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Lanczos type algorithms form a wide and interesting class of iterative methods for solving
systems of linear equations. One of their main interest is that they provide the exact answer
in at most n steps where n is the dimension of the system. However a breakdown can occur
in these algorithms due to a division by a zero scalar product. After recalling the so-called
method of recursive zoom (MRZ) which allows to jump over such breakdown we propose
two new variants. Then the method and its variants are extended to treat the case of a
near-breakdown due to a division by a scalar product whose absolute value is small which is
the reason for an important propagation of rounding errors in the method. Programming
the various algorithms is then analyzed and explained. Numerical results illustrating the
processes are discussed. The subroutines corresponding to the algorithms described can be
obtained via netlib.
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1. Lanczos type algorithms

Let us consider in C” the system of linear equations
Ax =b.
Let E, =span(r,,..., A*"'r,) and F, =span(y, A*y,..., A**~'y) where r,
and y are two non-zero arbitrary vectors and where A* is the conjugate
transpose of A. Let x, be defined by

Ap(x,—xg) = —rg= —(Axo—b)
where A, = H, AH,, H, being the oblique projection on E, along F,*.
The residual vector r, = Ax, — b satisfies
re=P(A)rg
where P, is a polynomial of degree at most k such that P,(0) =1 and where
(A*y,r,)=0 fori=0,...,k—1.
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If we set ¢;=(y, A'ry) and if we define the linear functional c on the space
of polynomials by c(¢') =c¢; for i =0, 1,... then the preceding relations can be
written as

c(¢P(£))=0 fori=0,....,k—1

which shows that P, is the polynomial of degree at most k belonging to the
family of formal orthogonal polynomials with respect to c.

A Lanczos type method (and among them the biconjugate gradient method of
Fletcher (7]) consists in computing P, recursively, then r, and finally x, such
that r, = Ax, — b without, of course, inverting 4. Such a method gives the exact
solution of the system in at most n steps, see [4] for a review of such methods.

The recursive computation of P, involves the computation of some scalar
products which appear as the denominators of the coefficients of the recurrence
relations. Thus, if one of these scalar products is zero, then a breakdown occurs
in the algorithm which has to be stopped. This is due to the non-existence of
some of the polynomials P, and the breakdown can be avoided by jumping over
these polynomials and computing only the existing ones. The corresponding
method was presented in [3] with its derivation and theoretical background. It
was called the Method of Recursive Zoom, in short the Mrz. This method will be
recalled in the next section and some new variants will be presented in section 3.
Let us mention that breakdown can be similarly avoided in the conjugate
gradient squared (ccs) method [9], see [5].

If the scalar products in the denominators are different from zero but small in
absolute value, an important propagation of rounding errors could occur in the
algorithm, a situation known as a near-breakdown. In section 4 we shall present
some generalizations of the Mrz for treating this problem. Programming the
various algorithms will be analyzed in section 5. Numerical results will be
discussed in the last section. The subroutines (in FORTRAN 77) corresponding to
the algorithms described in this paper can be obtained via netlib.

2. The MRZ

As explained in the preceding section we shall consider only the existing
orthogonal polynomials (called regular). Thus let P, be the polynomial of
degree at most n, satisfying the orthogonality relations

c(£'P(£))=0 fori=0,...,n, 1

and normalized by the condition P,(0) = 1.
Let P{" be the monic polynomial of degree n, belonging to the family of
formal orthogonal polynomials with respect to the functional ¢ defined by

C(l)(fi) _ C(§i+l)-
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If PV satisfies

cD(EPO(£))=0 fori=0,...,n +m, —2
and

(gt mIP(E)) #0
then, it was proved in [3] that

Peoi(€) = Py(£) — Ewi(£)PY(E)

PR(£) = a4 (£)PP(€) — Crit P2()
with PU(£) =0, P§(¢) =1 and C, = 0. w, is a polynomial of degree m, — 1 at
most and g, is. a monic polynomial of degree m,. Their coefficients and C,

are determined by imposing the orthogonality relations of P, ; and P{},.
If we set

re =P (A)r
z,=PP(A)ry
then the preceding recurrence relations give
Teo1 = —Aw(A)z,
X1 =%, —wi(A)z,
Zi1 = q(A) 2 — Cri1 24

with z,=r;, z_,=0and C,=0.
m, is determined by the conditions

(v, A*'z,)=0, fori=0,...,n,+m, —2
and
(v, A™F ™z, ) #0.
If we set w (£) =By + -+ +B,, _,£™ ! then the B’s are given by

Bmk—l(y’ Ank+mkzk) = (y, A"krk)

Bo(y, Ank+mkzk) +B1(y, A"k"‘ﬂlk"‘lzk) + - +Bm’(~1(y, Ank+2mk—1zk)
=(y, A% 1r).

If we set q,(¢§) =ag+ - - +a,, ™'+ £™ then we have

Crar(y, A™zi_y) = (y, A™F™z,)

@1y, ATz, ) = Craa(y, A™Hzp ) — (v, AF™Fz,)

ao()’; A"k+mkzk) +a1(y, Ank+mk+lzk) E +amk——1(y’ Ank+2mk_lzk)
=Crily, A""+m"zk_1) - (y, A""+2m"zk).
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This method has been called the Method of Recursive Zoom, in short the Mrz.
It can only present an incurable hard breakdown if (y, 4"z,) = 0 where n is the
dimension of the system to be solved.

3. Variants of the MRZ

In the Mrz the polynomial P{2, is computed from P{" and P{", by the
three-term recurrence relationship.

We shall now see how to compute P{), from P{" and from either P, or
Pyt

In the first case the variant has been called the smMrz, where s stands for
symmetric, since P, is also computes from the same polynomials thus leading
to a symmetry between both relations.

