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Abstract

This short expository paper shows how sheaf theory applies to
the study of initial value problems. More precisely, starting with the
classical Cauchy-Kowalevski theorem as the only tool borrowed from
P.D.E., the methods of the microlocal theory of sheaves of [7] are
utilized to obtain “more difficult” results such as the well poseness
of the hyperbolic Cauchy problem for hyperfunctions, or of the non-
characteristic Cauchy problem with holomorphic ramified data.

AMS subject classification: 35A10, 58G17.

1 Foreword

In the following I will present a short survey on the Cauchy problem in
the language of sheaf theory. This should be considered as an appendix to
Schneiders’s lectures [11], sketching the interplay between D-modules and
the microlocal theory of sheaves by Kashiwara and Schapira [7].

To my knowledge, there does not exist any reference book on this subject.
A good survey (from which I benefitted) may be found in Chapter 11 of [7].

2 Tools from P.D.E.

Let me begin by recalling two basic tools in the study of analytic partial
differential equations: the Cauchy-Kowalevski theorem and the Zerner prop-
agation lemma.

Let X be an open neighborhood of 0 in Cn with coordinates (z) = (z1, z
′),

and let Y be the hypersurface of X defined by the equation z1 = 0. Let
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P (z, ∂z) =
∑m

|α|=0 aα(z)∂
α
z be a differential operator on X with holomorphic

coefficients, and denote by σ(P )(z; ζ) =
∑

|α|=m aα(z)ζ
α its principal symbol.

Recall that Y is called non-characteristic for the operator P if,

for every z ∈ Y, σ(P )(z, dz1) 6= 0, (2.1)

which is equivalent to the requirement a(m,0...,0)(0, z
′) 6= 0.

If u is a holomorphic function defined in a neighborhood of Y , one denotes
by γY (u) its first m traces on Y , γY (u) = (u|Y , . . . , ∂

m−1
z1

u|Y ).

Theorem 2.1. [Cauchy-Kowalevski] Let v ∈ OX , (w) ∈ OmY , and consider
the Cauchy problem {

Pu = v,
γY (u) = (w).

(2.2)

Assume that Y is non-characteristic for P . Then (2.2) has a unique solution
u ∈ OX |Y .

Leray [8] proved a sharper version of the previous result. Denote by
B(0, ρ) and B′(0, ρ) the open balls of center 0 and radius ρ > 0 in Cn and
Cn−1 respectively.

Theorem 2.2. [Cauchy-Kowalevski-Leray] Assume that Y is non-charac-
teristic for P . Then there exist constants r, ρ0, δ > 0 such that for every ρ
with 0 < ρ ≤ ρ0, every x with |x| ≤ r, and every data v ∈ OX(B(0, ρ)),
(w) ∈ OmY (B′(0, ρ)), the Cauchy problem (2.2) has a unique solution u ∈
OX(B(0, δρ)).

A useful corollary of the last theorem is the following propagation result:

Lemma 2.3. [Zerner] Let ψ be a C1 function and set Ω = {x;ψ(x) <
0}. Assume that σ(P )(x0; dψ(x0)) 6= 0 and let u ∈ OX(Ω) be such that
Pu extends holomorphically to a neighborhood of x0 ∈ ∂Ω. Then u extends
holomorphically to a neighborhood of x0.

3 Cauchy-Kowalevski-Kashiwara theorem

Let f : Y −→ X be a morphism of complex manifolds, and consider the
associated correspondence of cotangent bundles:

T ∗Y ←−
tf ′

Y ×
X
T ∗X −→

fπ

T ∗X.
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LetM be a coherentDX-module, and recall that f is called non-characteristic
forM if

fπ
−1(char(M)) ∩ tf ′−1

(T ∗
Y Y ) ⊂ Y ×

X
T ∗
XX, (3.1)

where T ∗
XX denotes the zero-section of T ∗X.

The following formulation of the Cauchy-Kowalevski theorem is due to
Kashiwara [4].

Theorem 3.1. [Cauchy-Kowalevski-Kashiwara] Assume that f is non char-
acteristic for M. Then the natural morphism

f−1RHomDX
(M,OX) −→ RHomDY

(MY ,OY ) (3.2)

is an isomorphism.

