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Abstract: We present a numerical simulation of parametric gain
properties in GaInP PhC dispersion engineered waveguides in which the
group velocity dispersion crosses zero twice and where the pump and the
signal are 100ps pulses. The simulations use the M-SSFT algorithm which
incorporates dispersive nonlinear coefficients and losses. We concentrate
on narrow band parametric gain which occurs for pump wavelengths in the
normal group velocity dispersion regime. The effects of structural details,
of pump wavelength and of losses are carefully analyzed.
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1. Introduction

The ability to engineer complex dispersion functions in photonic crystal (PhC) waveguides
[1, 2] enables to enhance nonlinear processes by enacting slow mode operation [3–6]. Such
enhancement is particularly large when the losses accompanying operation at large group index
are small [2, 7] as has been recently demonstrated in a chip scale parametric amplifier which
exhibits a gain of 11dB in a 1.5mm long GaInP PhC waveguide pumped with only 800mW [8].
Optical signal processing in integrated photonics circuits [9–11] has also been shown to be
enhanced in specially designed nano-scaled waveguides.

The nonlinear response of complex dispersion engineered structures cannot be accurately
modeled using simple schemes since both the nonlinear coefficients and the losses are highly
dispersive. The effective nonlinear coefficient for self and cross phase modulation as well as
four wave mixing (FWM) were calculated accurately in [12] where the dispersion of the Bloch
modes and the tensorial nature of the nonlinear interactions were accounted for. The effect
of loss dispersion was first considered in the context of Raman amplification in silicon PhC
waveguides [13]. Extending the model in [12], Roy et al. [14] included wavelength dependent
loss when modeling narrow band FWM (NB-FWM) in PhC waveguides with highly complex
dispersion functions. NB-FWM is a very significant process that has been used extensively in
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optical fibers [15–18] in the context of filtered amplification [16], slow and fast light propaga-
tion [17, 19, 20], fiber parameters characterization [21] and widely tunable parametric oscilla-
tors [22, 23].

The model presented in [14] considered parametric processes under CW pump conditions.
However, pulsed pumps are usually used in experiments and are naturally needed for switching
and sampling applications [10]. Modeling nonlinear interactions with pulsed pumps requires
spatially resolved simulation techniques, the most common being split step Fourier transform
(SSFT). However, conventional SSFT [24] does not account for the dispersion of the nonlinear
coefficient γ which in a complex waveguide may be very large. A new technique, termed M-
SSFT [25] which uses multiple (coupled) envelopes propagating simultaneously, each compris-
ing its own linear and nonlinear propagation parameters, is particularly suitable for calculating
NB-FWM in complex dispersion engineered PhC waveguides. We have employed M-SSFT
for calculating the parametric gain properties for a pulsed pump in a waveguide whose group
velocity dispersion (GVD) crosses zero twice [2] and is therefore ideal for NB-FWM. The cal-
culation includes wavelength dependent losses obtained from experiments and yields detailed
gain properties for different dispersion functions.

2. Characteristics of dispersion engineered photonic crystal waveguides

The calculations we present in the following sections are performed for dispersion engineered,
GaInP PhC waveguides described in [2,12]. A schematic diagram of the structure is presented in
Fig. 1(a). It is based on a triangular lattice structure of air holes with a periodic spacing (lattice
constant of the crystal) of a= 465nm. The key parameter controlling the propagation properties
is the position of the holes in the two innermost rows of the waveguide core which is set by
an asymmetric shift T . This small perturbation couples an odd mode to the fundamental even
mode, which is still confined in the waveguide, and thus modifies its propagation properties.
The effects on the guided mode solutions can be calculated yielding the dispersion relation
shown in Fig. 1(b) for five different values of the ratio T/a: 0.1, 0.125, 0.15, 0.175 and 0.2. The
calculations assume a waveguide length of 1.3mm.
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Fig. 1. (a) Top view schematics of the PhC waveguide structure. The asym-
metric shift T sets the position of the holes of two innermost rows. (b) Cal-
culated band diagrams for the corresponding structures with the appropriate
T/a values in the legend.
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The spectral dependence of the group index ng, the dispersion coefficient β2, the loss coeffi-
cient αdB (in units of dB