In the second case the variant has been called the BMrz, where B stands for
balancing, since the method computes P,,, from P{" and P, by its first
relation, then P{), from P, ., and P{" by its second relation, then goes back to
the first relation and so on, thus balancing between both relations.

In these variants the same letter has been often used to designate different
objects but no confusion is possible.

3.1. THE SMRZ

In this variant, P{?), shall be expressed as

P)(€) =1, (£)P(£) — Dy, Pi(€)

where ¢, is a monic polynomial of degree m, and D, ,, is a constant.
We set

tk(§)=80+ e 48 _1§mk_l+§mk.

my
We have
cO(EPM ) = 8,cD(£PDOY + -+ +3
_Dk+lc(§i+lPk)'
P, ., must satisfy the orthogonality conditions
cD(EPR,)=0 fori=0,...,n,+m, —1.

But ¢M(¢*mpP)y=0fori=0,...,n,—2and c(£&*'P)=0fori=0,...,n,
— 2. Thus the orthogonality conditions of P{Y, are satisfied for i =0,...,n, — 2.
Imposing these conditions for i=n, —1,...,n, + m, — 1 leads to m, + 1 rela-
tions for determining the m, + 1 coefficients §,...,8,, -, and D, .

N 1C(l)(§i+mk_ IPIEI)) + c(l)(§i+mkPI£1))

my



C. Brezinski et al. / Lanczos type algorithms 265

These conditions give
fori=n,—1
Dk+lc(§"kPk) = C(l)(gnﬁmk—lplgl))
fori=n,
Dk+lc(§nk+1Pk) — amk— IC(I)(fn" +m"_1P,£1)) — C(])(gn,\.+mkplgl))

......................................................

fori=n,+m,—1
Dk+lc(§nk+mkPk) _ 60C(1)(§""+m"_1P/£1)) e _b‘mk_IC(I)(§nk+2mk—2PI£]))
=C(1)(§"k+2m"_1P/£1)).

Thus the first equation gives D, ,, the second one §,, _;,..., and the last
one 4.

Since ¢V(gmetm=1p) £ ( this system is regular if and only if c(£"+P,) # 0.

Let us now look at this condition. We have

©)
n,+1

ay -
H,

c(£mP) =(-1)"

Thus c(£™P,) =0 if and only if H{” , =0. Since P{" exists, H}"#0 and
since P, exists, H{’ + 0. Thus we have

© .
an) \\
I N, ©
an #0 AN \f’lk)u
AN
NN
NN
\\\. HO
N HD, 0

and we are in one of the situations (see Draux [6], property 1.9, p. 25)

Situation I Situation II
AN N
. \' . \’
N AN \\
AN AN
\\ N \\ N
N NN
\ AN
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In I, HO,, # 0 while, in II, H\”,, =0 and H® #0.

Thus, if c(¢"#P,) =0 we are in the situation II. It follows that the monic
orthogonal polynomial of degree n, with respect to ¢ exists. Let us call it P,EO).
We have

c(§”kP,§°’) = (.
We also have

©)
nptl

HW

"y

=0.

c(PM)=(-1)™

But c(PM) =c"(¢7'P{M) = 0 which shows (Draux [6], corollary 2.2, p. 137)
that the polynomial P{" is on the west side of a square block but not at its
north-west corner. Thus P{”’ is on the west side or at the north-west corner of a
block and it is identical to P{" (Draux [6], property 2.1, p. 100) which means
that the orthogonal polynomials are in the situation II as the corresponding
Hankel determinants. Moreover
. . =0 fori=0,....,n,+m,—2
(( £ipMY = (D £ipMY — i+1pO vereo TRk k
cO(EPD) =cP(EPT) =c(67'PT) 0 fori=n, +m, —1.
Since P{" is orthogonal regular c(P{") =0 and we finally have

) =0 fori=0,...,n,+m, —1
ip(y ’ Ttk k
c(¢'Pi ){ #0 fori=n,+m,.
But
)

Pi(§) = (1" 5 POE)

ny

and thus

W 2o toimmime

But, by the first relation of the MRz

Py (§) =Pu(&) — Ew(€)PL(E)
where w, is a polynomial of degree m, — 1. Setting

Wel€)=Bo+ -+ 4B ™!
we have

('Prcr) = (£P) = BocP(EPD) = - =By (€7 PLD).

But ¢!V(¢+m Py =0 for i=0,...,n, — 1 and c(¢P,)=0for i=0,...,n,
+m; —1 and it follows that B,= --- =p,, _, =0. Thus we have proved the
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THEOREM
c(&™P,) =10 if and only if P, ,, is identical to P,.

If c(£™P,) = 0 the relation of the sMrz cannot be used and we shall look for
a relation of the form

POL(E) =1, (E)PO(€) — uy (£)Pi(£)
where t, and u, are polynomials of degree m, at most. Thus we have 2m, + 2
unknown coefficients to determine.
Moreover
(& PP)=0 fori=0,...,n,—2
and
C(§i+1ukPk)=O f0ri=0,...,nk—2.

Thus ¢(¢'P),) =0 for i=0,...,n, — 2. Imposing this condition for i =n,
-1,...,n,+m, — 1 leads to m, + 1 relations. Imposing that P{), be monic
gives one more relation and thus we have m, + 2 relations for 2m, + 2 un-
knowns. Let us give a numerical example showing that this system is inconsistent

We take cy=1,¢,=2,¢c,=4,¢c3=¢,=8, cs5=¢,=0.

We have H{" = H{V = H{® =0 and H{» = —32.

Thus n, =1, m; =2 and n,=3.