As recalled in [11], Kashiwara’s original proof is based on Theorem 2.1,
plus some algebraic arguments. In a sense, the difficult part is the switch of
language from the statement of Theorem 2.1, to that of Theorem 3.1.

Let f : Y −→ X be the immersion of the hypersurface defined in the
previous section, and letM be the DX -module associated to the operator P :

0 −→ DX
·P
−→ DX −→M−→ 0. (3.3)

In this case,

char(M) = {(z; ζ) ∈ T ∗X; σ(P )(z; ζ) = 0},

and conditions (2.1) and (3.1) are thus equivalent. Recall moreover that
Theorems 2.1 and 3.1 are also equivalent. In fact, the free DX resolution
(3.3) gives:

RHomDX
(M,OX) ' [OX

P ·
−→ OX ],

and one easily checks that

RHomDY
(MY ,OY ) ' (OY )m.

Taking the zero-th and first cohomology group of the isomorphism (3.2), one
then has {

kerP ' (OY )m,
cokerP = 0.

In other words, for every v ∈ OX |Y , w ∈ (OY )m, one can solve the problems:
{
Pu = 0
γY (u) = (w)

, Pu = v, (3.4)

and it is evident that (2.2) and (3.4) are equivalent.
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4 A statement for Cauchy problems

Let M be a left coherent DX-module, let f : Y −→ X be a morphism of
complex manifolds, and assume that f is non-characteristic for M. Let S
and T be two left DX and DY -modules respectively, and let

φ : f−1S −→ T (4.1)

be a given DY -linear morphism.
The discussion in the previous section was meant to show the reader that

the isomorphism (3.2) is equivalent to the solution of the associated Cauchy
problem with holomorphic data. On the same lines, we may say that we will
have solved the Cauchy problem with data in S, T , if we establish that the
natural morphism:

f−1RHomDX
(M,S) −→ RHomDY

(MY , T ), (4.2)

induced by φ, is an isomorphism.
Let K and L be sheaves on X and Y respectively (or, more precisely, ob-

jects of the derived categories). As we will see in sections 6.2, 6.3, interesting
classes of solution spaces are obtained by considering the situation:

(i) S = RHom(K,OX),

(ii) T = RHom(L,OY ),

(iii) the morphism φ is induced by a morphism φ : f−1K ←− L.

Notice that one has the isomorphisms:

RHomDX
(M,S) ' RHom(K,RHomDX

(M,OX)),

RHomDY
(MY , T ) ' RHom(L,RHomDY

(MY ,OY )),

and recall that Theorem 3.1 gives:

RHomDY
(MY ,OY ) ' f−1RHomDX

(M,OX).

Setting:
F = RHomDX

(M,OX),

the Cauchy problem (4.2) is thus reduced to giving conditions on f , F , K,
L, and φ so that the natural morphism:

f−1RHom(K,F ) −→ RHom(L, f−1F ) (4.3)

induced by φ, is an isomorphism.
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5 Propagation and micro-support

A statement like (4.3) is almost purely sheaf-theoretical: what is lacking is a
sheaf-theoretical counterpart to the notion of non-characteristicity. It is here
that the notion of micro-support by Kashiwara and Schapira [7] appears.

With the notations of section 2, Lemma 2.3 says that given g ∈ (OX)x0

and f ∈ (ΓΩOX)x0
such that Pf = g|Ω, there exists f̃ ∈ (OX)x0

such that f =

f̃ |Ω and P f̃ = g. This is equivalent to the vanishing of the first cohomology
group of the simple complex associated to the double complex:

(ΓΩOX)x0

P
−→ (ΓΩOX)x0

↑ ↑

(OX)x0

P
−→ (OX)x0

.

Hence, Zerner’s lemma is implied by the requirement:

(RΓX\ΩF )x0
= 0,

where F = RHomDX
(DX/DXP,OX).

One is now in a position to forget the complex structure, and to forget
P.D.E.

