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Abstract 

Brezinski, C. and M. Redivo Zaglia, Construction of extrapolation processes, Applied Numerical Mathematics 8 
(1991) 11-23. 

Let (S,,) be a sequence converging to S and such that Vn, S, - S = a,,g,,. The aim of this paper is to show how 
to construct extrapolation methods for accelerating the convergence of (S,,). Two cases are considered: (i) (a,) 
unknown and (g,,) known, and (ii) (a,,) and (g,) unknown. The first case covers the important particular cases 
S,, - S = 0( g,) or o( g,). The iterated application of the processes is also studied. All the results are illustrated 
by numerical examples. 

1. Introduction 

In numerical analysis and in applied mathematics one often has to deal with a sequence (S,,) 
of approximations of the exact solution S of the problem. This is, for example, the case when 
constructing approximations depending on a parameter h (usually the step size as in quadrature 
methods or in numerical methods for solving ODES and PDEs), in perturbation methods, in 
fixed point iterations (or more generally in iterative processes) or in the summation of convergent 
series. Quite often the convergence of the sequence (S,,) to S is slow and it needs to be 
accelerated. In many cases this can be done by using an extrapolation method. Various 
extrapolation methods are known [8], each of them being only able to accelerate the convergence 
of sequences whose error S, - S satisfies some particular assumptions since, as proved in [9], a 
universal convergence acceleration algorithm cannot exist. The most general extrapolation 
method actually known is the so-called E-algorithm [1,12] (see [6] for a survey) which was proved 
to be very effective if an asymptotic expansion of the error is known. However, in most of the 
practical cases sufficiently comprehensive information on the error is not available and the 
choice between the existing methods is a critical matter. 

Thus, in this paper, instead of using pre-existing extrapolation methods, we shall describe how 
to construct well-adapted extrapolation processes based on restricted information about the 
error. 
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Let (S,,) be a sequence converging to S such that for all n 

S, - S = a,g,, 

where (a,) and (g,) are sequences which are known or not and which may depend on (S,). Of 
course, since (S,,) converges to S, (a,, g,) tends to zero. In the sequel we shall assume that ( g,) 
converges to zero (an assumption which does not restrict the generality) but we shall make no 
assumption on the convergence of (a,,). Thus our formalism covers many interesting situations 
such as: 

l S,, - S = 0( g,), which corresponds to ) a,, ] < 44, V’n; 
l S,, - S = o( g,), which corresponds to lim, -t man = 0; 
0 S, - S = a,g,( n) + a,g,( n) + * - * , which corresponds to g, = gr( n) and a,, = a, + 

a,g,( n)/gl( n) + . . . = a, + E, with lim & =o; n+m n 
0 s, = co& + . *. +cnfn, which corresponds to g, = -c,+r or g, = -f,+i or g, = -c,+rfn+r. 

The first situation was treated for example in [19] where an extrapolation scheme similar to 
one of ours is used. 

We shall now explain how to extrapolate the sequence (S,) or, in other words, how to 
construct by extrapolation a new sequence (7”) converging to S faster than (S,) (that is 
lim .+,(T,-S)/(S,-S)=O) d un er some assumptions. Three cases can occur 

(i) (a,) and (8,) known, 
(ii) ( a,) unknown and ( g,) known (or the converse), 

(iii) (a,) and (g,) unknown. 

The first case is not interesting since S = S,, - angn for all n. Let us now study the two other 
cases. Of course the construction of suitable extrapolation processes will need the knowledge of 
some information about (a,) or about (a,) and (g,) and will depend on this information as we 
shall see below. 

2. Second case: (a,) unknown, (g,,) known 

We shall study in this case, three different constructions of an extrapolation process according 
to the information known on the sequence (a,). The more comprehensive the information, the 
more powerful the algorithm. Let us begin by the best case. 

