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Retrovirus HTLV-1 gene circuit is characterized by positive and negative feedback phenomena, thus candidating it as a potential 
relaxation oscillator deliverable into eukaryotes. Here we describe a model of HTLV-1 which, by providing predictions of genes and 
proteins kinetics, can be helpful for designing gene circuits for eukaryotes, or for optimizing gene therapy approaches which are 
currently carried out by means of lentiviral vectors or re-engineered adenoviruses. Oscillatory patterns of HTLV-1 gene circuit are 
predicted when positive feedback is faster than negative feedback. Techniques to mutate the retroviral genome in order to implement 
practically the above conditions are discussed. Finally, the effect of stochasticity on the system behavior is tested by means of 
Gillespie algorithm. Simulations show the difficulties to preserve synchronization in viral expression for a multiplicity of cells, while 
the long tail of the density probability function of the master regulator gene tax/rex, due to its steady state fluctuations, suggests an 
activation mechanism of HTLV-1 similar to that recently proposed for HIV1: the virus tends to latency but under certain 
circumstances, the master regulator gene reaches high values of expression, whose persistence induces the viral replication.  

1. Introduction 

Synthetic gene circuits have already been delivered into bacterial cells, proving that it is possible to design and 
implement synthetic biological systems. A genetic toggle switch, designed by Gardner et al.2 in 2000, was soon 
followed by the gene oscillator of Elowitz and Leibler3. An essential ingredient of this last work was the preliminary 
circuit characterization by modeling gene and protein expression; in particular, bifurcation analysis has allowed 
identifying the ranges of parameter values corresponding to periodic patterns. Nevertheless, the modeling strategy 
must be sound; otherwise misleading results can be obtained, which can heavily affect the subsequent circuit design. 
Recently, Kaern et al.4 supported the use of systems of differential equations based on mass action, i.e. the approach 
previously adopted by Hasty et al.5,6 for modeling the λ phage. In moving from bacteria to eukaryotes, the design of 
gene circuits becomes more difficult because of the more complex regulatory mechanisms. However, significant 
contributions have become available, e.g. Ramachandra et al.7 re-engineered adenoviruses to hit tumor cells 
selectively, i.e. without impairing the healthy cells; Bainbridge et al.8 addressed the Leber’s Congenital Amaurosis 
by means of recombinant adeno-associated virus vectors. Also, of note is that mathematical models of viral kinetics 
are potentially valuable for optimizing gene therapy approaches, in particular by improving the design of retroviral 
vectors by predicting the gene expression following their delivery. In this paper we propose a novel model of 
HTLV-1 viral kinetics9. This model is characterized by positive and negative feedback phenomena, similarly to 
synthetic relaxation oscillators delivered into prokaryotes and able to exhibit limit cycles. In order to investigate the 
potential use of HTLV-1 circuit as a novel oscillator for eukaryotes, we analyze the periodic behavior of HTLV-1 
model. This represents a preliminary step that can be instrumental for designing gene circuits to be delivered into 
eukaryotic cells, or for optimizing retroviral vector design in gene therapy. 

Results previously obtained with bacteria suggest that a deterministic model may be not adequate to predict the 
true behavior of a biological system, e.g. a remarkable variability was observed in the repressilator period of 
oscillation by Elowitz and Leibler3, Thattai et al.10 described the noise in transcription and translation whereas 
Elowitz et al.11 experimentally highlighted the effects induced by variable quantities of metabolites in the single 
cells of the same sample. On the other hand, Gillespie12 pointed out that if a system is small enough that the 
molecular populations of some reactant species are not too many orders of magnitude larger than one, discreteness 
and stochasticity may play important roles, so that the predictions coming from deterministic differential equations 
do not accurately describe the system’s true behavior. This is the case for HTLV-1 kinetics since one of the basic 
mechanisms is transactivation, i.e. the enhancement of transcription caused by the interaction between the viral 
promoter and a viral protein, and the number of promoters in a cell corresponds to the number of viral genomes 
integrated in the host cell, which is small. Thus, stochastic simulations are important for an adequate understanding 
of the system behavior.  
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In the following, after presenting an HTLV-1 model, which provides deterministic predictions about viral 
kinetics, we will discuss first the periodic patterns revealed by the bifurcation analysis, and then, the results of 
stochastic simulations performed by the Gillespie algorithm. Finally, the practical feasibility of an oscillator for 
eukaryotes will be considered, together with some recent biotechnological techniques potentially helpful to mutate 
the HTLV-1 genome so as to obtain periodic oscillations of gene and protein expression.  

