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Abstract 

The knowledge of the time course of endogenous glucose production (EGP) after a glucose perturbation is crucially 
important for understanding the glucose regulation system in both healthy and disease (e.g. diabetes) states. EGP is 
not directly accessible, and thus an indirect measurement approach is required. The estimation of EGP during an 
intravenous glucose tolerance test (IVGTT) can be posed as an input estimation problem solvable as a Fredholm 
integral equation of the first kind (A. Caumo and C. Cobelli, Am. J. Physiol., 264 (1993) E829-E841). The time-varying 
model of the kernel of the glucose system was identified from a concomitant tracer experiment, and EGP was 
reconstructed by employing the Phillips-Tikhonov regularization (deconvolution) algorithm. However, the proposed 
deconvolution approach left some issues open, e.g. how to choose the amount of regularization and how to deal with 
nonuniform/infrequent sampling. Here, a solution tcl these problems is provided by resorting to a new deconvolution 
algorithm. Thanks to the stochastic embedding intcl which the new deconvolution method is stated, the amount of 
regularization is determined in a statistically sound manner. In addition, in face of infrequent sampling. a time 
continuous profile of EGP is obtained. The method is shown to work reliably for reconstructing EGP in different 
IVGTT experimental protocols, both in normal and disease states, 0 1997 Elsevier Science Ireland Ltd. All rights 
reserved 
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1. Introduction 

The assessment of endogenous glucose produc- 
tion (EGP) in man after a glucose perturbation, 

e.g. during a clinical test like the intravenous 
glucose tolerance test (IVGTT), is of crucial im- 
portance to understand the glucose regulation 
system in both healthy and disease, e.g. diabetes, 
states. Unfortunately, EGP is not directly accessi- 
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ble and thus an indirect measurement approach is 
required. A method to measure EGP during an 

0169-2607/97/$17.00 Q 1997 Elsevier Science Ireland Ltd. All rights reserved 

PII SO1 69.2607(96)0 1784-l 



148 P. Vi&i et al. / Computer Methods and Program.? in Biomedicine 52 (1997) 147-156 

IVGTT has been recently proposed in [l]. By 
viewing E;GP as the input of the glucose system 
and the plasma glucose concentration due to liver 
production (endogenous glucose) as the output, 
the measurement of EGP has been posed as an 
input estimation problem: a tracer was adminis- 
tered concomitantly with the IVGTT glucose dose 
to identif’j the model of the kernel of the glucose 
system, and EGP has been estimated by solving a 
Fredholm integral equation of the first kind (de- 
convolution, for sake of simplicity). In [l] the 
deconvolution problem was solved by resorting to 
the classic Phillips-Tikhonov regularization 
method /:2,3], but some difficulties remained, 
namely the definition of a theoretically based 
criterion for the choice of the regularization 
parameter and the treatment of the infrequent 
sampling rate employed in the terminal portion of 
the IVGTT. 

In this paper, we apply a recently developed, 
stochastic non-parametric deconvolution ap- 
proach [4-71 to the estimation of EGP during the 
IVGTT. This will allow us to choose the regu- 
larization parameter by means of a new statisti- 
cally based criterion and to provide a 
time-continuous estimate of EGP, in spite of in- 
frequent sampling. The new method is shown to 
reliably reconstruct EGP in different IVGTT ex- 
perimental protocols, both in normal and disease 
states. 

2. Endogcnous glucose production: an input 
estimation problem 

2.1. The problem 

An IVGTT consists in the intravenous adminis- 
tration of an impulse glucose dose. After the 
injection, glucose in plasma rises from its basal 
value to 2. peak and then returns to baseline. This 
perturbation affects EGP and the goal here is to 
reconstruct its time course. The relation (Fig. 1) 
between EGP and endogenous plasma glucose 
concentration during an IVGTT (assume the glu- 
cose impulse dose is given at time zero) can be 
described by the integral equation: 

s f G,(t) = h(t: z)EGP(z) dz + Gb (1) 
0 

where EGP (mg/kg/min) can be vi.ewed as the 
system input, G,, (mg/dl) is baseline plasma glu- 
cose concentration, G, is the endogenous glucose 
concentration, i.e. the component of plasma glu- 
cose concentration due to EGP only, and 11 (kg/ 
dl) is the time-varying kernel of the glucose 
system. 