We find that

PO(E) = P{(¢) = PR(§) = £ =2
P\(§)=1-¢&/2
PI(¢)=¢-1
Pé”(g) =¢E3-2¢2+4£-4
P,(¢) isidentical to P,(£)
We shall try to express PS§" as a combination of P{" and P, that is
PO(E)=(£—2)(a€?+bE+c)+ (1 —£/2)(a'é* +b'E+ )
which leads to
2a—a' =2
2b—-22a—-a')—-b'=—4
2c-22b—-b")—c'=8
2c—c'=4.
From the first two equations we obtain 2b — b’ = (. Replacing in the third
one leads to 2¢ — ¢’ = 8 which is inconsistent with the last equation.

Thus the sMrz can only be used if c(£"<P,) # 0. If this is not the case P{?,

cannot be expressed, in general, as a combination (with polynomial coefficients)
of P and P,.
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This is the reason why we shall now try to express P{?, as a combination of
PV and P
k- and £y

3.2. THE BMRZ

In this variant, P{?), shall be expressed as

P (&) = A\ Prsi(§) + By [ PO(E)

where A, , and B, , are constants.
We have

C(l)(é:ip/ﬁll]) =Ak+lc(§i+lPk+l) +Bk+lc(l)(§iPI£]))'

Since ¢"(¢'P")=0 for i=0,...,n,+m, —2 and c(¢&*'P,,,)=0 for i=
0,...,n, +m, — 2, the orthogonality relations of P{?, are also satisfied for
these indexes. Writing this condition for i =n, + m, — 1 gives

A C(EMTMP ) + By cD(gm T IPD) = 0.

Let us now impose that P{", is monic. Since P{", has the exact degree
n, +m, the relation of the BMrRz can only hold if P,,, has the exact degree
n, +m,, that is if H,S‘A’)H # 0 or, in other terms, if we are in the situation I
described in the smrz. From the first relation of the mrz the coefficient of
MM in Py, is equal to —B,, _,. Thus we must take

1

B, -1

and it follows that

1 e(§™™™Pyy) (T P)
Bt (M TRD) T T c(€7B,)

This relation is, in fact, the same as that given by Draux [6] (pp. 397-398)
since P{"), exists because H” + 0. It is a generalization of the second relation
between adjacent families of orthogonal polynomials (that is the relation involv-
ing e, see Brezinski [2] (relation 2.9, p. 92 or p. 95)).

Setting, as in the mrz, r, = P,(A)r, and z, = P{"(A)r, we recover the usual
formulation of the biconjugate gradient method of Fletcher [7], see also Brezin-
ski [2] p. 91, in which z, ., is computed from r,,, and z,.

If we are in the situation II described in the smMrz then P, ,, is identical to P,
and P{"), cannot be computed from P{" and P, even if the constants A4, ,, and
B, ., are replaced by polynomials.

The BMmRzZ is, in fact, a simplified (and simplest) version of the smMrz since if
P, ., is replaced by

Peo1(€) = P(£) — Ewy(£)PO(E)

Aoy =—

B, =
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in the BMRZ we obtain

Pé‘il(f) =A, P(§)+ (Bk+1 _Ak+1§wk(§))PI$1)(§)

which is the sMRz since, in this method, ¢, and D, ,; are uniquely determined.
However since, in both methods, the computations are not conducted in the
same way, their numerical stability has to be compared.

4. Near-breakdown

As explained in [3], a breakdown occurs in a Lanczos type method when
C(l)(scnkplgl)) =(.

In that case the monic orthogonal polynomial of degree n, + 1 with respect to
¢ does not exist.

It is possible to avoid such a breakdown by using the first regular orthogonal
polynomial with respect to ¢ following P{". This polynomial was denoted by
P{) ., its degree was n, ., =n, + m, where m, is determined such that

cO(ePP)y=0 fori=0,...,n,+m, —2
#0 fori=n,+m,—1.

P{Y, and P,,, are then computed recursively by two relations whose coeffi-
cients are given as solutions of a triangular system of linear equations with
cD(gmtm=1pM) on its diagonal.

Of course if |cM(gm*m~1pD)| is different from zero but small (and possibly
badly computed) the coefficients of the two recurrence relations of the mrz(or
its variants) could be large and badly computed and thus rounding errors could
affect the algorithm. The same is true if the quantities | c"(¢'P{"”)| are not zero
for i=n,,...,n,+m, —2 but small; in that case no breakdown occurs in the
method but numerical instability could be present, a situation called near-
breakdown.

It is possible to avoid such a near-breakdown by jumping over those polyno-
mials which could be badly computed and to compute directly the first regular
polynomial following them. Thus, let &€ > 0 be given. We define m, > 1 such that

|C(1)(§'P/§D)I <e fori=ny,....,n+m—2
and
(P [>e for i=nytmy=1.

Let n,,,=n, + m,. We shall denote by P{?, the regular orthogonal polyno-
mial of degree n,,, with respect to ¢‘). As explained in the sequel if such a
polynomial does not exist (and we shall be able to detect such a case) the value
of m, has to be increased until a regular polynomial has been obtained. We
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shall denote by P, , the corresponding orthogonal polynomial of degree n, .,
at most with respect to ¢ normalized by the condition P, ,(0) = 1.
Let us first compute P, ,. We shall write it under the form

Py 1(€) = P(€) — Ew(E) PLO(€) = Evi () Pi(€)
where w, is a polynomial of degree m, —1 at most and v, a polynomial of
degree m, — 2 at most. Let us recall that, in the case of a breakdown, v, is
identically zero.