mm ) and the nonlinear parameter γSPM for self-phase modulation (SPM)
are presented in Fig. 2(a)-2(d), respectively. For each value of T , the group index of the guided
modes was computed [12] for a set of wavelengths with 1nm spacing. The entire expression
β1 (ω) = 1

c ng (ω) was then approximated using a Taylor expansion around λ0 = 1545nm (Fig.
2(a)). The propagation constant β (ω) was expressed using a set of coefficients {βm}M

m=1, with
M varying from 15 to 29. Large values of T yield complex ng functions which require large
values of M. The loss spectra (Fig. 2(c)) were based on measurements [14] after a fitting be-
tween losses and group index is performed; the short cut-off wavelength of the waveguide
modes was set where ng = 5 (in accordance with the light line of the PhC membrane). GaInP
has a wide band gap (1.9eV) and therefore suffers from no two photon absorption. The observed
losses at wavelengths where ng is large are due to the modal change. Moreover, effects of back-
scattering related to structural disorder have a significantly larger impact at those wavelengths
as has been investigated thoroughly in [26, 27].
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Fig. 2. Spectra of (a) Group index, (b) dispersion parameter, (c) losses and
(d) SPM nonlinear parameter, all for different T/a values.

As detailed in [2,12], the dispersion of the nonlinear properties is attributed to the variations
in the mode distribution functions throughout the spectrum. Thus the waveguides are charac-
terized by the modal dispersion of γSPM (Fig. 2(d)) and the other nonlinear parameters, which
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were evaluated using the formalism of [12]. The dispersion of the nonlinear index can be ne-
glected since the carrier wavelengths are far from the two photon absorption range of the GaInP

medium, and so its value was fixed at n2 = 10−5 μm2

W .
From Fig. 2(b) we see that, for all waveguides, there is more than one zero-dispersion wave-

length (ZDW). We define λ̃1 and λ̃2 (where λ̃1 < λ̃2) as the two ZDWs, and the wavelength
region between them is that of normal dispersion (β2 > 0), which is where the pump should be
placed in order to generate NB-FWM [17]. By increasing the asymmetric shift T , the distance
between the two ZDWs expands, and also, the group index ng, the nonlinear parameter γSPM

and the loss, all increase in a spectral region close to λ̃1. Far from λ̃1, however, these parameters
decrease as T increases. A design with large T values is thus useful, for example, for all optical
signal processing [9–11] where slow-light propagation and a large nonlinearity are desired. For
NB-FWM, as we will show next, an enhanced nonlinearity throughout the spectrum is crucial
to achieve larger gain.

3. Parametric gain mapping

We start by calculating the gain coefficient g for a set of pump and signal wavelengths using
the FWM model [28] with CW pump, signal and idler waves (denoted hereon with subscript p,
s and i respectively) and no losses. After incorporating dispersion of the nonlinear parameters,
the square value of g is given by:

g2 = (γFPp)
2 −

(
Δκ
2

)2

, (1)

where Pp is the pump power and

Δκ = Δk+2(γps + γpi − γp)Pp (2)

is the modified phase mismatch parameter which depends on the linear phase mismatch
Δk = βs +βi −2βp and on the nonlinear parameters originating from the various wave-mixing
contributions (using the same notation as in the appendix of [12]): γp is the pump’s SPM, γps

and γpi represent cross phase modulation (XPM) between the pump and the signal and idler
respectively, and γ2

F = γsppiγipps represents the FWM term between all three waves.
Figure 3(a) shows qualitatively the behavior of Re[g] for different pump and signal wave-

lengths, obtained with a pump power of 750mW . The figure is basically a two dimensional
map of the degree of phase matching conditions (when the expression in Eq. (1) is positive) for
different T/a ratios. The phase matching conditions are calculated here assuming no losses. A
more accurate calculation [14] considers the influence of losses on the phase matching. Since
the losses of the waveguide at hand are small (with the exception of T/a = 0.2 where they exceed
4dB in a narrow spectral region), and since the calculation aims only at defining the spectral
range where gain is available, Fig. 3(a) (based on Eq. (1)) suffices. The two waveguides with the
largest T/a exhibit discontinuous phase matching maps since the signal and idler wavelengths
needed to achieve phase matching fall outside the transmission band of the waveguide.