Let P be a linear operator on sequences, that is transforming any sequence (u,) into 
(u,, = P( un)) and moreover such that V( un), Va and Vb 

P(au,+b)=aP(u,)+b forn=O,l,.... 

We assume that a linear operator P on sequences is known such that Vn, P( a,) = 0. We have 

(S, - S)/& = a, 

and thus, applying P to both sides, we have for all n 

PUS, - S)/gJ =P(aJ = 0. 

By the linearity property of P we have for all n 

S = %%/gJ/P(l/gJ. 
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This is the approach followed by Weniger [20] for constructing some extrapolation processes. 
If such an operator P is known it leads to the exact result S. The main practical problem is to 
find P which is possible in some particular cases (for example if a,, is a polynomial of degree k 
in n one can take P = Ak’i 9 ) but not in the general case. Thus we shall now make use of a less 
complete information. 

Let us assume that an approximation (b,) of (a,,) is known. We set 

T,=S,,-b,,g,, n=O,l,.... 

Obviously (T, - S)/( S,, - S) = 1 - b,,/a, and we have the following: 

Theorem 2.1. A necessary and sufficient condition that (T,) converges to S faster than (S,) is that 

lim b/a, = 1. n-+m n 

Thus, in this case it is also quite easy to accelerate the convergence of (S,) if a sequence (b,) 
satisfying the condition of Theorem 2.1 is known. If this is not the case, we shall try to build such 
a sequence (b,). For that purpose we consider the linear function f(x) = ax + b such that 

S,, =f(gJ and S,+i = f( g,+l) and we shall set T, = f (0). Thus we have extrapolated at zero and 

AS 
T,=S,-Gg,, n=O,l,..., 

which corresponds to the choice (b,, = ASJAg,,). Let us study this transformation which is 
identical to the first column of the E-algorithm with gl(n) = g, [1,12] or with the O-procedure 

VI. 
We have 

Aa 
l-,-s= -2 

Ag &&+I 
n 

and it follows that 

K-S I - a,+,& T,-S 1 - a&,+, _ 
s, - s I - gJg,+, 

and 
S n+l 

-S= 1 - &+i/& . 

Thus two cases must be considered according whether or not ( g,+i/g,) tends to one. We shall 
say that (g,) is a logarithmic sequence if lim, ~ mg,+ i/g, = 1. We shall say that (g,) is 
nonlogarithmic if 

3a < 1 <p, 3N, Vn > N, g,+Jg, @ [a, PI. 
This assumption is equivalent to g, = 0( Ag,). It must be noticed that the nonlogarithmic case 
includes the interesting particular case lim. -t ,g,+ i/g, = 0. This particular case will be treated 
separately in order to give the best possible results. All the proofs are almost obvious and will be 
omitted. 

Theorem 2.2. If (g,,) is nonlogarithmic and if 30 -C m < M, 3N such that Vn >, N, m G ( g,+i/g, 1 
< M then a necessary and sufficient condition that (T,) converges to S faster than (S,,) and (S,,,,) 
is that lim, _ooan+l/an = 1. 

Let us give some remarks on this result. 
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Remark 2.3. If 3a # 0 and finite such that (a,) converges to a then the condition of Theorem 2.2 
is satisfied. 

Remark 2.4. We also have 

Aan. Tn-S- 1 
s, - s a, 1 -U&+1 

and 

T, - S -aa,. 1 

S n+l -S = a,+, g,+Jg, -1 ’ 

Thus instead of giving a necessary and sufficient condition involving the limit of the ratio 
a,,+,/~,, it is possible to formulate a result with a condition on the limit of Au,. However both 
results are not equivalent since lim. ~ oou n+l/un = 1 does not imply that lim,,, Au, = 0 and 
vice versa. If lim, _ oou ,,+i/u,, = 1 and if 3M, 3N such that V’n >, N, ( a,, 1 < M then lim, ~ o. Au,, 
= 0. Conversely if lim, ~ m Aa,=O and if 3m, 3N such that Vn 2 N, rn< la, 1 then 
lim n-.coan+,/an = 1. W e can also use the fact that if lim, ~ m I a, 1 = co and if 3M, 3N such that 
Vn 3 N, 1 ha, ) G M then lim,,,a,+,/a, = 1. 