We have
C(EP 1) = c(£7P) — ¢V (E'w, PP) — c(£74 0, Py).
But we have
c(¢P)=0 i=0,...,n,—1
c("(fika,ﬁl))=0 i=0,...,n,—m,
C(§i+1UkPk)=O i=0,...,n,—my.

Thus c¢(¢'P,,,)=0 for i=0,...,n, —m,. Writing that this condition is
satisfied for i=n, —m,+1,...,n, + m, — 1 yields 2m, — 1 relations for deter-
mining the 2m, — 1 unknowns which are the m, coefficients of w, and the
m, — 1 coefficients of v,. Of course we must assume that n, —m, + 1> 0. The
case n, —m, +1 <0 will be treated below.

We set

w(€)=By+ -~ +Bmk—1§mk_l
v(§) =Bo+ o +B, €M7
Writing the orthogonality conditions of P, gives

fori=n,—m, +1

ﬁm,\.—lc(l)(gnkplgl)) +B""k_2c(§"kPk) =0

'Blc(l)(f"kplgl)) 4+ - +Bmk—lc(l)(§"k+”’k'2pl£1))
+Boc(EMP )+ -+ +B,’nk_zc(§""+'""_2Pk) =0

fori=n,

Boc(l)(‘f"kplgl)) + .- +Bmk—lc(l)(§"k+,nk_1PI£]))
+B(’)c(§nk+1Pk) + .- +Brlnk—zc(§nk+'"k_1Pk) =C(§n"Pk)

Boc(l)(f'1k+,nk_lplsl)) 4 e +Bmk—lc(l)(fnk+2mk_2PI£1))
+B(l)c(§_-nk+mkPk) 4 .- +ﬁrlnk—26(§nk+2mk_zpk) =C(§""+m"_1Pk).
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It must be noticed that, in the case of breakdown, that is when ¢P(¢'P{P) =0
for i=n,,...,n, +m, — 2, then the conditions for i=n, -m,+1,...,n,—1
give Bo= -+ =B, _,=0(even if c(¢'P,)=0 for i=n,,...,n, +m, — 2 since
in this case the B/s are arbitrary) and the conditions for i=n,,...,n, + m, — 1
reduce to those of the Mrz which is exactly recovered.

Let us now examine the case n, —m, +1<0. We now have n, + m, equa-
tions, with n, +m, <2m, — 1, for determining the 2m, — 1 unknown coeffi-
cients. This is the reason why we shall now take for v, a polynomial of degree at
most n, — 1

ve=Byt B, g
The orthogonality conditions of P, give

fori=0
nkc(l)(gnkP/il)) 4o +Bmk_1c(1)(§mk_1P,£1)) + Brl.k—lc(fnkpk) =0

BicM(gmPD) + -+ +B,, _ cD(gntm=2pD)

+Boc(§"P) + -+ +B, _1c(£27'P,)=0
fori=n,

BocD(EMPD) + -+ +B,, _,cV(gm+m=1pD)
+Boc(EMT P )+ - +B,’1k—1c(§2""Pk) =c(§™P;)

fori=n,+m;—1
BOC(])(gnk-'-mk_lPlgl)) + .- +ﬁmk_lc(l)(gnk+2mk—2PIE]))
+B(’)C(§n"'+m"’Pk) 4 - +B;1k—lc(§2nk+mk~lpk) =c(§nk+mk—1Pk)'

In the case of breakdown the conditions for i =0,...,n, —1give Bj= -+ =
3:1k—1 = (0 and we recover exactly the Mrz again.

Let us now try to compute recursively P{),. They are several possibilities
corresponding to the MRz or its two variants, the sMrz and the BMRZ.

4.1. THE GMRZ

We shall try to generalize (G stands for general in the name of the method)
the three-term recurrence relationship between the polynomials P{".

Let P{", and P{" be two successive regular orthogonal polynomials with
respect to cP. By successive we mean that all the polynomials of degree
ng_;+1,...,n, — 1 do not exist. We shall try to determine P{!,, which is the
regular orthogonal polynomial of degree n, , , = n, + m, with respect to ¢ but
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not necessarily the successor of P{" (which means that some regular polynomi-
als of degree between n, + 1 and n,,, — 1 can exist) under the form

PEL(E) = a(€)PO(E) + ri(€)P2,(€)
where g, is a monic polynomial of degree m, and r, a polynomial of degree at
most m, — 1.
We must have

(PP Y=0 fori=0,...,n,+m, — 1.
k+1 k k
But
cV(¢'q, PP)=0 fori=0,...,n,—m,—1
and
Thus the orthogonality conditions of P{!), are satisfied for the same indexes.
Imposing these conditions for i=n, —my,...,n, +m, —1 will lead to 2m,
relations for determining the 2m, unknown coefficients of g, and r,. Of course

we must assume that n, —m, > 0. The case n, —m, <0 will be treated below.
We set

qk(g) = aO + o +amk—l§mk_l + §Mk
€)=t oy, gm
Fori=n,—m,,...,n, +m, —1 we must have
C(])(giplsl-zl) — aoc(l)(giplgl)) +  ta _lc(l)(§i+171k—1PI£1)) + C(l)(§i+mkPI£1))

my
+ajcP(EPR )+ -+ +al, _,cP(gF™mIPD V=0,
0 k=1 k-1

m,—1

We obtain
fori=n, —m,
cD(§"PP) + allnk—lc(l)(é:nk_lplgl—)l) =0
fori=n,—m, +1
@y, 1 CO(EMPLD) + cO(EMT D) + e D(£7IPD,)
c®(gmPD,) =0

.......................................................