2. The model 

The main mechanisms of the HTLV-1 gene circuit13 are 
summarized in Figure 1:  
1. The full-length genomic RNA of the single stranded 

retrovirus HTLV-1 encodes for the primary transcript gag 
(compartment 1) which undergoes either single or double 
splicing in the nucleus or, alternatively, remains unspliced.  

2. The doubly spliced mRNA tax/rex (compartment 2) is 
considered the master regulator of viral gene expression 
since it encodes for two distinct regulatory proteins, 
p40Tax and p27Rex (compartments 3 and 4), from ORF III 
and IV, respectively; in the following we will refer to them 
simply as Tax and Rex. 

3. Tax boosts the transcription of the primary transcript gag, 
generating a positive feedback phenomenon called 
transactivation. 

4. Rex prevents the multiple splicing of gag, causing a 
decrease in the amount of tax/rex in favor of unspliced 
and singly spliced genes, and generating a negative feedback phenomenon with respect to tax/rex.  

5. A variety of Rex-dependent viral genes deriving from the single splicing of gag were identified, e.g.  1-B, p13, 
p21Rex (compartments 5.1, 5.2… 5.n), but the mechanisms of splitting up are still unclear.  
The system of differential equations which describe the above mechanisms, based on one-step reactions and 

mass action (detailed in the Appendix), is:  
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where the state variables are the concentrations [molecules/l] of nuclear gag, tax/rex, Tax, Re corresponding to the 
compartments 1-4 of Figure 1. Initial conditions were set to zero, i.e. we supposed to deliver the HTLV-1 gene 
circuit into eukaryotic cells which were not infected previously. System parameters are: the transcription rate S [1/h], 
the concentration of viral genomes integrated in the host cell m [molecules/l], the transactivation constant  β

’
1 

(adimensional), Michaelis constant h1 (which is the product of many equilibrium constants, as described in the 
Appendix), the nuclear export rate ks [1/h], the order of Rex multimerization z (adimensional), degradation rates of 
the transcript tax/rex k02 [1/h],  of proteins Tax k03 [1/h] and Rex k04 [1/h], and parameters β’

3 and β’
4 [protein 

molecules/(transcript molecules*h)], which are the products of the Tax and Rex gains in protein translation 
multiplied for the rate constants of the translation processes (as detailed in the Appendix). The function g(·) is 
defined in Eq. 5-7: 
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Figure 1. Background knowledge on the HTLV-1 gene circuit.
Solid arrows represent fluxes, dashed arrows controls.  
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where h3 is the product of the some equilibrium constants, as described in the Appendix. Unfortunately, only k01 was 
measured by Grone et al.14 equal to 0.069/h. As concerns other parameters, approximate values can be derived from 
the literature, based on measurements of similar biological processes, reported below with the corresponding model 
parameters between brackets:  

1. Rosin-Arbesfeld et al.15 and Lewis16 reported the half-lives of about 10 and 4 minutes, respectively, for the 
nucleo-cytoplasmatic transport (ks).  

2. Weinberger and Shenk17 estimated the transactivation constant (β
’
1) in the HIV gene circuit by fitting an ODE 

model to normalized data of fluorescence intensities from single-cell measurements, obtaining a value of about 8.  
3. As regards protein degradation rates, the Tax ubiquitination was confirmed by many laboratories18 supporting the 

thesis of a ubiquitin-mediated degradation; moreover, Peloponese et al.19 proved the Tax inactivation induced by 
ubiquitin. Jeong et al.20 observed similar decays for Tax and β-Galactosidase, whose half-life was estimated in 
about 13 hours21,22. Therefore, we considered a half-life of about 10 hours for Tax, and also for Rex (k03, k04). 