Let us now study the particular case mentioned above. We have: 

Theorem 2.5. If lim n_+mgn+i/gn = 0 and if 3M, 3N such that Vn B N, 1 a,+,/a, I GM or if 
EIrn, 3M, 3 N such that Vn 2 N, m G ( a,, I and 1 Aa, ) G M, then (T,) converges to S faster than 

(S,). 

Since the computation of T, involves S,,, it would be better to compare the convergence of 
(T,) and (S,,,). Of course a stronger assumption will be required. 

Theorem 2.6. If lim n ~ ,g,+ i/g,, = 0, then a necessary an sufficient condition that (T,) converges 

to S faster than (S,,,,) is that lim,,,a,+,/a, = 1. 

The conditions of Theorems 2.5 and 2.6 are satisfied if 3a f 0 such that lim,,,a, = a. As 
stated in Remark 2.4 this condition can be replaced by conditions on (Aa,). 

Let us now study the logarithmic case which is more difficult to treat. We have: 

Theorem 2.7. If (8,) is logarithmic, then a necessary and sufficient condition that (T,) converges to 
S faster than (S,) is that 

lim 
I- a,+&, 

1 - &/&+i = 
0. 

n-m 

A necessary and sufficient condition that (T,) converges to S faster than (S, + 1) is that 

l im l-a,/a,+, o 

n-m 1 - &+1/& = . 

As we can see the conditions involve both (a,) and (8,) and results similar to those of 
Remarks 2.3 and 2.4 cannot hold since in this case the denominator tends to zero and its study 
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cannot be separated from that of the numerator. However, if (T,) converges faster than (S,,) and 
if 3m, 3N such that Vn>N, m< ]a ,,+ ,/a, 1, then (T,) also converges faster than (S,, ,). 
Conversely if (T,) converges faster than (S,,, i) and if 3M, 3N such that Vn k N, 1 a,,+,/~, 1 G M, 

then (T,) also converges faster than (S,,). 
If the conditions of the preceding theorems are not satisfied, then (T, - S)/( S, - S) (or 

(T, - S)/(Sti+, - S)) does not tend to zero and two cases can occur: 

(i) 3c f 1 such that lim n+00(q - S)/(S, - S) = c. Th en it is possible to construct from (S,,) 
and (T,) a new sequence (t,) converging to S faster than (S,,) by using the so-called 
ACCES-algorithm [15] (see [8] for a subroutine). 

(ii) c = 1 or the ratio (T, - S)/( S,, - S) has no limit. Then a contractive sequence transforma- 
tion [5,7] can be used for improving the results. 

3. Third case: (a,) and (8,) unknown 

Replacing a,, by a,g, and g, by 1 for all n leads to the case treated in Section 2. However the 
assumptions of the theorems become too difficult to check and a separate treatment is more 
suitable. 

We shall follow the same plan as in the preceding section and first we shall assume that an 
operator P such that P( a,) = 0 is known. We again have S = P(S,/g,)/P(l/g,) but this 
relation cannot be used for computing S since (g,) is an unknown sequence. Thus we shall 
replace (g,) by an approximation (h,) and set for all n 

T, = P(S,/h. )/P(l/hJ. 

In the general case, that is without specifying the properties of P, nothing can be said about 
(T,) and we shall now follow the second approach described in Section 2. Let (b,,) be an 
approximation of (a,). We set 

T,=S,-b,,h,, n=O,l,.... 

Theorem 2.1 still holds for this transformation by replacing in its condition b,, by b,,h, and a, 
by angn. The condition is satisfied, for example, if 3a # 0 such that 

lim b,,/a, = lim g,/h, = a. 
n*m n-cc 

In practical cases this condition is often difficult to check since it involves both (b,) and (h,). As 
we shall see now we can replace it, in some cases, by one single (but more complicated) 
condition. 