+a’

my—1

a,lc(l)(é-nkPIEl)) + .- +a'"k_]c(l)(‘fnk+mk—2PI£1)) +C(l)(§nk+mk—1PI£1))

+ageD(EmTIPL )+ o tay, e D(EFm2PM ) =0
fori=n,
aoc(l)(gnkpél)) 4+ o +a,nk—lc(l)(§,1k+’nk_lpl§1)) + c(l)(§nk+mkPl§l))

+apeD(EMPD, ) + -+ +a, _cD(E PO ) =0

m;
fori:nk+mk_1 ..............
aOC(l)(fn‘-'-lnk_lP,E])) 4+ - +amk_lc(l)(§11k+2mk—21)/£1)) +C(1)(§nk+2mk—lplgl))

+a(’)C(])(§""'+m"_1P;§l_)1) 4o +allnk—]C(l)(§"k+ZMk_2PI£1—)1) =0.



C. Brezinski et al. / Lanczos type algorithms 273

In the case of breakdown these relations obviously reduce to those of the
MRZ.

Let us study the case n, —m,; <0. We now have n, + m, equations, with
ne +m; <2m,, for determining the 2m, unknown coefficients. Thus we shall
now take for r, a polynomial of degree at most n, — 1

r(é)=ap+ - +a;,k_1§"k‘1.
The orthogonality conditions of P{", give

fori=0

@, CO(EMPD) + -+ +a,, _cD(gm PO 4 cO(£mpD)
+a, _cP(EmPL ) =0

alc(l)(gnkP]EI)) 4+ - +am _1C(1)(§"k+mk_2P/£1)) +C(l)(§nk+mk—1PI£1))
+agcD(EWTPO Y+ - 4a), cD(E2PR ) =0

fori=n,

aoc(l)(gnkplgl)) 4+ .. +amk__1c(1)(§nk+mk_1P[£1)) + C(l)(fnk+mkP[$l))
+apcO(EmPR )+ - +ay, ¢ D(E27PLD ) =0

o f o

aoc(l)(gnk'i-mk—lplg])) + .- +am _IC(I)(§Hk+2m"_2P/£1)) + C(l)(fnk+2mk—1P/§1))

+a(/)c(1)(§nk+mk—1p’£1_)l) - +a’ C(l)(§2nk+mk—2plgl_)1) = (.

n,—1

ne—1

In the case of breakdown we again recover the mMrz.

If the systems giving P{, are singular then P{Y, does not exist and the value
of m, has to be increased until a regular polynomial P{), has been found.
Once P{!, has been determined by this method its successor or its predecessor
must be computed in order to be able to apply it again. If ¢P(£'P{P) =0 for
i=0,...,n,+m, —2and cO(g=rm~1pD) # ( then PV is the predecessor of

P&, (Wthh means that the regular polynomials of degrees n, +1,...,n,,,—1
do not exist) and the GMRz can be re-applied from P{" and P{),. If this is not

the case, the predecessor of P{!), has a degree between n,+1and n, ,— 1.
However, due to the conditions producing the near-breakdown, it will be badly
computed. Thus it will be better, from the numerical point of view, to find its
successor. First we have to determine m, such that
cP(EPR)=0 fori=0,...,n, 4 +my, ~2
#0 fori=n, ,+my, ,—1

and then P{%, has to be computed by the cMrz from P{’ and P{",. The
following polynomials could then be obtained by the gmrz from P{), and P,
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which are successive regular polynomials as required by the process. Of course,
due to rounding errors, m, , will be in general equal to 1 since the quantity
| cM(gm+ PN )| will not be equal to zero exactly.

4.2. THE BSMRZ

Let us now try to generalize to the near-breakdown the relations obtained for
P{) ., in the two variants of the MRz.

Since the BMRZ was easier to use we shall first try to generalize it. For that
purpose, P{Y), shall be expressed as

P (€)=A,,, Pio(€) +a,(6)PO(E)

where g, is a polynomial of degree d, <m,. Thus we must determine d, + 2
unknown coefficients.

Since c(¢*'P,,)=0 for i=0,...,n,+m, —2 and cV(¢'q, PM)=0 for
i=0,...,n,—d,—1, the orthogonality conditions of P{), are satisfied for
i=0,...,n, —d, — 1. Writing the missing orthogonality conditions and imposing
that P, is monic leads to m, +d, + 1 relations which is only possible if
m,=1.

If we try to replace the constant A4, ; by a polynomial we never obtain a
number of equations equal to the number of unknown coefficients and thus the
BMRZ cannot be generalized to treat a near-breakdown.

Thus let us generalize the smrz. The method will be called the BsMrz where
B stands for block. We shall look for P{), under the form

PEL(E) = au(§)PPO(€) + 1, (£)Pi(€)

where g, is a monic polynomial of degree m, and ¢, polynomial of degree
m,; — 1 at most. Thus we have 2m, unknown coefficients and

cD(EPM,) = cD(£ig, PL) + (€711, P).

Since ¢(&'gq, PV) = c(¢+1t, P,)=0 for i=0,...,n, —m, — 1 the orthogo-
nality conditions of P{!, are satisfied for the same indexes. Writing these
conditions for i=n,—m,,...,n, +m, —1 gives 2m, relations. Obviously we
must assume that n, —m, > 0. The case n, —m, <0 will be treated below.