Let X be a real analytic manifold (actually, for most results C1 manifolds
would suffice), and denote by Db(X) the derived category of the category of
bounded complexes of sheaves of C-vector spaces on X.

Definition 5.1. The micro-support SS(F ) of an object F of Db(X) is the
closed conic involutive subset of T ∗X given by: p = (x0; ξ0) /∈ SS(F ) if there
exists an open neighborhood U of p such that for every x1 ∈ X and for every
C1 function ψ verifying ψ(x1) = 0 and dψ(x1) ∈ U , one has:

(RΓψ≥0F )x1
= 0.

It is not possible to review the microlocal theory of sheaves here. I shall
simply list some elementary results that will be useful in the following.

Let A be a locally closed subset of X, and let M ⊂ X be a closed
submanifold. One denotes by CM(A) the Whitney normal cone of A along
M . This is a closed conic subset of TMX, the normal bundle to M in X.

One denotes by CA the sheaf which is zero on X \ A, and which is the
constant sheaf with stalk C on A. One denotes by D′F = RHom(F,CX) the
dual of F .

Let f : Y −→ X be a morphism of real analytic manifolds. Similarly to
the case of D-modules, one says that f is non-characteristic for F if

fπ
−1SS(F ) ∩ tf ′−1

(T ∗
Y Y ) ⊂ Y ×

X
T ∗
XX.
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One denotes by ωY/X = f !CX the relative dualizing complex. Recall that
ωY/X ' orY/X [dimY − dimX], where orY/X denotes the relative orientation
sheaf.

Proposition 5.2. (i) Let F ∈ Ob(Db(X)) and assume that f is non-
characteristic for F . Then the following estimate holds:

SS(f−1F ) ⊂ tf ′fπ
−1(SS(F )),

and one has a natural isomorphism:

f−1F ⊗ ωY/X
∼
−→ f !F.

(ii) Let G ∈ Ob(Db(Y )) and assume that f is proper on supp(G). Then:

SS(Rf∗G) ⊂ fπ
tf ′−1

(SS(G)).

(iii) Let F,G ∈ Ob(Db(X)) and assume that G has R-constructible coho-
mology groups, and that SS(F ) ∩ SS(G) ⊂ T ∗

XX. Then:

D′G⊗ F
∼
−→ RHom(G,F ).

(iv) Let F ∈ Ob(Db(X)) and let M ⊂ X be a closed submanifold. Then:

SS(RΓMF ) ⊂ T ∗M ∩ CT ∗

M
X(SS(F ))

(cf. section 6.2 for the identification T ∗M ⊂ TT ∗

M
XT

∗X).

6 Back to P.D.E.

Let X be a complex analytic manifold, let M be a coherent DX-module,
and set F = RHomDX

(M,OX). Using Theorem 2.2 it is easy to prove the
inclusion:

SS(F ) ⊂ char(M), (6.1)

and in fact equality holds.
As we will now see, using (6.1) and the results of the previous section, it

is possible to recover classical results in P.D.E.
Let M be a real analytic manifold and let X be a complexification of M .

Recall that the sheaf of Sato’s hyperfunctions is defined by:

BM = RHom(D′
XCM ,OX).
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Notice that the natural morphism D′
XF ⊗ G −→ RHom(F,G) applied to

F = D′
XCM , G = OX gives the embedding

AM ↪→ BM ,

where AM = CM ⊗OX is the sheaf of real analytic functions on M .

Remark 6.1. More generally, if M is a generic submanifold of a complex
manifold X, then RHom(D′

XCM ,OX) is isomorphic to the complex of CR-
hyperfunctions (i.e. the complex of hyperfunction solutions on M to the
tangential ∂ system).

6.1 Elliptic operators

The short exact sequence:

0 −→ T ∗
MX −→M ×

X
T ∗X −→ T ∗M −→ 0,

defining the conormal bundle T ∗
MX, and the isomorphism:

M ×
X
T ∗X ' T ∗M ⊕ iT ∗M,

which is due to the complex structure, give an identification:

T ∗
MX ' iT ∗M.

Recall that an operator P ∈ DX is called elliptic if

σ(P )(x; iξ) 6= 0 for every ξ 6= 0.