4. Kugel and Goodrich23 measured the transcription rate induced by polymerase II in eukaryotes (S): 1.9e-3/s.  
As regards Michaelis constant h1, no information is available as well as for the parameter h3, thus the amount of 

Tax and Rex were scaled by h1 and h3, respectively: �'8 � ��

9�
  and � 8  � �)

9�
 ; �'8 and � 8 can be viewed as the effective 

proteins, present in the nucleus and effectively acting for transactivation and RNA nuclear export, respectively.  
Moreover, to preserve the validity of the study front of future HTLV-1-specific measurements resulting in 

different values of the transcription rate, the time t [h] was scaled by S as done in Ref. 4: τ=t*S; τ is adimensional 
because the unit of measurements of S is 1/h. After scaling, the model of differential equations became:  
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where the function >?�C� is defined in Eq. 12-14: 
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Model parameters were fixed to the following nominal values: β
’
1=10, k’

01=k01/S=0.01, k’s=ks/S=1, 
k’

02=k02/S=0.01, k’03=k03/S=0.01, all of which are adimensional. Parameter m was initially set equal to 1 molecule/l, 
to reflect the hypothesis of low multiplicity of infection, which underlies the model development (see the 
Appendix). As regards the parameters �


'
B

 and �

 

B , since no information was available in the literature, 
computational simulations of the deterministic system (Eq. 8-11) were performed, and the parameter values were 
fixed so as to obtain gene expression time course consistent with some experimental measurements24,25. This 
happened for �


'
B

 and �

 

B
 in the range [1e-3, 1e-1], thus we chose the median value �


'
B

 � �

 

B � 0.01 as the default 
value to be used for the subsequent analyses. Since it was not possible to establish if Rex forms dimers (z=2), 
pentamers (z=5), or something else, different values of z were considered. 

3. Bifurcation analysis 
We tested if the model of the HTLV-1 gene circuit (Eq.8-11), can exhibit periodic patterns by performing 
bifurcation analysis with the MatCont software package26. Among the system parameters, some were considered 
tunable on the basis of experimental observations, i.e. the protein degradation rates and the concentration m of viral 
genomes integrated in the host cell, whereas other parameters were set to their default values. The rational is that 
Tax undergoes ubiquitination18 and experimental observations support the tunability of the proteins half-life when 
their degradation involves the ubiquitin pathway27. As regards m, it can be easily regulated at the time of virus 
delivery following an estimation of the titer of viral particles.  

3.1   Periodic patterns 
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With the default parameter values the system falls into a stable steady state. By varying the ratio between the two 
protein degradation rates, RD=k’

03/k
’
04, two Hopf bifurcations were detected confirming the possibility for the 

HTLV-1 gene circuit to oscillate28; moreover, the periodic patterns were stable because both bifurcations are 
supercritical. With z=2 the critical values of RD and the Lyapunov coefficients were: RDH1=2.3, RDH2=26.2 with 
LH1=-4.6e-3 and LH2=-7.6e-4, whereas with z=5 they were: RDH1=7.0, RDH2=13.7 with LH1=-1.5e-3 and LH2=-7.6e-
4. In Figure 2a, the trajectories of the state variables gag and tax/rex for z=2 and RD=3 are shown.  

 
Figure 2. a) The trajectory of the system for z=2 and RD=3. b) Periodic patterns of tax/rex for z=2 and the following values of RD: 3,5,10,20.  

Higher values of Tax degradation rate (with respect to Rex) result in smaller amplitudes and periods of 
oscillation, as shown in Figure 2b, where the periodic patterns of tax/rex corresponding to z=2 and RD=3,5,10,20, 
respectively, are plotted. If multiplicity of infection m is increased, periodic patterns arise if RD is within specific 
limits which depends on m, as shown in Figure 3a, for z=2 and z=5. This figure suggests the relevant role of z on 
system behavior. To have a better insight on the role of z, Hopf continuation was performed by varying RD and z, 
for specific m values. Results (Figure 3b) indicate that periodic oscillations of the model state variables are 
prevented for z>5. 

 

4. Stochastic fluctuations 

Since stochasticity and discreteness can cause deviations of the true system behavior from the predictions of 
deterministic differential equations when the molecular populations are small, as is the case of the viral promoter 
sites in our model, stochastic simulations were performed by Gillespie algorithm (direct method29,30), with the 
parameter settings corresponding to the periodic patterns and to the steady state solution of the system (Eq. 8-11). 
Gillespie algorithm describes the number X(t) of molecules of chemical species involved in the reactions Rj 
characterizing the system. The key to simulate trajectories of X(t) is the probability function p(τ, j | x,t)12, which is 
the probability, given X(t) = x, that the next reaction in the system will occur in the infinitesimal time interval [t+τ, 
t+τ+dτ ), and will be an Rj reaction. This probability is related to the number of molecules composing the chemical 
species involved in the reaction as reactant. Thus, the variability concerns which reaction takes place and when this 
happens. Two software packages, providing distinct implementation of the algorithm, were considered: Dizzy31 (ver 
1.11.4) and Cain32 (ver 0.12).  

