c'l)(~mk-,--1D(l) p( l) l )= 0 I,b a k+l �9 k-~ k+ 
=O~0c(l)(~:mk-t-lP(I) O(l)] �9 k - I  a k ) Jr " " " +Olmk--lC(I)[l:mk-I+mk--21O(I)l,b �9 k - I � 9  kiO(I)~] 

+ c ( l ' ( ~ m k - ' + m k - - l D ( I ) l P ( l ' )  - C "  k -  k+lC(I)[~ m ' - ' - lD` l ,2~  �9 k-l)"  

Thanks  to the or thogonal i ty  of Pk (j) we have 

C k + l C ( l ) ( ~  mk-l-lp(1)z]~t k - l )  = C ( ' ) ( ~  m'-l+m'-lp(l)~t k-l'D(l)'~k ] 

and 

r  ~nkp(1)+ l ) - -  P(1)(I *P'I)D(I)k " k + l )~ --f~--v 

= aoc(')(p(k o2) + . . .  +am,_  , C(')(~"-'P(k')'- ) 

+C(l)(emkp(kl)') - C  k+l C(I'/~ " ~ , - - k  I) 

Finally, since ~"(~162176176 " k -  for i +  nk_ 1 < ~ n k + m k - - 2  , that  is for i.<< 
ink_ ~ + m  k -  2 with mk_ ~ >t 1, we obtain 

Otto _lC(1)(~mk-le(kl)2)+c(l)(~mke(kl)2)=O 

~Tk 7 2,C(1)! ~,~k ~ i f!l);  ! _]_ O~m k 7 : C(1.)! ~mkp:l,)2,) + C(I)(~Tk " + if:l)2).~ 0 . . . . . .  

a c (~)(~:m~- ~ p ( ~ ) 2 ~ . . . .  a-a , - , ( 1 ) [ ~ : 2 m k - 2 1 0 ( 1 ) 2 ]  -.t- , , , ( 1 ) [ 1 : 2 m *  - 1 1 0 ( I ) 2 ]  - -  f~ 
0 ~b k J - -  - -  m k-11" ~5 i k ] - - t .  ~5 �9 k ] - -  ~" 

Thus,  for obtaining Ck+ 1, we have to compu te  c(~ m~-'+'*-lp(~ PtkJ)). But 
~mk_,p(l) is monic  of degree  nk_ 1 +mk_  I = n k ,  ~ m k - ' + m ' - I P  (1) is monic  of k-I  k-I 
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degree  n k -4- m k - 1 and p~l) is o r thogonal  to any polynomial  of degree  strictly 
less than n k + rn k - 1. It follows that  

C'I'( ~ mk-l+rnk-lP`l,k-I k ] P(I'~ ~- c'l)(~ mk-lP(l,2) 

since p(1) and p~a) are monic  and finally k-1 
Ck+lr rnk-t-l/9(l)2a k-l]~ = C(1)(~ mk-ljO(')2" k )" 

Moreover ,  by the recur rence  relat ionship of the polynomials  p~a) 

Z.k+l=qk(A) * ~, -- ~ , +  ~;~k_ 1=  qk(A*);~k -- C--,+ 1 i ,_  ~. 

Comput ing  the coefficients in that  way, leads to a m e t h o d  similar to the 
BIODIR m e t h o d  given by Gu tknech t  [8]. 

Obviously, for testing a breakdown,  a strict equali ty to zero of a scalar 
p roduc t  can never  be achieved because  of the rounding  errors. Thus,  in our  
programs,  this condi t ion is replaced by the absolute value of the scalar p roduc t  
less than a given e. 

6. Numerical results 

Let us consider  the system [1] 

(iOOOol o~176 ~ (1/n 1 
With the subrout ine  MRZ we obtain the following results for n = 12, x o = 0, 

y = ( 1  . . . .  ,1) 7̀  and e = 1 0 - 1  

k 1 2 3 4 5 6 7 8 9 10 
n k 1 2 3 6 7 8 9 10 11 12 

II rk II 15.0 18.3 37.5 41.1 41.1 945.3 948.8 37.7 18.3 7.0 

For  e = 10 -2, 10 -3, 10 -5, 10 - t~ 10 - I t ,  we obtain 

k 1 2 3 4 5 6 7 8 
n k 1 2 3 4 9 10 11 12 

II rk II 15.0 18.3 37.5 58.2 58.2 37.6 18.2 3.2" 10 -9  

For  e = 10-~2, we have 

k 1 2 33.5754.282.55 2 .96  n k 1 2 3 4 8 '  9 
rk II 15 .018 .3  �9 1041 �9 1025 