If we split EGP(t) in two components, EGPb, 
i.e. basal EGP, and AEGP(t), i.e. the deviation of 
EGP from EGP,, the integral in Eq. (1) can be 
split as: 

f f 
G,(t) = 

s 
h(t, z)EGP, dr + 

s 
h(t, z)AEGP(z) dz 

0 0 

+ G (2) 

Rearranging Eq. (2), we can write 

’ G,(t) - 
[S 

h(t, z)EGP, dz + Gb 
0 1 

= 
s 

’ h(t, z)AEGP(z) dr (3) 
0 

The term between square brackets is the response 
of the glucose system in basal initial conditions to 
EGP,. 

Finally, having defined: 

AC;,(t) = G,(t) - 
u 

t 
h(t, z)EGP, dz -t Gb 

1 
(4) 

0 

one has: 

s 

t 
AL;,(t) = h(t, z)AEGP(z) dz (5) 

0 

Considering AEGP unknown, and AG, and h 
known, Eq. (5) is a Fredholm integral equation of 
the first kind. Therefore, the EGP estimation 
problem can be solved as follows [l]. Assuming h 
is available, AG, can be calculated from the data. 

ENDOGENOUS 
GLUCOSE 

PRODUCTION 
-- 

CONCENTRATION 

Fig. 1. The endogenous glucose production (EGP) input esti- 
malion problem. 
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Fig. 2. Giucose (top panel), tracer glucose (middle panel) and 
insu%in (bottom panel) concentrations in plasma during an 
IVGTT labeled with [6,6-“HJglucose in a representative nor- 
mal subject. 

Then the Fredholm integral equation of the first 
kind Eq. (5) can be solved for AEGP. Finally, 
EGP can be calculated simply by adding EGP, to 
AEGP. As anticipated in Section 1, for sake of 
simplicity we refer to the problem Eq. (5) as a 
‘deconvolution’ problem, even if the kernel h(t, z) 
is time-varying. 

2.2. T/it? data 

A typical set of data (glucose concentration, 
tracer glucose and insulin concentration in 
plasma) obtained during an IVGTT labeled with a 
stable isotope tracer is shown in Fig. 2. From the 
tracer data, the kernel of the glucose system h is 
identified, using the time-varying two compart- 
ment model described in [l]. From glucose and 
tracer glucose concentrations, G, can be calculated 
at each time point as shown in [8,9]. G, measure- 

ment error can be found by error propagation 
from glucose and tracer glucose measurement er- 
rors. Finally, the term [& /z(t, z)EGP, dz t G,,] can 
be evaluated by using the calculated EGP, (from 
12) and the measured Gb. In Fig. 3, we show the 
time courses of G, and AG, in the representative 
‘subject of Fig. 2. Note that AG, ca.n be positive or 
negative, depending whether G, during the test is 
below or above the response of the glucose system 
in basal initial conditions to EGP,. 

3. Parametric versus nonparametric approaches 

It is well known that an input estimation prob- 
lem like Eq. (5) can be severely ill-conditioned, i.e. 
,a small percentage error in the output can be 
amplified into a much larger percentage error in 
the estimated input, which can thus exhibit wide, 
spurious and unrealistic oscillations. The ill-condi- 
tioning of the deconvolution problem is a classic 
topic in the mathematics, physics and engineering 
literature. To face it, a widely used approach, 
parametric deconvolution, assumes the analytical 
expression of the input to be k.nown except for a 
small number of parameters, so that the deconvo- 
lution problem becomes a parameter estimation 
problem. In [lo], for example, the unknown input 
is assumed to be described by polynomiais. Other 