Let us consider the case where (a,) is unknown and (g, = S,_ 1 - S). We have, for all n 

s= 
S, - QnSn-l 

l-a, . 

Let us replace in this expression (a,) by an approximation (b,,) and set 

T, = Sn - bnSn-1 
l_bn ) n=l,2 ).... 

Obviously we have: 
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Theorem 3.1. A necessary and sufficient condition that (T,) converges to S faster than (S,_,) is 
that lim n+m(an - I)/(& - I) = I. 

Overholt’s process [18] is based on this idea. The condition of Theorem 3.1 is satisfied if 
3a # 1 such that (a,) and (b,,) converge to a. It also holds if (a, - b,) converges to zero and if 
3c~ < 1 < p, V/ such that Vn > N, b, CE [a, p], a result proved by Lembarki [14]. By analogy with 
continued fractions, b, can be called a converging factor. 

Let us now consider the general case where (a,) and (g,) are arbitrary unknown sequences 
and again perform extrapolation at zero by a linear function f(x) = ax + b such that S, = f (h,) 

and Sn+l =f(h,+,) where (h,) is an approximation of (g,). We obtain 

as, 
T,=S,,- Ah,h,, n=0,1,... 

and we have 

Tn-S a n+1 ST _ 
S,-S i ‘- a, 

_.LgLL).(l__L-’ 
and 

a g, h,+1 

k gncl h, 
._.__l).(+-l)-‘. 

Thus we obtain the following generalizations of the results given in the preceding section. 

Theorem 3.2. If (h,) IS nonlogarithmic and if 3a # 0 and finite such that lim g n+m n /h, = a, then 
a necessary and sufficient condition that (T,) converges to S faster than (S,) and (S,,,) is that 
lim n+* a,+Ja, = 1. 

Of course in that case we have a more general result. 

Theorem 3.3. If (h,) is nonlogarithmic, then a necessary and sufficient condition that (T,) 

converges to S faster than (S,,) and (S,,, 1) is that 

lim +.!$Z!l!.._$L=l. 
n’m n n n+l 

In the case of logarithmic sequences we obviously have: 

Theorem 3.4. If (h,) is logarithmic, then a necessary and sufficient condition that (T,) converges to 
S faster than (S,) is that 

lim 
n-m i 

1 _ 5!_5 . J$k.i . hh 
an n 

*).(1-+J’=o. 

A necessary and sufficient condition that (T,) converges to S faster than (S,,, 1) is that 

lim A.!L. AL. 

( n-m a,+, 8 n+l 

+Ll~.(~_lj-l=o. 
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Of course, in these conditions a,,g,, and a,+lg,+, can be respectively replaced by S,, - S and 
s i7+1 - S. They can-also be replaced respectively by 

l im b%+* - SMSn - s) - 1 = 1 

n’m hn+dhn - 1 

and 

lim 6%~S)/(S,+,-9-l =I 
H’oo h,/h,+r - 1 

Such conditions are difficult to check in practice. 

4. Iteration of the procedures 

We shall now study the iterated application of the procedures described in the preceding 
sections. 

The first extrapolation method considered was the transformation given by 

T,=S,-b,,g,, n=O,l,.... 

Obviously we have 

T,-S=(a,-b,,)g,. 