Figure 3. a)  Hopf curve continuation with free parameters RD and m, for z=2 and 5. The areas corresponding to parameter settings allowing 
periodic oscillations are signaled with the symbol PO whereas the areas corresponding to parameter settings for which the system falls into steady 
states are signaled with the symbol SS. b)  Hopf curve continuation with free parameters RD and z, for m=1 and 10.  
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4.1   Periodic patterns 

The effects of stochasticity on the periodic patterns of Figure 2b were verified by simulating 1000 trajectories of 
the state variables. Results evidenced different time points at which peaks of tax/rex rise in distinct realizations (see 
Figure 4a) causing a lack of synchronicity. Consequently, the tax/rex mean time course resulted to be leveled, as 
shown in panel b; moreover, a high variability in gene expression was observed (see panel c, where the standard 
deviations corresponding to each time point are reported). The leveling of the tax/rex mean time course appeared 
also for other values of z, as shown in panel d, where it is plotted the mean of 1000 realizations with parameter 
setting z=5 and RD=8, for which periodic oscillations arise in the deterministic system (Eq. 8-11). To verify if the 
leveling depended on m, the same simulations were repeated with m=10 and 100, instead of 1, but no better result 
was observed.  

Figure 4. Stochasticity in chemical reactions causes the lack of synchronicity and the leveling of the tax/rex mean time course.  a) 3 trajectories of 
the state variable tax/rex, b) the mean time course of 1000 realizations, and c) the standard deviations corresponding to each time point for z=2 
and RD=3. d) The tax/rex mean time course of 1000 realizations for z=5 and RD=8. 

4.2   Steady state fluctuations 

Since the addition of stochastic phenomena on the periodic patterns provided surprising results, also stochastic 
fluctuations of the steady state solution were examined by means of 10000 stochastic simulations. All state variables 
resulted to be affected by remarkable variability. In particular, tax/rex values presented a coefficient of variation 
(CV) higher than 100%, as it is shown in Figure 4, panel a and b, where the results obtained with Dizzy and Cain are 
reported. To have a better insight, we investigated the density probability function of tax/rex that resulted to be 
characterized by a long tail (see panel c). With different values of z similar distributions appeared, as shown in panel 
d, where it is plotted the density probability function of tax/rex for z=5.  

  
Figure 5. Steady state fluctuations of the steady state solution showed a high variability. a) The CVs obtained from stochastic simulations 
performed by Dizzy; b) The CVs obtained from stochastic simulations performed by Cain. For these simulations z was set to 2. Density 
probability functions of the values of tax/rex for : c) z=2, and d) z=5.   

5. Discussion and conclusions 

The gene circuit of the retrovirus HTLV-1 is characterized by positive and negative feedback phenomena, due to the 
regulatory proteins Tax and Rex, thus candidating it as a potential relaxation oscillator. To test this hypothesis, a 
model of the retroviral gene and protein kinetics was developed on the basis of well-established knowledge. The 
model incorporates the cascade of interactions involving the viral promoter and the biological processes of 
transcription, translation and degradation, assuming the former to be faster and in equilibrium with respect to the 
latter. Reasonable simplifications were introduced to limit the number of parameters, and approximate but 
reasonable numerical values were assigned to them based on information derived in the literature, with the only 
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exception of order of Rex multimerization z, which is unknown. Thus the analysis of the system behavior was for 
different values of z. To test in silico the possibility of observing periodic patterns, bifurcation analysis was 
performed on the deterministic system of differential equations, considering two model parameters as tunable on the 
basis of experimental observations: the degradation rate of regulatory proteins and the parameter m, which is related 
to the multiplicity of infection. Our results show that oscillatory behaviors take place if the kinetics of the positive 
feedback are faster than those of the negative feedback, as expected from a relaxation oscillator; moreover, higher 
values of Tax degradation rate result in smaller amplitudes and oscillation periods. Obviously, other parameters 
influence the system behavior: the values of RD compatible with oscillatory behavior depend on m as well as on z. 
In particular, periodic oscillations are prevented if z is greater than 5.  