PLASMA GLUCOSE CONCENTRATION 

100 

Fig. 3. Time courses of G,(t) and AC,(l) (Eq. (4)) for the 
subject of Fig. 2. 
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cases are discussed in [l 1 - 131. In parametric de- 
convolution; the ill-conditioning is circumvented 
by the a priori constraint on the input functional 
form, which guarantees the regularity of the 
profile. However, the adoption of a specific func- 
tional form for the input is a rather heavy as- 
sumption, and particularly so in EGP estimation. 
In addition, one has to deal with issues such as 
the choice of the model order, e.g. the order of the 
polynomials in [lo], and the problem of local 
minima in parameter estimation. Finally, some 
parametric methods, e.g. [12], require a time-in- 
variant kernel, e.g. an impulse response described 
by a sum of exponentials. 

A nonparametric approach is therefore advis- 
able to estimate EGP. Nonparametric deconvolu- 
tion has been recently faced by resorting to 
regression splines, i.e. the unknown input is a 
spline whose parameters must be fitted against the 
output data [14,15]. Splines are very flexible and 
can be constrained to account for a priori knowl- 
edge of the input (e.g. nonnegativity, monotonic- 
ity). However, as illustrated in [15], splines require 
to cope with delicate issues, such as the choice of 
the number and location of the splines knots 
which determine the input smoothing degree and 
the behav!our of the estimate in presence of fast 
transients. The most widely used nonparametric 
deconvolution approach is based on the works of 
Phillips [2] and Tikhonov [3] and faces ill-condi- 
tioning by applying regularization techniques 
based on the known smoothness of the input. The 
only assumption required by this method is that 
the unknown input can be described by a staircase 
function, ;.e. it is constant during each sampling 
interval. In place of regularization, some other 
nonparametric methods exploit truncated singular 
value decomposition techniques, e.g. [16], or the 
maximum entropy principle, e.g. [17,18]. 

In [1], the nonparametric approach of Phillips 
and Tikhonov was used, but two major questions 
were left open. First, the discrepancy regulariza- 
lion criterion [19] was considered for choosing the 
amount of regularization, but it was seen to lead 
to poor results in some subjects (this somewhat 
agrees with the fact, elsewhere reported [4,20], 
that the discrepancy criterion does not have a firm 
statistical basis and in fact is at risk of 

oversmoothing). On the other hand, other criteria 
available in the literature, not considered in [l], 
e.g. the generalized cross-validation [21] or the 
L-curve [16], do not exploit the available knowl- 
edge on the data measurement error. In conclu- 
sion, some new regularization criterion is 
desirable. Second, the staircase approximation of 
the EGP profile, in conjunction with the fact that 
the IVGTT sampling is nonuniform/infrequent, 
led to an EGP estimate which was constant for as 
long as 30 min. An improved picture of the EGP 
time course would be of help for physiological 
inferences. 

In the following section, we will revisit the 
problem faced in [I] of estimating EGP during an 
IVGTT by resorting to a recently developed de- 
convolution algorithm which, for certain aspects, 
can be viewed as the reinterpretation of the 
Phillips-Tikhonov regularization method in a 
stochastic context. 

4. Stochastic deconvolution 

4.1. Coping with infrequent 
grid 

Let us address first the problems arising from 
infrequent sampling. Consider Eq. (5); to simplify 
further the notation, we rewrite it as: 

c(t) = 
s 

f 
h(t, z)u(z) dz (6) 

0 

where u(t) = AEGP(t) and c(t) = AG,(t). 
The first step to take is to conveniently dis- 

cretize Eq. (6). Let us decouple [5,7] the time grid 
used to discretize the unknown input u(t), R, = 
[Ti. T,, . . , Tk,. . ., TN”] from the sampling grid, 
Q, = [t,, t, ,..., t,,.. ., tNS], which is non-uniform 
a& infrequently spaced. The grid Q, can be much 
finer (Nv 2 Ns) than R,. It is convenient to as- 
sume 0, such that as G Qv, with C!,, uniformly 
spaced. Apart from this, Q, is arbitrary and has 
no experimental significance. For this reason, it 
has been termed virtual grid [5,7]. Here we will 
adopt Q, = [l, 2, 3,. ., tNs], i.e. the time step is 
equal to one time unit. 
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Now, assume u(t) constant during each time 
interval in the virtual grid. It follows: 