If an approximation (c,) of (a, - b,,) is known, then we can consider the sequence (U,) given 

by 

U,= T,-c,,g,,, n=O, l,... 

and, by Theorem 2.1, a necessary and sufficient condition that (U,) converges to S faster than 
(T,) is that lim n_ooc,/(a, - b,) = 1. Th e k nowledge of such a sequence (c,) is only possible in a 
limited number of cases, and we shall now consider the iteration of the second transformation of 
Section 2 which corresponds to the choice b, = ASJAg,. In that case we have 

T,-S=aAgi, n=O, l,... 

with ai = -Aa, and g,!, =g”g,,+i /Ag,. Thus, in order to iterate the process, the sequences (a,/,) 
and (g,‘) must satisfy the same properties as the corresponding sequences (a,,) and (g,). If (g,) 
is nonlogarithmic, new and quite heavy assumptions have to be introduced for proving that (g,‘) 
is also nonlogarithmic in the general case. (The only simple case is when lim, ~ mgn+l/gn = a # 1. 
See Theorem 4.3 below.) This is the reason why we shall now concentrate on the logarithmic case 
and study the assumptions under which (g,‘) is also logarithmic. We obviously have: 

Theorem 4.1. If 

lim 8,+1= n+l 

n-cc & 

lim ‘ig ~ = 1, 
“*CC n 

then lim n -,g,‘+*/g,’ = I. 
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Remark 4.2. If (g,) is monotone and logarithmic, then we cannot have lim, ~ m Ag,+,/Ag, = a 
with a = 0, + cc, or a # 1. Thus either (Agn+JAgn) tends to 1 or has no limit. 

This result was first obtained by Kowalewski [13] by a much longer proof. She sets 

s i7+1 -s 

s, - s 
=1-X, with lim X,=0. 

n+cc 

If (S,) is monotone, then Vn, A,, > 0 and she proved that either (A,+,/h,) tends to 1 or has no 
limit which is equivalent to our result. 

The last result is: 

Theorem 4.3. If lim n-,mgn+l/gn = a # I, then lim,+,g,‘+,/g,‘= a. 

This result holds also if a = 0. 

5. Numerical examples 

We shall now give numerical examples illustrating all the procedures and theorems given in 
the preceding sections. In order to avoid tedious tables of numbers, the sequences obtained will 
be compared by using the kinematical notions introduced in [4]. Let (S,) be a sequence 
converging to S. We set, V’n, 

d,= -log,,lS,-Sl. 

The “speed” of the sequence (S,) is defined by (u,, = Ad,) and its “acceleration” by 
( y, = Au,,). Let (vi) and ( y,‘) be respectively the speed and the acceleration of (T,). It was proved 
in [4] that if 3k > 0 such that V’n >, N, VA >, u,, + k then (T,) converges faster than (S,). Since this 
condition is only sufficient, it was also proved that the same conclusion also holds if V’n >, N, 
vA>v, and y,‘>,y,,. 

The following figures represent d, as a function of n. We use dashed lines for (S,) and solid 
lines for (T,). 

Example 5.1. We consider the sequence S,, = n sin(l/n), n = 1, 2,. . . , which converges to S = 1. 
We have 

Sn-S=n’ 1 ( -5+ 1 -- 1 . . . 5!n2 1 . 

Thus, in order to illustrate Theorem 2.1, we shall take g, = ns2 and b, = - 3 + e, where (e,) 
is an arbitrary sequence converging to zero. For e, = l/n, e, = 0.9”, and e, = l/n2, we obtain 
Figs. l-3 respectively. 

6, - 

0' 
0 20 40 60 

Fig. 1. 

8 

6- 

Fig. 2. 
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__________ .,__ .._..-. ------ 

0’ 1 
0 20 40 60 80 

Fig. 3. 

Example 5.2. Let us consider the sequence 

s, = 5 $(i + 1)x’-‘, n = 1, 2,..., Ix] (1. 
i=l 

It can be proved [ll] that 

s, = 
(1 Yx, -xXn 

[ (1 :x,3 + 

n(n+3)+xn(n+l) 

I 2(1-x)’ ’ 

which shows that S = (1 - x)-~. We shall take g, = xn and thus (g,) is nonlogarithmic. 

’ [2+(1_x)n(n+3+x(n+l))] 
afl = 2(1 - x)’ 

and lim,,,a,+, /a, = 1, which shows, by Theorem 2.2, that (T,) converges faster than 
(S,,, i). For x = 0.5, we have Fig. 4. 