We set

Gu(E) =0 - g £+
(&) =ag+ - +ay, g™
and thus
c(l)(giplgl-zl) = aoc(l)(fiP’sl)) 4o +amk—-1c(l)(§i+mk_1P/£1)) + C(l)(§i+mkP[£1))
Fabe(£IP) + - +al _ic(£4™P,).
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The orthogonality conditions of P{?, give
1€ (7 B,) = —cO(gm )

fori=n,—m,+1

amk_lc“)(g"kP,ﬁl)) +a,, ,c(§™P,) + a,’nk_lc(f""“Pk) = —cO(£nr1pD)

a,¢O(EmPOY + -+ +a, ¢ D(E" M 2PO) + afje(£MP) + -
+a’rnk_1c(§nk+mk-lpk) = _C(l)(‘fnk+mk—lplgl))
fori=n,
agcD(EPPO) + -+ +ay, cO(EFMTIPD) +aje(£mHP) + -
bl c(E P, = —c (gt )
for i Sy o L
aoc(l)(gnk+mk—lP,£1)) EE +amk_lc(l)(gnk-f-ka—ZP’El))
+apc(EMTMP) + e el _c(EMT2MTIP,) = — cW(gmer2m—1pm).
In the case of breakdown we recover the smrz. If ¢(£"«P,) = 0 this system is
singular and, as in the sMrz, P{?, cannot be obtained as a combination of P{

and P,. In this case it is mandatory to use the cMrz. However this case will
seldom occur and most of the time |c(¢"P,)| will not be equal to zero but

small.

Let us now consider the case n, —m, <0. We shall have n, +m, <2m,
equations for computing the 2m, unknowns. Thus we shall now take for ¢, a
polynomial of degree at most n, — 1

b(§)=ag+ - oy, £"
We have
C(l)(gip]gl_zl) = aoc(l)(giplgl)) 4+ - +amk_1c(l)(£i+m,(—1PI£1)) + C(l)(§i+mkP/£1))
+a(’)c(§i+1Pk) + .- +a,’,k_lc(§i+""Pk)

and the orthogonality conditions of P{?, give
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fori=0
o, CO(EPD) + -+ +a,, _,cO(£m PO +cO(£mpD)
o, _ic(£MP,) =0

.......................................................

alc(l)(fnkplgl)) + - +a, IC(I)(§nk+mk_2P/£l)) + C(l)(§”k+mk_1PI£1))
-
Fape(EMP) + - +ah _c(£2%71P) =0
fori=n,
aoc(l)(fnkplgl)) 4 e +am IC(I)(fnk+mk—1P;£l)) + c(l)(§Hk+'nkPI$l))
-
Faje(EmtIP) + o +al _c(£24P) = 0

n,—1

.......................................................

aOC(l)(f'lk+'n"_1P,£1)) 4+ .. +amk_lc(l)(fnk+2mk—2PI£1)) + C(l)(§"k+2m"—1P/£1))
+ape(EMTMP) + - ey (€2 mIP) = 0.

In the case of breakdown we have aj = -+ =a, _; and the smrz is recov-
ered. If the systems giving the coefficients are singular, it means that P{), does
not exist and the value of m, has to be increased until a regular polynomial
P{), has been obtained.

5. Programming the algorithms

Let us now analyze the coding of the algorithms. It was done such as to
minimize the storage and the number of vector operations (scalar products and
matrix by vector multiplications). Since the logical design of the algorithms are
quite similar, it is sufficient to give only two of them in a pseudo-code, namely
the Mrz and the BsmMrz. They are as follows

Algorithm Mrz (A4, b, x,, ¥)

1. Initializations:
z_,<0
ro<Ax,—b
Sg=2zy=1r,
ny< 0
2. For k=0,1, 2,... until convergence do:
If n, =n then
solution not obtained after n iterations.
stop.
end if
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§, < As
If(y, s;,)=0and n, =n — 1 then
incurable breakdown.
stop.
end if
m, <1
While (y, s, )=0and m, <n-—n; do:
m,<m,+1
Smk (_Asmk—l
end while
If m,=n—n, and (y, s,, ) =0 then
incurable breakdown.
stop.
end if
do « (y, rk)
by (y, s,,)
Bim,—1< dy/byg
For i=1,...,m, do:
y <Ay
b < (y,s,)
If i #m, then
d, <y, r)
compute 8
end if
If k#0 and i >m,_, then
pi=(y, z,_y)
end if
end for
compute x,,, =x, —w,(A)z,
compute r,,, =r, —Aw, (A)z,
If r,., =0 then
solution obtained.
stop.
end if
My < Ny T My
If & =0 then
C,«<0
Po< 0
else
Crr1 < bo/Po
end if
Fori=1,...,m, do:
If k=0 then

m;—i—1

277
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pi<0
end if
compute «,,
end for
8 Fori=0,...,m, do:
pi < b
end for
So < Ziw1 =l Az, = Cpyy2;
end for

—i

Algorithm BsmMrz (A, b, x,, y, €)

1. Initializations:
ro<Ax,—b
So=2Z9=Tyg
Ug=T,
ng< 0
2. For k=0,1, 2, ... until convergence do:
If n, =n then

solution not obtained after » iterations.

stop.
end if
d() « (,V, rk)
If dy, =0 then

impossible to use the BSMRz.

stop.
end if
s, < Asg
co < (y, sy)

If [cyl <& and ng=n—1 then
incurable near-breakdown.

stop.
end if
m, <1

3. While |c, _,|<eand m <n-n; do:
m,e<m;+1

y ATy

Emm1 < (v, )

dmk—l « (y’ rk)

S, < As
end while
If mi=n—-n, and c,, _, <e then

incurable near-breakdown.