More generally, a coherent DX-moduleM is called elliptic if

char(M) ∩ T ∗
MX ⊂ T ∗

XX.

Applying Proposition 5.2 (iii) to F = RHomDX
(M,OX) and G = D′CM ,

one thus gets the classical regularity theorem:

Theorem 6.2. Let M be an elliptic coherent DX-module. Then:

RHomDX
(M,AM)

∼
−→ RHomDX

(M,BM).
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6.2 Hyperbolic operators

One of the keys to understand hyperbolic operators is the identification of
T ∗M to a submanifold of T ∗

T ∗

M
XT

∗X.

Let −H : T ∗T ∗X
∼
−→ TT ∗X be the opposite of the Hamiltonian iso-

morphism H. If Λ ⊂ T ∗X is a Lagrangian submanifold, −H induces an
identification T ∗Λ ' TΛT

∗X. In particular, for Λ = T ∗
MX one gets:

T ∗T ∗
MX ' TT ∗

M
XT

∗X ' T ∗
T ∗

M
XT

∗X. (6.2)

By the zero section M −→ T ∗
MX of π : T ∗

MX −→ M , and by the induced
map:

tπ′ : T ∗
MX ×

M
T ∗M −→ T ∗T ∗

MX,

one gets a map:
T ∗M 'M ×

M
T ∗M −→ T ∗T ∗

MX. (6.3)

Composing (6.2) and (6.3) one gets the identification:

T ∗M ↪→ T ∗
T ∗

M
XT

∗X. (6.4)

Let N be a real submanifold of M , let Y ⊂ X be a complexification of
N , and consider the embeddings:

Y
f
−→ X

↑j ↑i

N
g
−→ M.

One says that N is hyperbolic for a coherent DX -moduleM if

T ∗
NM ∩ CT ∗

M
X(char(M)) ⊂ T ∗

MM (6.5)

via the identification (6.4).
Of course, if M = DX/DXP is the DX-module associated to a single

differential operator P ∈ DX , one recovers the usual definition of (weak)
hyperbolicity.

As proved by [1], [7], the good solution space for the study of hyperbolic
Cauchy problems is the space of Sato’s hyperfunctions.

Theorem 6.3. Assume that N is hyperbolic for M. Then the natural mor-
phism:

f−1RHomDX
(M,BM) −→ RHomDY

(MY ,BN) (6.6)

is an isomorphism.
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Notice that (6.6) is of the form (4.2). It also fit with (4.3) if one sets
F = RHomDX

(M,OX), K = D′CM , L = D′CN , and let φ be the morphism
induced by the natural morphism CM −→ CN .

Proof. By Proposition 5.2 (iv), hypothesis (6.5) implies that g is non-char-
acteristic for RΓM(F ). One then has the chain of isomorphisms:

g−1RΓM(F ) ' g!RΓM(F )⊗ ω⊗−1
N/M

' g!i!F ⊗ ω⊗−1
N/M

' j !f !F ⊗ ω⊗−1
N/M

' RΓN(F )⊗ ω⊗−1
N/M .

Recall that D′CM
∼= ωM/X . We have thus proved the isomorphism:

f−1RHomDX
(M,BM) ' RHomDX

(M,ΓNBM )⊗ ω⊗−1
N/M .

The proof is then achieved by following “division” lemma.

Lemma 6.4. Assume that Y is non-characteristic for M. Then there is an
isomorphism:

RHomDX
(M,ΓNBM) ' RHomDY

(MY ,BN )⊗ ωN/M . (6.7)

Proof. Setting F = RHomDX
(M,OX), one has the isomorphisms:

RΓN(F ) ' j !f !F

' RΓN(f−1F )⊗ ωY/X .

By Theorem 3.1, f−1F ' RHomDY
(MY ,OY ), and one concludes.

6.3 Ramified functions

An instance of naturally occurring solution spaces when studying non-cha-
racteristic Cauchy problems with singular data (or characteristic problems
with holomorphic data) is the space of ramified holomorphic functions.