We have 

(S,,) and 

Example 5.3. We consider the sequence [ll] 

1.2 n ~2” 2 n+1 

‘= 3! + *.* + (n+2)! =‘- (n+2)!’ 

which converges to S = 1. We take g,, = l/( n + 2)! and a, = 2”+i. Thus lim n-tmgn+l/gn = 0 and 
a,+,/u, = 2 which sh ows by Theorem 2.5 and 2.6 that (T,) converges faster than (S,) but not 
faster than (S,,,,) and we obtain Fig. 5. 

Fig. 4. Fig. 5. 
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Fig. 7. 

Example 5.4. We have 

t t” t ntl 

et= 1+ n + * -. + n! + (n + l)! ef7” 

withO<T,<lif t>Oandlim,,,7,=0[10]. 
Setting 

t t” 
s,=1+g+ *.* +--& S = e’, 

gn = &+l,! and a, = -et%, 

we have 

lim Y = 
0 and lim a,,,=l_ 

n-M n n+oO a, 

Thus, by Theorems 2.5 and 2.6, (T,) converges faster than (S,) and (S,, + 1) and we obtain Fig. 6 
with t = 0.5. 

Example 5.5. Let us consider the integral 

s = j-;l /A dx = nIo(2) 

and compute approximate values by the Gauss-Chebyshev method: 

sn = i Aif 

i=o 

with 

f(x) = ezx, Ai = 7/(?I + l), 
2i + 1 

xi = COSm+. 

We know that 
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Fig. 8. 

If we take 

g, = 
4”+‘(2lA + 2)! ’ 

then lim n ~ ,g,+ i/g, = 0 and the condition of Theorem 2.5 is satisfied but nothing can be said 
about the condition of Theorem 2.6. The exact value of I,,(2) = J,(2i) is computed by the 
algorithm given in [16] which ensures a precision of 8.6. lo-l8 (see Fig. 7). 

Example 5.6. Let us consider the sequence [ll] 

3 n+2 
%= 1.2.4 + *.’ + n(n+l)(n+3) 

29 
=36 

--& 1+ 
[ 

4 
2(n:2) + 3(n+l)(n+2) ’ I 

which converges to 29/36. Taking g, = (n + 3)-r, it is easy to see that the conditions of Theorem 
2.7 are satisfied and that (T,) converges faster than (S,,, i). We obtain Fig. 8. 

Example 5.7. Let us take again S,, = n sin(l/n) and g, = nP2. We have 

1 -a,/‘~,+, 6 -2 
l-g,+/gn - !” ’ 

which shows, by Theorem 2.7, that (T,) converges faster than ($+i) and we obtain Fig. 9. 

Example 5.8. We consider the sequence (S,,) generated by 

S,-S=(S,_,-S).+sin(an+b/n), n=l,2,.... 

We have g, = S,_, - S and a,, = $in( an + b/n). Choosing b,, = :sin an. We obtain 

_b =cos2an+b/n . b 
an n 2 

sin2n. 

Thus lim, -t ,( a,, - b,) = 0. Moreover 3a < 1 < j3 such that Vn > N, b,, P [a, p] and the condi- 
tions of Theorem 3.1 are satisfied. 

With S, = 0, S = 1, a = 2 and b = 1 we get Fig. 10. 
Thus (T,) converges faster than (S,_,) but it cannot be proved that it converges faster than 

(S,,) which explains why these results do not exhibit a better improvement. 
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Fig. 10. 

Example 5.9. We consider the sequence (S,,) given by 

Sn=S+angn, n=O,l,... 

with 

g,=Y”+’ os+ ( 1 
i ln(n+2) ’ 

a, = 2 + (n + 1)-i, 1x1 cl. 

Choosing h, = A”+‘, we see that the conditions of Theorem 3.2 are satisfied and we obtain, with 
X = 0.95 and S = 1, Fig. 11. 