my—1
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stop.
end if
y<ATy
yey
Con, < (¥, 51)
If n,#0then d, <(y, r,)
yey
If m, # 1 then
Fori=1,...,m,—1do:
yATy
ka+i‘—(fa 51)
Ifi <n, thend, ., < (9, r)
If i<n, then u; < Au,_,
end for
end if
Repeat
If m, <n, then
compute B;, (i=0,...,m, —1)
compute B, (j=0,...,m;, —2)
compute a;, (i=0,...,m, — 1)
compute «;, (j=0,...,m, —1)
else
compute B;, (i=0,...,m, —1)
compute B/, (j=0,...,n,— 1)
compute a;, (i=0,...,m,—1)
compute o, (j=0,...,n, — 1)
end if
If singular system then
m,<m,+1
If mi+n,=n+1 then
incurable near-breakdown.
stop.
end if
y<A'y
For [ =2 downto 1 do:
jATy
C2mk—i(_(ﬁ’ 5)
dzmk—i‘_(f’ )
end for
smk <_*'zl‘s‘m,‘—l
If m—1<n, then u, _,<Au
end if
until not singular system.

m,—2

279
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7. compute X, =x, —w(A)z, — v, (A)r,
compute r,,, =r, —Aw,(A)z, — Av, (A)r,
If .., =0 then
solution obtained.
stop.
end if
8. ngaengt+tmyg
So < Zie1 = Gl Az + 1, (A,
Ug < Tryy
end for

This coding needs the storage of m + 6 vectors where m = max, m,. Thus, in
the case where no breakdown occurs, m =1 and 7 auxiliary vectors are used
which is exactly the number of auxiliary vectors needed in the BioDpIR algorithm
and shows the optimality of our programming with respect to storage.

The subroutines have been programmed in FORTRAN 77. They can be ob-
tained by electronic mail via netlib. The command to be used is

netlib@research.att.com
and the name of the library is NUMERALGO. To obtain the program xxx ask
send xxx from numeralgo

They are the following

MRZ algorithm MRrz
BMRZ algorithm BMRZ
SMRZ algorithm smMrz
BSMRZ algorithm BsMRrz

They are given together with the corresponding main programs (same name
as the subroutine preceded by an m).

It is possible to compute differently the scalar products needed in the
algorithms. Indeed, since P{" has the degree n, exactly, the relations c(¢'P, ;)
=0 for i=n,,...,n, +m, —1 can be replaced by c(¢'P{PP,,,)=0 for i=
0,...,m, — 1. Thus, in the Mrz, we have

C{EPPros) =c(EPOP) = BocO(SPET) =+ = g7 RV,

But ¢(&'PM) =0 for i=0,...,m, — 2 since P{" is orthogonal to any polyno-
mial of degree at most n, + m, — 2 and we obtain

Bmk— lc(l)(gmk—lPlgl)Z) _ c(P,ﬁ”Pk)

.................................................

ﬁoc(l)(gmk—lplgl)z) P +ﬁmk-1C(l)(§2m"_2P/§1)2) =c(§’"“_1P,§l)Pk)-



C. Brezinski et al. / Lanczos type algorithms 281
Thus we need to compute c¢)(¢/P{Y) for i>m, —1 and ¢V(¢'POP,) for
i > 0. We have
cO(EPLT) = (3, A PO(APO(A)r,)
= (P{O(A)"y, A 'PO(A)r,).
If we set z, = P{(A)r, and £, = P{(A)*y = P{"(A*)y then
C(])(giplgl)z) - (ik’ Ai+lzk).
Similarly
(£ P0P,)

(v, APD(A)P(A)ry)
= (P“’(A) y, AP (A)r,)
= (£, A'r).

In the three-term recurrence relationship of the polynomials P{", the relations
c(EPM ) =0for i=n,, ...y +m, — 1 can be replaced by cW(EPMPN =0
for i=0,...,m,—1 since P{” has the exact degree n,. Moreover
cD(gm1PM ) =0 can be replaced by c(¢m-1~! P PY ) =0 since P{", is
exactly of degree n,_, and n,_, + m,_, =n,. Thus we have

cD(gm 1P ) = cD(gm-7 1P PO )=0
= ape(gm TP PP) + o a, cO(gm TP, PY)
+ cM(gme-rtm=1ph P) — €, eD(gm-17 1Y),
Thanks to the orthogonality of P{" we have
Ck+1c(1)(§m"_'_]P/£]—)21) = C(])(fm"_'+m"_]P/§]—)1Pl£1))
and
O (€mPLY,) = V(PP =0
= aoc(”(P,ﬁ”z) + o tay, c‘”(f"’k_'P,ﬁ”z)
+cM(gmPM) - C, ¢ M(PPPL,).
Finally, since c"(¢'P{PP(V.)=0 for i+n,_,<n,+m,— 2, that is for i<
m,_, +m, —2with m,_, > 1, we obtain
c(l)(f’”k 'P<1>2) C(I)(gmkpp):o
_cM(gmePMY) + M gme 1P = 0

aocm(§m"_]P,§”2) + o ta C(])(§2mk—2PI£1)2) +C(1)(§2mk—1PI£|)2) 0.

amk 1

m;—1

Thus, for obtaining C,, ;, we have to compute c(gm-1*m~ 1P P{D) But
g™ P is monic of degree n,_, +m,_, =n,, £ *™71PMD s monic of



282 C. Brezinski et al. / Lanczos type algorithms

degree n, +m, — 1 and P,El) is orthogonal to any polynomial of degree strictly
less than n, + m, — 1. It follows that

C(l)(é-mk_,+mk—1PI£1_)1P151)) - c(l)(gmk—lplgl)Z)
since P{", and P{" are monic and finally
Ck+1c(1)(§mk_l—lPI$1—)Zl) — c(l)(é«mk—lP,sl)Z).
Moreover, by the recurrence relationship of the polynomials P{"
- * o5 . _ . = -
Zrii=q(A) 2, = Co i Zi o = q(A*) 2, — Cp i 2,y
Computing the coefficients in that way, leads to a method similar to the
BIOoDIR method given by Gutknecht [8].
Obviously, for testing a breakdown, a strict equality to zero of a scalar
product can never be achieved because of the rounding errors. Thus, in our

programs, this condition is replaced by the absolute value of the scalar product
less than a given .