C(T,<) = i ui i’” Iz(T,, z) dz, k: T,$& (7) 
r-1 Jr,-, 

where 14, is the value of u(t) between T,+, and T, 
(T, = 0). In matrix notation, we can write: 

c = H$! (8) 

Hv is a lower triangular square matrix (size Nv) 
whose nonzero entries are: 

q H,(i,j) = 
j 

h(T,, z) dz, i <j (9) 
r,- I 

Assuming an additive measurement error e, the 
measurements are described by: 

y= Hufe (10) 

where i2 is a vector of dimension Nv, H is a 
Ns x Nv matrix (obtainable from the square ma- 
trix H,, by deleting the rows which do not corre- 
spond to any of the Ns samples), y is the sample 
vector (size Ns) and e is the vector of the measure- 
ment errors (size Ns), supposed to be uncorrelated 
and zero mean. 

Note that the virtual grid formulation of the 
problem brings a number of unknowns (Nv) 
which exceeds by far the number of measurements 
(Ns): Ai,>> Ns. However, by virtue of the prior 
information available on u, we will see that the 
estimation problem still has a unique solution. 

4.2. Co,oing with regularization: deconvolution n,r 
a lineal minimum variance estimztion problem 

Let us consider the model (10) and state it in a 
stochastic embedding, i.e. all the vectors involved 
are random. If the a priori second order statistical 
description of u and e (assumed to be uncorre- 
lated) is known, the input estimation problem can 
be stated as a linear minimum variance estimation 
(LMVEJ) problem. 

While the statistical description of e (E[e] = 0, 
Cov[e] = B) is known, the statistical description of 
zt needs to be assumed. However, physiological. a 
priori knowledge tells us that EGP during an 
IVGTT should not be subject to large and abrupt 
swings, but it should be characterized by an over- 

all smooth and regular profile. Therefore, one can 
model u(t) on the virtual grid by the simple 
random-walk process [22]: 

&'k+ 1 = Ilk + w/<, k=O, l,..., NT,- 1 (11) 

where wk is a white-noise process with zero mean, 
variance /?’ and u0 = 0. As R’, i.e. the variance of 
Au(k) = u(k + 1) - u(k) = w(k), increases, the 
variability of u(t) increases as well. However, i,’ is 
unknown and must be estimated a posteriori to- 
gether with the input profile. 

The covariance matrix of u is given by 

Cov[u] = n2(F=F) - I (12) 

where F is the square Toeplitz matrix (size Nv) 
whose first column is [l, - 1,0 ,..., OIT [22]. Note 
that Cov[tr] is positive definite. 

Under the above assumptions, the linear mean 
square estimation of u given y is found as the 
solution 6 of the optimization problem: 

min,[(y - Hu)‘B-‘Cy - Hu) + yurFTFzc] (13) 

where y = l/AZ. The closed form solution of Eq. 
(13) is: 

zi=(HTB~‘H+yFTF)~‘HTB-‘y 

Of the two terms of Eq. (13): 

(14) 

-- the term (v - Hu)‘B- ‘(.y - gjl,) takes into ac- 
count the distance between model-recon- 
structed data and actual measurements, 

-- the term uTFTFu accounts for the adherence of 
the estimated input to the stochastic model 
(11). 
The unknown parameter y plays a role 

analogous to that of the regularization parameter 
in the classical Phihips-Tikhonov approach. Large 
values of y will determine very sm.ooth solutions, 
small values of y will lead to ill-conditioned esti- 
mates. For instance, in Fig. 4 (upper panel) we 
show the profile of EGP in a normal subject 
without any regularization (;, = 0). To measure 
how much the reconstructed profile of EGP is 
consistent with the original data, one can perform 
reconvolution, that is evaluate Eel. (5) using the 
reconstructed AEGP profile and compare the data 
so obtained to the original AG, data. While the 
adherence to the data is fully pursued (bottom 
panel), the estimated input is characterized by 
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ENDOGENOUS GLUCOSE PRODUCTION 