As stated before, larger values of T yield broader regions of normal dispersion, which is
where the pump is set for NB-FWM. As the pump shifts away from both ZDWs, the paramet-
ric gain occurs in a narrow range of signal wavelengths (narrowband FWM) far from the pump
wavelength. However, as the pump nears any one of the ZDWs, the phase matched signal wave-
lengths range widens (broadband FWM) and is closer to the pump wavelengths. This is better
seen with the normalized maps in Fig. 3(b), which are plotted against the normalized detunings

Δp =
λp − λ̃1

λ̃2 − λ̃1
, Δs =

λs −λp

λ̃2 − λ̃1
, (3)

#180687 - $15.00 USD Received 28 Nov 2012; revised 16 Jan 2013; accepted 16 Jan 2013; published 21 Feb 2013
(C) 2013 OSA 25 February 2013 / Vol. 21,  No. 4 / OPTICS EXPRESS  4999



1540 1550 1560 1570
1520

1530

1540

1550

1560

1570

1580

1590

1600

Pump Wavelength [nm]

S
ig

na
l W

av
el

en
gt

h 
[n

m
]

 

 

0.2

0.175

0.15

0.125

0.1

(a)

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Δ
p
 [ΔZDW]

Δ s [Δ
Z

D
W

]

 

 

0.2

0.175

0.15

0.125

0.1

(b)

Fig. 3. Phase matching maps of the parametric gain coefficient with (a) ab-
solute axis of the pump and signal wavelength and (b) normalized detunings
(where ΔZDW = λ̃2 − λ̃1), for a pump power of 750mW . The color scale
indicates the different T/a values.

such that the axes are scaled to units of ΔZDW = λ̃2 − λ̃1.
The normalized maps suggest that for a given Δp, increasing T narrows the gain region. That

said, we note that for all values of T/a, the normalized detuning Δs in which phase matching
occurs is roughly the same. This can be attributed to the similar and scalable shapes of the group
index curves (Fig. 2(a)) that determines the phase mismatch Δk. Though the real (quantitative)
values of the parametric gain are not shown in Fig. 3(a) and 3(b), these phase matching maps
will be used in section 4 since they offer a good assessment as to where one should position the
pump wave in order to generate NB-FWM for a given signal wavelength.

4. Parametric amplification with pulsed pump and signal

The results of section 3 considered CW pumps and signals and lossless waveguides. Experi-
mental characterization of nonlinear effects in PhC waveguides use always pulsed pumps and
often also pulsed signals. Moreover, practical waveguides have losses which are dispersive.
Calculation of the propagation characteristics of pump, signal and idler as well as of the para-
metric interaction under those conditions requires to use numerical computations. We use here
the M-SSFT algorithm [25] which is advantageous over the conventional SSFT technique [24]
which does not accommodate dispersive nonlinear coefficients. Moreover, since the waves are
widely detuned from each other (as is typical of NB-FWM), M-SSFT reduces also the memory
requirements and the computation time needed for the simulations. Dispersive losses are also
incorporated into the model so that a complete description of the propagation is obtained.