To reach periodic oscillations, the Tax degradation rate should be increased with respect to that of Rex. Three 
recent experimental techniques support the possibility of altering protein degradation rate in practice, two based on 
enhancing the ubiquitin degradation pathway and the latter on protein tagging. Bachmair et al.33 pointed out the 
important role of the amino-terminus in stabilizing/destabilizing the proteins which undergo ubiquitination: in their 
experiments the β-Galactosidase half-life lowered from more than 20 hours to less than 3 minutes depending on the 
amino-terminus. Rogers and Rechsteiner34,35 observed the correlation between the high presence of PEST sequences 
– where PEST is the nice abbreviation of proline (P), glutamic acid (E), serine (S), and threonine (T) - and the short 
half-lives of proteins degraded by the ubiquitin pathway. Consequently, the substitution of PEST amino acids with 
more stable ones should increase the protein half-life. McGinness et al.36 suggested the import of the E.coli ClpXP 
protease into eukaryotic cells and the addition of an appropriate ssrA tag to the protein under exam to modulate its 
degradation rate. Briefly, the tag should have weak affinity for the protease so the introduction of the SspB adaptor 
protein can be used as a control lever to increase this affinity and, consequently, the proteolysis of the tagged 
proteins, induced by the ClpXP protease. However, application to the HTLV-1 gene circuit of these three methods is 
not immediate because Tax and Rex are translated from the same transcript tax/rex and, consequently, the mutation 
of one protein implies the mutation of the other. To address this problem and make Tax kinetics faster than Rex 
kinetics, a possible solution is supplied by the PEST hypothesis. Since the coding sequences of Tax and Rex are 
(4829..4832, 6951..8008) and (4773..4832, 6950..8008), respectively (data from the NCBI Reference Sequence 
NC_001436.1), the sequence (4773..4832) is present in Rex but absent in Tax. Moreover, it configures as a PEST 
region since it includes one glutamine, one serine, two threonines and five prolines out of 19 aa, which are all 
destabilizing amino acids. Therefore, their substitution with more stable amino acids, by site-directed 
mutagenesis37,38, should decrease the Rex degradation rate, allowing to obtain periodic oscillations. Conversely, 
practical applicability of the methods proposed by Bachmair et al.33 and McGinness et al.36 to our system is still an 
open issue, due to the overlapping of Rex and Tax protein sequences. 

Since stochasticity and discreteness can cause deviations of the true system behavior from the predictions of 
deterministic differential equations when the molecular populations are small, as is the case of the viral promoter 
sites in our model, the Gillespie algorithm was used to perform stochastic simulations. Simulations revealed the 
leveling of tax/rex time course essentially due to the lack of synchronization among the oscillators delivered in 
distinct cells. In particular, peaks occur at different times in the distinct realizations, as experimentally observed by 
Stricker et al.39 by measuring single-cell fluorescence trajectories. The problem of cell synchronization can be 
addressed by electroporation, but only partially, since the recently developed methodology of transfection40, which 
allows the delivery of genes of interest directly into the nuclear compartment in a time period of microseconds, does 
not guarantee the persistence of synchronization. A continuous synchronizing signal41,42 may be needed to preserve 
the forced initial synchronization over time, but currently this is not available. As a consequence, experimental 
validation is not straightforward and will require single-cell measurements of out of phase oscillators, by time-lapse 
microscopy and using GFP reporters. Recent findings support the applicability of this technique to viral genes, since 
some lentiviral vectors with GFP as reporter of the transactivator gene Tat were described for the HIV gene circuit1. 
Particularly interesting is the wild type HIV-1 with the gene Nef substituted by the GFP; a fascinating testable 
hypothesis is the realization of a reporter version of the HTLV-1 genome with tax/rex substituted by the GFP, to be 
delivered in addition to the appropriately mutated virus. We expect the RNA gag transcribed from this reporter 
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construct, be either doubly spliced into the GFP, supplying fluorescence intensities proportional to the presence of 
tax/rex, or transferred to the cytoplasm and degraded.  