Let p : C̃∗ −→ C be the universal covering of C∗ = C \ {0}. Recall that

one can choose a coordinate t ∈ C ' C̃∗ so that p(t) = exp(2πit).
Let Y be a germ of smooth hypersurface of a complex manifold X, and

choose a locally defined complex analytic function g : X −→ C, with dg 6= 0,
such that Y = g−1(0). Set X̃∗ = C̃∗ ×C X, and consider the Cartesian
diagram:

X̃∗ −→ C̃∗

↓pX ↓p

X
g
−→ C.
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The complex Oram
Y/X of ramified holomorphic function along Y in X is defined

as Oram
Y/X = RpX∗p

−1
X OX .

Notice that p!
X is an exact functor and that p!

X = p−1
X . By the Poincaré-

Verdier duality one gets:

RpX∗p
−1
X OX = RHom(RpX !C fX∗,OX)

= RHom(g−1p!CfC∗
,OX).

Summarizing up, one can write

Oram
Y/X = RHom(K,OX), (6.8)

where K = g−1p!CfC∗
.

Remark 6.5. More generally, let T ⊂ X be a closed subset, p̃ : X̃ −→ X \T
be a covering map, and set p = i ◦ p̃, where i : X \ T −→ X is the inclusion
map. The complex RHom(K,OX), for K = p!C eX , may then be considered
as a complex of “ramified” holomorphic functions along T .

Let X be an open subset of Cn with 0 ∈ X, let z = (z1, z
′) = (z1, . . . , zn)

be the coordinates on X and let (z; ζ) be the associated coordinates in T ∗X.
Consider the Cauchy problem:

{
Pu = 0,
γY (u) = (w),

(6.9)

where P is a differential operator of order m, the hyperplane Y = {z ∈
X; z1 = 0} is non-characteristic for P , and (w) are holomorphic functions
on Y ramified along the hypersurface Z = {z ∈ X; z1 = z2 = 0}. Let
f : Y −→ X be the embedding. Suppose that P has characteristics with
constant multiplicities transversal to Y ×X T

∗X at tf ′−1(T ∗
ZY ) ∩ char(M).

Let Z1, . . . , Zr be the (locally uniquely determined) smooth hypersurfaces
of X whose conormal bundles are the union of the bicharacteristics of P
issued from tf ′−1(Ṫ ∗

ZY ). Notice that the Zi are transversal to each other, and
transversal to Y .

In [3], Hamada, Leray and Wagschal proved that the holomorphic solution
of (6.9), defined in a neighborhood of Y \ Z, extends holomorphically as a
sum of ramified functions along the Zj’s.

Following [2], let us reduce this statement to the form (4.2), (4.3).
Choose analytic functions g : Y −→ C, gi : X −→ C with dg 6= 0,

dgi 6= 0, such that gi ◦ f = g and Z = g−1(0), Zi = g−1
i (0). Set L = g−1p!C eX ,

Ki = g−1
i p!C eX , and let K be the third term of a distinguished triangle:

K −→ ⊕ri=1Ki
h
−→ ⊕r−1

i=1 CX
+1
−→,
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where h is the composite of the map ⊕ri=1τj and the map ⊕ri=1CX −→
⊕r−1
i=1 CX , given by (a1, . . . , ar) 7→ (a2 − a1, . . . , ar − ar−1). Notice that the

natural morphisms L −→ CY , Ki −→ CX , induce a morphism

φ : L −→ f−1K.

The sheaf of holomorphic functions on Y ramified along Z is given by:

Oram
Z/Y = RHom(L,OY ),

and one may check that the complex

∑

i

Oram
Zi/X

= RHom(K,OX)

is concentrated in degree zero, and that its sections are sums of ramified
functions along the Zj’s.

Theorem 6.6. ([2]) The natural morphism:

f−1RHomDX
(M,

∑

i

Oram
Zi/X

)|Z −→ RHomDY
(MY ,O

ram
Z/Y )|Z (6.10)

is an isomorphism.

Proof. With the above notations, we may rewrite (6.10) as

f−1RHom(K,F )|Z ∼−→ RHom(L, f−1F )|Z,

and it is possible to give a purely sheaf-theoretical proof of this isomorphism
for which we refer to [2].
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