We use 100ps wide pulses (extracted from a measured optical pulse) for both pump and
signal with input peak powers of 750mW and 0.5mW , respectively. For each waveguide with a
specific T value, we sweep the pump wavelength between the two ZDWs and sweep the signal
wavelength according to the negative and positive detuning boundaries of the phase matching
map (depicted in Fig. 3(b)). Figure 4(a) shows the input (solid) and output (dash) pulse profiles
of a signal (for one of many possible pump wavelength and signal detuning) in a waveguide
with T/a = 0.1. We note that the signal experiences pulse compression which is caused by the
time dependent pump. As long as the GVD between the two pulses is not too large, they overlap
during most of their propagation in the waveguide. The peak of the signal pulse coincides with
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the pump peak where the gain is large, while the leading and trailing edges experience a lower
gain. This leads to the narrowing of the pulse profile.
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Fig. 4. Parametric gain of a pulsed signal with pulsed pump in a PhC waveg-
uide with T/a = 0.1. (a) The input (solid) and output (dash) pulses belong to
a signal at λs = 1538.57nm, with half-power width of 88.23ps and 45.74ps
respectively. The pulsed pump is positioned at λp = 1556.05nm. (b) Gain
spectra for different signal and pump wavelength.

Figure 4(b) shows gain spectra for several pump wavelengths in the same waveguide, and
similar curves are obtained for other T/a ratios. In order to better characterize the different PhC
waveguides we show, in Fig. 5(a) and 5(b) the parameters Gpeak and λpeak dependencies on
pump wavelength. Gpeak is the maximum obtainable gain value for a given pump wavelength;
this gain is obtained for a signal wavelength λpeak. The dependence of λpeak on λp presents
the same information as the phase matching maps in Fig. 3(a). Figures 5(a) and 5(b) can be
combined into a map of the peak gain versus peak signal wavelength which is shown in Fig.
6(a). That figure represents the regimes of optimum amplification. Additionally, we show in
Fig. 6(b) a map of the corresponding pulse width compression (defined as the ratio between the
half-power width of the output pulse to that of the input) of the amplified signal at the gain peak
wavelength.

As predicted in section 3, these engineered waveguides allow for NB-FWM for signals be-
tween 1528nm and 1586nm. Though the phase matching maps in Fig. 3(a) show that phase
matching exists for wavelengths longer than 1586nm, the losses are large in this range and can-
not be overcome by the gain. Matching the loss curves in Fig. 2(c), the peak gain for signal
wavelengths longer than 1586nm is below 0dB in the waveguides with T/a of 0.15, 0.175 and
0.2. This also affects the peak gain of NB-FWM of short wavelengths (negative signal detun-
ings) since the idler wave experiences those large losses. Hence, the losses cause narrowing of
the wavelength range in which NB-FWM can be obtained.

As was noted in [14], the restricted normal dispersion regime in this waveguide limits the
range of pump wavelengths since increasing the pump detuning from the short ZDW results in
a reduced detuning from the second ZDW. Furthermore, for waveguides with large T values,
the cut-off frequencies of the mode sets the boundaries of the signal detuning from the pump,
and extreme losses for long wavelengths further diminish the gain. This is not the case for NB-
FWM in optical fibers [17] where by increasing the detuning of the pump from the (single)
ZDW, the signal detuning increases continuously to very large values.
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Fig. 5. Dependence on pump wavelength of (a) peak gain of NB-FWM and
(b) the signal wavelength at which the peak gain is obtained. Different T/a

values are shown, calculated in the presence of losses. Solid (dash) curves
describe the peak gain and peak wavelength for negative (positive) detuning
of the signal relative to the pump.
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Fig. 6. Maps of (a) peak gain in NB-FWM versus peak signal wavelength and
(b) pulse compression ratio versus peak signal wavelength in the presence of
losses, for different T/a values.

The figures we presented suggest that choosing a waveguide with a large T/a ratio, from 0.1
to 0.15, results in a wide range of possible signal detunings due to the large normal dispersion
region, yet with lower attainable gain. In order to evaluate the influence of T on the nonlinear
coefficient and the gain, we use an analytical expression for the parametric gain in a lossless
medium of length L, pumped at Pp

G = 1+
(γFPp)

2

g
sinh(gL) . (4)