CT? I 

Fig. 4. Estimation of EGP from the data of Fig. 3. EGP 
protile (top ->anel) and reconvolution fit vs. AG,(t) data (bot- 
tom panel) are shown. No regularization is used (;J z 0). 

large swings, which do not allow us to give any 
physiological meaning to the estimated profile. 
Therefore.. )’ must be increased. 

Thanks to the stochastic formulation of the 
problem, a new criterion can be used to choose 
the regularization parameter 7: i.e. tune y until: 

S$qy) = cio 7 (15) 

where SSU is the sum of the squared (weighted) 
eslimates, i.e. SSU = ziFTFt& and: 

d”/) 
= trace[B-‘:*H(HTB-‘H+ yFTF)-‘HTBp’/2] 

(16) 

w]lere B - 1 = B ~ li2B ~ 112 

This criterion has been shown to satisfy in 
general a consistency property of the linear mini- 
mum variance estimate [7]; moreover, if the in- 
volved random vectors are all gaussians, it also 
satisfies the condition of maximum likelihood of 
the observations vector JJ with respect to /i2 161. 
The function 40’) varies with continuity from 0 
(for y + 3~) to the number of measurements Ns 
(for y = 0) and it can be interpreted as the ‘degree 
of freedom’ of the regularized estimator associ- 
ated with y [4,6,7]. 

4.3. Numerical aspects 

Mote that, by considering flv to be finer and 
finer (the virtual grid is arbitrary), the prior one 
made on the discrete-time sequence {u,J will be 
closer and closer to that on the timecontinuous 
input u(t) and, accordingly, the vector u will 
determine a piecewise profile closer and closer to 
a time-continuous function. However, since in our 
case matrices Hv and H are large (an evenly 
spaced, 1 min virtual grid requires Nv = TN,, 
usually 240 for the IVGTT), the use of efficient 
numerical algorithms is mandatory. We used a 
recently proposed singular value decomposition 
(SVD) strategy [4], which dramatically speeds up 
the procedure for determining the solution for 
each different trial value of y, until the regulariza- 
tion criterion is satisfied. Briefly, by the SVD 
strategy one first diagonalizes the set of linear 
equations behind Eq. (13) in O(i$) operations. 
Then, only O(Ns) scalar operations a.re needed to 
compute the solution for each trial value of y. 

It is worth noting that, due to the time variance 
of the kernel h(t, z), other efficient numerical 
tools proposed in the literature and based on 
Fourier transform methods, e.g. those of [22,23], 
can not be adopted (Hv has not a Toeplitz struc- 
turie). 

5. IEndogenous glucose production case studies 

We report here EGP profiles obtained in differ- 
ent IVGTT experimental protocols, both in nor- 
mal and pathological conditions. In all the 
foll.owing examples, the glucose dose was labeled 
with the stable isotope [6,6-2H,]glucose. 

5.1. An IVGTT in a normal subject 

We reconstructed EGP in a normal subject (the 
same of Fig. 2). Glucose, tracer glucose and in- 
sulin concentrations were sampled in plasma at 30 
tim.es: 0, 2, 3, 4, 5, 8, 10, 12, 14, 16, 18, 20, 24, 28, 
32, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 140, 
160, 180, 210 and 240 min. Endogenous glucose 
concentration at each sampling time was directly 
computed from glucose and tracer glucose con- 
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centration in plasma [9,24]. The measurement er- 
ror of endogenous glucose concentration was as- 
sumed to be independent, zero mean and with a 
variance at each time point calculated by error 
propagation from glucose and tracer glucose mea- 
surement errors [24]. In this subject (and this is 
also a 1:ypical range), the coefficient of variation 
was between 4.4-4% from 50 to 92 mg/dl. This 
completely defines the covariance matrix of the 
measurement error B in Eq. (13). The matrix Hv 
was calculated from Eq. (9) on a 1 min, evenly 
spaced virtual grid. AEGP was finally calculated 
from Eq. (13), tuning the parameter y according 
to the criterion (15). EGP is shown in Fig. 5 (top 
panel), The value of y was 31.4, the value of q in 
Eq. (14) was 8.1. The recovered EGP time course 
is virtually continuous and is characterized by a 
rather fast inhibition, a consistent rebound over 