7 
10 

9.8" 10 24 8.111o2511 2.811o26 12 
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For e = 10-13, we obtain 

k 1 2 3 4 5 6 7 8 9 10 11 
n k 1 2 3 4 6 7 8 9 10 11 12 

Ilrkll 15.0 18.3 37.5 58.2 47.7 47.7 1.0.10 TM 58.2 42.3 54.3 8.4"104 

Finally for e = 10-14, 10-15 and 10-16 we find 

k 1 2 3 4 5 6 7 8 9 10 11 12 
n k 1 2 3 4 5 6 7 8 9 10 11 12 

Ilrkll 15.0 18.3 37.5 58.2 63.6 73.6 73.6 63.6 58.2 37.6 18.2 57.4 

Thus the results are quite sensitive to the value of e which is not surprising 
since this value controls the correct detection of the jump between the dimen- 
sions 4 and 9. When this jump is correctly determined then the exact solution of 
the system is obtained. Let us mentioned that the computation was performed 
on a personal computer working with 16 decimal digits in double precision. 

Let us consider again the same system and give the value of the norm of the 
last residual obtained by the various algorithms. When no number is indicated, 
it means that the solution has not been obtained (which is due to a division by 
zero in the algorithm because the required supplementary assumption is not 
satisfied). In the BSMRZ, if the solution was not obtained after n iterations, we 
let them continue; in that case, the integer placed into parenthesis indicates the 
number of iterations performed. The value of e 1 used in the BSMRZ corresponds 
to the threshold for testing the pivots in Gaussian elimination for solving the 
auxiliary systems. When a pivot has an absolute value less than el, the value of 
m k is increased by 1. 

We obtained the following results with x 0 = 0 and y = (1 , . . . ,  1) 7̀  

4 
5 
6 
7 
8 
9 

10 
11 
12 

M R Z  BM RZ SM RZ BSM RZ BSM RZ BSM RZ 

e = 1 0  -8 e = 1 0  -8 e = 1 0  -8 e = 1 0  -8 e = 1 0  -1 e = l  
e I = 10 -14 el = 10 -II  el = 10 -I1 

2.74' 10-15 
7.20" 10-15 
1.33.10 -11 
5.49" 10-13 
6.53" 10-12 
4.23' 10-11 
5.09" 10- Jl 
1.10.10 -11 
3.33.10 -11 

1.58" 10-15 
6.21" 10-14 
5.39" 10-14 

1.46" 10-15 
1.62" 10- 13 
2.63' 10-13 

1.83" 10- 15 
1.65" 10- 13 
1.47" 10- 13 
8.34" 10-14(11) 
4.59" 10-14(12) 
1.72" 10-14(13) 
5.07" 10-14(14) 

1.83" 10-15 
1.65" 10- 13 
1.47" 10-13 
2.13.10 -a3 
2.09" 10-12 
2.48" 10-12 
1.63" 10- 12 
5.48" 10-13(24) 

1.83" 10-15 
1.65" 10-13 
3.72" 10- 14 
3.45" 10-13 
1.96" 10-12 
2.23" 10- J2 
3.29" 10-12 
3.86" 10-12 
1.68" I0-12 
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With y = r 0 we found 

MRZ BMRZ SMRZ BSr,4RZ BSMRZ BSMRZ 

e = 1 0  - s  e = 1 0  -8 e = 1 0  -8 e = 1 0  -8 e = 1 0  - l  e = l  
e I = 10 -14 e I = 10-11 e I = 10 -11 

4 0.0 
5 1.06" 10-1o 
6 2.32" 10 -8 
7 3.02" 10-1o 
8 2.04" 10- )l 
9 4.20" 10 - l l  

10 4 .57 '10-  Io 
11 5.76"10 -1~ 
12 1.80" 10 -9 

3.39" 10-13 
1.53' 10- lo 
2.62" 10- lz 

8.12.10 -13 
1.90-10-1o 
3.54" 10- lz 

4.27" 10-13 
1.09- 10- lo 
4.00" 10-12 
3.39.10- lz(13) 
2.77- 10-12(14) 
4.72" 10-12(15) 
4.63" 10- 1"(16) 
2.11' 10-12(17) 

2.56-10-13 
1.09" 10-1o 
2.08' 10- Iz 
3.66" 10-13(12) 

1.21.10 - lo  

2.56" 10-13 
2.22- 10-13 
2.08" 10- lz 
1.21' 10-12 
1.87" 10-12 
1.74" 10-12 
5.88' 10-12 
3.73" 10- 12 

These  results seem to show that the BMRZ and the SMRZ are more  stable than 
the MRZ. The BSMRZ gives bet ter  results than the MRZ but  is quite sensitive to 
the choice of  e and e~. Thus more  experiments  are needed  in order  to fully 
unders tand the numerical  behaviour  of  these algorithms. A theoretical  study of 
their stability is also necessary and procedures  (such as reorthogonalizat ion and 
preconditioning) for improving their numerical  performances  have to be tried. 
Gaussian elimination in the BSMRZ has also to be replaced by a be t te r  method.  

We intend to come back to these quest ions in the future.  
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