The simple lossless case is sufficient here and yields the same conclusions as the comprehen-
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Fig. 7. Spectra of the FWM nonlinear parameter γF as a function of pump
wavelength (a) for an absolute wavelength scale and (b) for normalized de-
tuning relative to the short ZDW (Δs). The different curves are given for dif-
ferent T/a values. The pump wavelength changes in the normal dispersion
region and the signal wavelength is set to the mid-point detuning between
the gain-region boundaries.
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Fig. 8. Net gain spectra as a function of normalized signal-pump detuning
Δs, for different loss values. The loss was increased by fixed factors f where
the curve for f = 0 describes the lowest loss. f = 0 is actually the case of
measured losses spectrum. The spectra are calculated for a pump wavelength
λp = 1546.37nm and T/a = 0.1. The net gain is the ratio between the output
and input signal peak power divided by the linear loss factor.

sive analysis given in [14]. We show the values of γF as a function of the pump wavelength
for an absolute wavelength scale (Fig. 7(a)) and also for a normalized detuning relative to the
short ZDW (Fig. 7(b)). For each pump wavelength in the normal dispersion region, the signal is
positioned in the middle of the gain region boundaries depicted in Fig. 3(a). As T increases, the
values of these parameters reduce and thus the gain is lower. Though by increasing T we gener-
ate a slow-light region in the spectrum where ng and γSPM are large, the nonlinear interactions
between multiple wavelengths in the spectrum are weakened for large T values. As T increases
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further, the nonlinear interactions for the pump wavelengths close to the long ZDW are also
enhanced, yet the large losses suppress the signal gain. On the other hand, due to the stronger
FWM interaction in waveguides with large T values, the pulse peak experiences a higher gain
than its tails and so it is possible to achieve better pulse compression of the signal, down to 50%
for positive gain (and down to 40% when the gain is less than unity).

A key issue in dispersion engineered PhC waveguides is maintaining low losses at wave-
lengths where the group index is large. The examplary family of waveguides analyzed here
offers such properties. However, losses may increase due to design inaccuracies and various
technological limitations. It is important therefore to examine the sensitivity of NB-FWM to
propagation losses. To that end, we calculate the net gain (the output-to-input power ratio di-
vided by the linear propagation losses) spectra for one case, T/a = 0.1, where the losses are
increased by a fixed factor f (uniformly at all wavelengths) compared with those shown in Fig.
2(c). The results are shown in Fig. 8 for changing f between 10% to 150% (in the dB scale)
such that α̃dB = αdB (1+ f ). A loss increase reduces the net gain but the change is moderate
and the system is found to be rather insensitive to reasonable changes in the loss. Thus the
overall transmission of the signal is mainly impaired by linear losses.

5. Conclusion

To conclude, we have presented detailed numerical simulations of parametric amplification in
a lossy dispersion engineered PhC waveguide with two ZDWs which are fed by pulsed pumps.
The simulation uses the M-SSFT algorithm which is ideal for calculating NB-FWM in such
complex waveguides since it allows for the incorporation of dispersive nonlinear propagation
parameters as well as losses. Moreover, it improves significantly the computation efficiency for
the widely detuned propagating signals typical of NB-FWM.

We explored the effect of changing the asymmetric shift parameter T in the waveguide design
(presented in [12]) on the NB-FWM characteristics. We presented phase matching maps which
describe the regions of broad and narrow band FWM, and showed that the normalized gain
characteristics are relatively insensitive to the detuning between the two ZDWs (ΔZDW ). By
increasing T the maximum gain is reduced since the mixing efficiency between multiple modes
with different wavelengths is reduced. The normal dispersion region between the two ZDWs
widens as T increases which enables larger signal-pump detunings where gain is available,
yet with very large T values the signal detunings pass the cut-off of the transmittance band.
Increased losses at longer wavelengths further suppress gain and reduces the overall signal
detunings span.

Pulse compression of the signal is observed in simulations due to the time-dependent pump
envelope, and in waveguides with large asymmetric shift T ,it is possible to reach pulse com-
pression of up to 50%. Furthermore, the sensitivity of the NB-FWM system to changes in losses
was examined. Though the losses may increase due to fabrication inaccuracies, the effect on
the net gain proves to be small even for addition of 150% of the expected losses.
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