ENDDGENOVS GLUCOSE PRcJD”CTlDN 

“I--’ 

Fig. 5. Estimation of EGP from the data of Fig. 3 with the 
amount of regularization chosen according to the criterion 
(15). EGP profile (top panel), reconvolution fit vs. AG,(t) data 
(middle panel) and weighted residuals (bottom panel) are 
shown. EGP, (dashed line in the top panel) was 2.56 mgikg 
per min. 

ENDOGENOUS GLUCOSE PRODUCTION 

4-- 

3.51 

0 so 100 150 xl0 250 
TIME (m(n) 

Fig. 6. EGP estimated in the same subject of Fig. 5, discretized 
on the sampling grid (stepwise profile) and on the virtual grid 
(continuous profile). In both cases, the regularization parame- 
ter is tuned according to Eq. (15). Dashed line is EGP,. 

basal and a slow return to baseline. The reconvo- 
lution fit is shown in the middle panel, and recon- 
volution wei hted 

Jg 
residuals, defined as 

I’, = (yi - pi) B,i = 1,. .,N, (where jjj is the 
model-predicted measurement yi and Bi is the 
corresponding element of B), are shown in the 
bottom panel. 

Choosing the unknown input to be piecewise 
constant on the virtual grid (that is, on a I min 
span) is much less critical than subjecting it to a 
piecewise constant approximation on the sam- 
pling grid (where it should be held constant for a 
maximum of 30 min), as it is done when Qv = !& 
(see [l]). The virtual grid allows us to reconstruct 
the time-continuous input profile even when 
changes of concavity occur: in fact, changes in 
concavity, which might be related to the time 
courses of glucose and insulin during the test, are 
hidden if the production is reconstructed using the 
sampling grid only. To clarify this; aspect, in Fig. 
6 we superimpose EGP profiles obtained in the 
same subject, using the sampling grid and the 
virtual grid respectively to discretize the input. 

Finally, in Fig. 7, we compare the EGP esti- 
mates obtained according to the discrepancy crite- 
rion [19], largely used in [l], and to the new 
criterion Eq. (15). It can be seen that the profile 
obtained with the discrepancy criterion (y = 506.0) 
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ENDOGENOUS GLUCOSE PRODUCTION 

4r-- 

Fig. 7. EGP estimated in the same subject of Fig. 5, with the 
amount of regularization chosen according to the discrepancy 
criterion (continuous line) and to the criterion (15) (dashed 
line). Dottec. line is EGP,. 

is smoother than that obtained with the new 
criterion. The reconvolution fit (Fig. 8) of the new 
criterion is however more satisfactory. 

5.2. An insulin-modiJied IVGTT in CI normal 
subjecl 

The IVGTT protocol is often modified for use 
in diabetic subjects [25] with the injection at 20 

RECONVOLUTION -DISCREPANCY CRITERION 

‘Or “/ 

-3oL--- I 
0 50 100 1.50 am 250 

RECONVOLUTION -MAXIMUM LIKELIHOOD CRITERION 

Fig. 8. Reconvolution fit for the two EGP estimates of Fig. 6, 
with regularization chosen according to the discrepancy crite- 
rion (upper panel) and to the new criterion Eq. (15) (lower 
panel). 