Example 5.10. We consider the sequence (S,,) given by 

Sn=S+a,g,, n=O, l,... 

with 

n+l x 
g,= n+l’ a, = 2 + (n + 1)-i, (A( cl. 

Choosing h, = A”+‘, we see that Theorem 3.3 holds. With X = 0.95 and S = 1 we get Fig. 12. 

Example 5.11. We consider the sequence (S,,) given by 

S,=S+a(n+b)-‘, n=O, l’...) bal. 

If h, = (n + 1))’ then the conditions of Theorem 3.4 are satisfied. With S = 1, a = 2 and 
b = 4 we obtain Fig. 13. 

6- 

Fig. 12. 

0’ I 
0 20 40 60 

Fig. 13. 
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Three of the transformations studied in the preceding sections are of the form 

s - 42S, 
T,= “f;_b ) n=O,l,.... 

n 

When (S,) is a strictly monotone sequence it is of interest to know conditions on the sequence 
(b,,) such that (T,) is also monotone either in the same or in the opposite direction as (S,). In 
particular if the monotonicity is reversed, then intervals containing S are obtained, Such 
conditions were given by Opfer [17]. Other methods for constructing intervals containing S can 
be found in [3]. 

References 

VI 
PI 
131 
141 
[51 
161 

[71 

VI 

[91 

WI 
[111 
PI 
P31 

1141 

1151 

WI 
1171 
[I81 
[I91 

PO1 

C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175-187. 
C. Brezinski, Some new convergence acceleration methods, Math. Comp. 39 (1982) 133-145. 

C. Brezinski, Error control in convergence acceleration processes, IMA J. Numer. Anal. 3 (1983) 65-80. 
C. Brezinski, Vitesse de convergence dune suite, Rev. Roumaine Math. Pures Appl. 30 (1985) 403-417. 

C. Brezinski, Contraction properties of sequence transformations, Numer. Murh. 54 (1989) 565-574. 
C. Brezinski, A survey of iterative extrapolation by the E-algorithm, Det Kong. Norske Vid. Selsk. Skr. 2 (1989) 

l-26. 
C. Brezinski and S. Paszkowski, Optimal linear contractive sequence transformations, J. Comput. Appl. Math. (to 
appear). 
C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice (North-Holland, Amsterdam, to 
appear). 
J.P. Delahaye and B. Germain-Bonne, Resultats negatifs en acceleration de la convergence, Numer. Math. 35 

(1980) 443-457. 
W. Gautschi, A note on the successive remainders of the exponential series, Elem. Math. 37 (1982) 46-49. 

I.S. Gradshteyn and M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980). 
T. Havie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204-213. 
C. Kowalewski, Acceleration de la convergence pour certaines suites a convergence logarithmique, in: M.G. de 
Bruin and H. Van Rossum, eds., Pad: Approximation and its Applications, Lecture Notes in Mathematics 888 
(Springer, Berlin, 1981) 263-272. 
A. Lembarki, Acceleration des fractions continues, These d’Etat, Universite des Sciences et Techniques de Lille 
Flandres-Artois (1987). 
A.M. Litovsky, Acceleration de la convergence des ensembles synchronisables, These, Universite des Sciences et 
Techniques de Lille Flandres-Artois (1989). 
S.L. Moshier, Methods and Programs for Mathematical Functions (Ellis Horwood, Chichester, 1989). 
G. Opfer, On monotonicity preserving linear extrapolation sequences, Computing 5 (1970) 259-266. 
K.J. Overholt, Extended Aitken acceleration, BIT 5 (1965) 122-132. 

B.A. Szabo, Estimation and control of error based on p convergence, in: I. Babushka et al., eds., Accuracy 
Estimates and Adaptative Refinements in Finite Elements Computation (Wiley, New York, 1986) 61-78. 
E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of 
divergent series, Comput. Phys. Rep. 10 (1989) 189-373. 