Stochastic fluctuations of the steady state solution were also examined. All state variables are affected by 
remarkable variability. In particular, tax/rex values have a CV higher than 100%, with a long tail of their density 
probability function, indicating that tax/rex gene expression is likely to sometimes assume very high values because 
of stochastic fluctuations, suggesting mechanisms of retroviral activation similar to those recently proposed by 
Weinberger for HIV1. 

In conclusion, the bifurcation analysis of the proposed model of the HTLV-1 gene circuit revealed that periodic 
patterns are possible, provided that Tax kinetics is faster than Rex kinetics. The next step is the experimental 
validation of these predictions. However, the stochastic simulations pointed out the problem of cell synchronicity; 
consequently, single-cell measurements are necessary to observe oscillatory patterns of genes or proteins. Moreover, 
the high variability at steady state suggests mechanisms of retroviral activation similar to those proposed for HIV.  

Appendix 

Following Ref. 5,6, the HTLV-1 chemical reactions13 were divided into two categories: fast and slow; in particular, 
protein multimerization and complex formation were assumed to be faster than the processes of transcription, 
translation and degradation of proteins and transcripts. It is reasonable to assume that fast reactions are of the order 
of seconds, similarly to λ phage’s6 and thus, although not exactly known, much faster than protein degradation in 
eukaryotes, that is of the order of hours or days27. Therefore, faster reactions can be safely assumed to be in 
equilibrium with respect to the slower ones. In the following paragraphs, we will introduce the fast reactions and 
then the slower ones. 

A.1   Fast reactions 

In this paragraph, the following HTLV-1 biological processes13 will be described: (1) dimerization and complex 
formation, which lead to transactivation; (2) cooperative interactions, which are necessary for transcription; and (3) 
Rex multimerization.  

Dimerization and complex formation: HTLV-1 transactivation is due to the binding of a complex, composed of 
dimers of Tax and dimers of the cellular transcription factor CREB, to the Tax Responsive Element43 (TRE) in the 
viral Long Terminal Repeat, where the viral promoter is located. A set of chemical reactions are used to describe:  
1. Tax dimers formation and their transfer to the nucleus (Tax is a shuttling protein44, i.e. it transfers from the 

cytoplasm to the nucleus and viceversa, so dimers are present in the whole cell but only the nuclear fraction is 
involved in transactivation). 

2. CREB dimers formation and their transfer to the nucleus. 
3. The formation of a CREB2-TAX2 complex, which subsequently binds to the TRE inducing transactivation, and 

the alternative interaction CREB2-TRE from which the basal transcription follows. In the following we will 
indicate the transactivated promoter sites and the nontransactivated ones with the abbreviations TPrS0, and 
NTPrS0, respectively, and with TRE the inactivated viral promoter sites. Table A1 summarizes the chemical 
reactions and the corresponding equilibria. 
 

 
Table A.1. Chemical reactions and the corresponding equilibria concerning molecular dimerization and complex formation. 

Tax dimerization               K1 

2 TAX  ⇌ TAX2 
QTAX%R � K�QTAXR% 

Tax transfer to the nucleus           K2 

TAX%⇌ TAX%
X

  
QTAX%

XR � K%QTAX%R 

CREB dimerization                K3 

2 CREB ⇌ CREB2  
QCREB%R � K'QCREBR% 

CREB transfer to the nucleus              K4 

CREB2⇌ CREB%
X

  
QCREB%

XR � K QCREB%R 

CREB2-TAX 2 complex formation in 
the nucleus 

        K5 

CREB%
X 	 TAX%

X⇌ Complex 
QComplexR � K^K K'QCREBR% K%K�QTAXR% 
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Binding of the complex to TRE 
(transactivated promoter) 

                              K6T 

Complex 	 TRE⇌ TPrS$ 
QTPrS$R � K`aK^K K'QCREBR% K%K�QTAXR% QTRER 

Binding of CREB2 to TRE (non-
transactivated promoter) 

      K6NT 

CREB%
X 	 TRE⇌ NTPrS0  

QNTPrS$R � K`caK K'QCREBR% QTRER 

Cooperative interactions: viral transcription involves a cascade of co-activators and general transcription 
factors, CBP/p300, PCAF, TFIIA, TFIIB,TFIID13, whose binding reactions with the promoter regions are described 
in Table A.2. The transactivated and the non-transactivated promoter sites will be indicated with TPrSi, and NTPrSi, 
where the suffix i denotes the step in the cascade. Following the same line of reasoning which underlies the 
formulation of the well-known pseudo-first order rate equations45, the concentrations of all co-activators and general 
transcription factors are assumed to be constant or in great excess with respect to the viral promoters they interact 
with, so that the effects of the variations of their concentrations on the viral kinetics are negligible. Consistently, a 
low multiplicity of infection is assumed, i.e. we suppose that few viral genomes are integrated in the host cells. 
Table A.2 summarizes the chemical reactions and the corresponding equilibria. 
 