ENDOGENOUS GLUCOSE PRODUCTKJN 

Fig. 9. EGP during an IVGTT modified with insulin injection 
in a normal subject. EGP profile (top panel), reconvolution fit 
vs. dG,(t) data (middle panel) and weighted residuals (bottom 
panel) are shown. EGP, (dashed line in the top panel) was 
3.64 mg/kg per min. 

min of a dose of exogenous insulin, administered 
as a bolus or a 5 min infusion. We reconstructed 
EGrP in a normal subject during an insulin- 
modified IVGTT. The sampling grid consisted of 
31 elements: 0, 2, 3, 4, 5, 6, 8, 10, 12: 15, 20, 22, 
24, 26, 28, 30, 35, 40, 45, 50, 55, 60, 70, 80, 100, 
120, 140, 160, 180, 210 and 240 min. A 1 min 
evenly spaced virtual grid was used. The profile of 
EGrP is shown in Fig. 9 (top panel). The value of 
7 slelected by Eq. (15) is 2.5, while 4 is equal to 
12.1. The use of the virtual grid allows us to 
detect a bimodal pattern in the first hour of the 
test, with a secondary nadir, caused by the admin- 
istration, at time 20 min, of an infusion of insulin 
lasting 5 min. Then, EGP consistently rebounds 
over baseline and slowly returns to basal, with 
some damped oscillations. 
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5.3. At? insulin-modified IVGTT in a diubetic exogenous insulin infusion comes into play, and 
subject EGP is almost completely suppressed. 

EGP in a non-insulin dependent diabetic subject 
during an insulin-modified IVGTT has been esti- 
mated. The exogenous insulin infusion was admin- 
istered between 20 and 25 min. The sampling grid 
consisted of 21 elements: 0, 2, 3, 4, 5, 6, 8, 10, 15, 
20, 25, 30, 40: 60, 80, 100, 120, 140, 160, 180, 240 
min. Results for a representative subject are shown 
in Fig. 10 (top panel). The regularization parameter 
:v selected by Eq. (15) is equal to 85.10, while q is 
4.64. Since the insulin secretory response to the 
glucose challenge is negligible in diabetics, the only 
effect on EGP in the first 20 min is that caused by 
the glucose signal. There is virtually no inhibition 
of EGP during the first hour, then the effect of the 

Fig. 10. EGP during an IVGTT modified with insulin injection 
in a non-insulin dependent diabetic subject. EGP profile (top 
panel); reconvolution fit vs. hG,(t) data (middle panel) and 
weighted residuals (bottom panel) are shown. Dashed line in 
the top panel is EGP, = 1.53 mg/kg per min. 

6., Conclusions 

The problem of a reliable estimation of EGP 
during an IVGTT has been addressed. This is 
crucial for understanding the glucose regulation 
system in normal and pathological s’tates. We have 
proposed a new, nonparametric deconvolution 
method to estimate EGP which solves two prob- 
lems left open in [l]: the choice of the amount of 
regularization and the infrequent sampling grid. An 
advantage of the method consists in the availability 
of a new statistically sound criterion, based on 
maximum likelihood, for the choice of the regu- 
larization parameter. In addition to its nice statis- 
tical basis, this criterion also allows, in contrast to 
other criteria available in the literature, to exploit 
the knowledge of the measurement error variance. 
The problem of infrequent sampling during the 
IVGTT has also been addressed1 by the introduc- 
tion of the virtual grid. Thanks to this technique, 
a (quasi) time continuous profile of EGP can be 
derived, which allows a finer physiological insight 
with respect to the method used in [I]. We applied 
our method to three case studies: an IVGTT in a 
normal subject; an insulin-modifiefd IVGTT in a 
normal subject; and in a non-insulin dependent 
diabetic subject. In all cases, reconstructed time 
courses of EGP are physiologically plausible, and 
agree with the expected pattern of liver production 
due to the administration of exogenous glucose and 
insulin. Also, the reconvolution lits are always 
satisfactory. The refinement via. stochastic decon- 
volution of the method firstly introduced in [I] 
makes it a candidate for a reliable tool to investi- 
gate the glucose regulatory system in normal and 
disease states. 
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