6. Numerical results

Let us consider the system [1]

0 0 O 0 —-11(1 —-n
1 0 0 0 0|2 1
0 1 0 0 Of13l=| 2
000 --- 1 ofin \n-1

With the subroutine Mrz we obtain the following results for n =12, x,=0,
y=(,...,D7Tand e =10""

k 1 | 2 [ 345 6 7 18 | 9 [10
n, |1 2316 |7 8 9 |10 |11 |12
lr Il | 150 | 183 | 37.5 | 41.1 | 41.1 | 945.3 | 948.8 | 37.7 | 183 | 7.0

For e = 1072, 1073, 107°, 107'°, 10~ "', we obtain

k 1 2 3 4 5 6 7 8
ny 1 2 3 4 9 10 11 12
I re i 150 | 183 | 375 | 582 | 582 | 37.6 | 182 32-107°

For ¢ = 10~ "%, we have

kK [1]27]3
ne |1 ]2 1]3 10 11 12
7 11{15.0]18.3|37.5|58.2|2.5- 10| 2.9- 10%| 9.8-10%| 8.1-10%| 2.8 10%

-
oo L
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For £ = 10~ 1, we obtain
k 1 2 3 4 5 6 7 8 9 |10 11
n, 1 2 3 4 6 7 8 9 (10 |11 12
llr, Il | 15.0]18.3|37.5(58.2|47.7|47.7|1.0-10'*|58.2|42.3|54.3| 8.4-10*
Finally for ¢ = 10~ 10~! and 10~ !¢ we find
k 1 2 3 4 5 6 7 8 9 (10 (11 |12
ny 1 2 3 4 5 6 7 8 9 (10 (11 |12
lr, 1l |15.0|18.3|37.5|58.2|63.6|73.6|73.6|63.6|582|37.6|18.2|57.4

Thus the results are quite sensitive to the value of ¢ which is not surprising
since this value controls the correct detection of the jump between the dimen-
sions 4 and 9. When this jump is correctly determined then the exact solution of
the system is obtained. Let us mentioned that the computation was performed
on a personal computer working with 16 decimal digits in double precision.

Let us consider again the same system and give the value of the norm of the
last residual obtained by the various algorithms. When no number is indicated,
it means that the solution has not been obtained (which is due to a division by
zero in the algorithm because the required supplementary assumption is not
satisfied). In the BsMRrz, if the solution was not obtained after n iterations, we
let them continue; in that case, the integer placed into parenthesis indicates the
number of iterations performed. The value of &, used in the BsMRrz corresponds
to the threshold for testing the pivots in Gaussian elimination for solving the
auxiliary systems. When a pivot has an absolute value less than &, the value of
m, is increased by 1.

We obtained the following results with x,=0and y =(1,...,1)7

n MRZ BMRZ SMRZ B8SMRZ BSMRZ BSMRZ
e=10"8 e=10""% e=10"% e=10""% e=10"" e=
g,=10"" g,=10"" g, =10""
4] 2741075 | 1.58-107'% | 1.46-107"° | 1.83-10" " 1.83-107% 1.83-107 1
51 720-107"% | 6.21-107" | 1.62-107"* | 1.65-10~ " 1.65-10~13 1.65-10~ 1
6| 1.33-107" | 539-107* | 2.63-10°" | 1.47-10° 7 1.47-10° 1 3.72-10°
7| 549-10~ 1 834-107'4(11) | 2.13-10~ % 3.45-107 1
8 | 6.53-10712 4.59-107'%(12) | 2.09-10"1? 1.96-107 12
9| 423-10°" 1.72-107'%(13) | 2.48-10"12 2231072
10 | 5.09-10~" 5.07-107'%(14) | 1.63-107'? 3.29-107'?
11 | 1.10-10° M 5.48-10713(24) | 3.86-107'2
12 | 3.33-10° " 1.68-107 12
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With y =r, we found
n MRZ BMRZ SMRZ BSMRZ BSMRZ BSMRZ
e=10"8 e=10"8 e=10"% e=10"8 =10"" e=1
£,=10"" g, =101 g, =101
4100
5| 1.06-101° | 339-10713 | 8.12-10° " | 4.27-107 13 2.56-107 13 2.56-10712
6| 232-10-% | 1.53-107' | 1.90-10"1° | 1.09-10"10 1.09-10710 222-10718
71 3.02:1071 | 2.62-10712 | 3.54-107'2 | 4.00-107 12 2.08-107 ' 2.08-10712
8 | 2.04-10° M 3.39-107'3(13) | 3.66-10713(12) | 1.21-10712
9 | 420-10°" 2.77-10712(14) 1.87-10~12
10 | 4.57-10°1° 4.72-10712(15) 1.74-107 12
11 | 5.76-10-1° 4.63-107'2(16) 5.88-10712
12 | 1.80-107° 2.11-10712(17) | 1.21-10710 3.73-10712

These results seem to show that the BMrz and the sMRz are more stable than
the Mrz. The BsMRz gives better results than the MRz but is quite sensitive to
the choice of € and ¢,. Thus more experiments are needed in order to fully
understand the numerical behaviour of these algorithms. A theoretical study of
their stability is also necessary and procedures (such as reorthogonalization and
preconditioning) for improving their numerical performances have to be tried.
Gaussian elimination in the ssmMrz has also to be replaced by a better method.

We intend to come back to these questions in the future.
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