Table A.2. Chemical reactions and the corresponding equilibria concerning cooperative interactions. 

Binding of CBP/p300 to the non-

transactivated promoter site 

                                      Kgh 

NTPrS$ 	CBP/p300⇌ NTPrS� 
QNTPrS�R � KghQNTPrS$R QCBPR� K


ghQNTPrS$R 

Binding of PCAF to the non-

transactivated promoter site 

                           Kjh 

NTPrS� 	PCAF⇌ NTPrS% 
 QNTPrS%R � KjhQNTPrS�R QPCAFR � K


jhQNTPrS�R 

Binding of TFIIA to the non-

transactivated promoter site 

                           Kkh 

NTPrS% 	TFIIA⇌ NTPrS' 
QNTPrS'R � KkhQNTPrS%R QTFIIAR � K


khQNTPrS%R 

Binding of TFIIB to the non-
transactivated promoter site 

          K�$h 

NTPrS' 	TFIIB⇌ NTPrS  
QNTPrS R � K�$hQNTPrS'R QTFIIBR � K


�$h QNTPrS'R 

Binding of TFIID to the non-

transactivated promoter site 

                            K��h 

NTPrS 	TFIID⇌ NTPrS^ 
QNTPrS^R � K��hQNTPrS R QTFIIDR � K


��h QNTPrS R 

Binding of CBP/p300 to the 

transactivated promoter site 

                                   Kgm 

TPrS$ 	CBP/p300⇌ TPrS� 
QTPrS�R � KgmQTPrS$R QCBPR� K


gmQTPrS$R 

Binding of PCAF to the 

transactivated promoter site 

                        Kjm 

TPrS� 	PCAF⇌ TPrS%  
 QTPrS%R � KjmQTPrS�R QPCAFR � K


jmQTPrS�R 

Binding of TFIIA to the 

transactivated promoter site 

                         Kkm 

TPrS% 	TFIIA⇌ TPrS' 
QTPrS'R � KkmQTPrS%R QTFIIAR � K


kmQTPrS%R 

Binding of TFIIB to the 

transactivated promoter site 

                        K�$m 

TPrS' 	TFIIB⇌ TPrS  
QTPrS R � K�$mQTPrS'R QTFIIBR � K


�$mQTPrS'R 

Binding of TFIID to the 

transactivated promoter site 

                        K��m 

TPrS 	TFIID⇌ TPrS^ 
QTPrS^R � K��mQTPrS R QTFIIDR � K


��mQTPrS R 

Rex multimerization: protein Rex multimerizes46, but the exact kind of multimer it forms is not known; in 
particular, there is evidence that Rex at least dimerizes47, but the formation of complexes of higher orders like 
pentamers or hexamers is likely as well. To describe Rex multimerization, the Helfferich procedure for multistep 
reactions48 is applied, summarizing with K12 the ratio of the overall forward and backward kinetics constants. Like 
Tax, also Rex is a shuttling protein49 and only its nuclear fraction is involved in the nuclear export of incompletely 
spliced transcripts. Table A.3 summarizes the chemical reactions and the corresponding equilibria; with the symbol 
z we indicate the number of Rex molecules involved in the multimer formation, e.g. z=2 for dimers and z=5 for 
pentamers. 
 
Table A.3. Chemical reactions and the corresponding equilibria concerning Rex multimerization and its transfer to the nucleus. 

Rex multimerization                 K12 

z REX ⇌… ⇌REXz  
QREXoR � K�%QREXRo 

Rex  transfer to the nucleus           K13 

REXo⇌ REXo
X

  
QREXo

XR � K�'QREXoR �  K�'K�%QREXRo 

A.2   Slow reactions 

Transcription, translation and the degradation of transcripts and proteins are irreversible and slow reactions; in the 
following we will describe: (1) the transcription of the primary transcript gag; (2) the alternative splicing of gag and 
the nuclear export of mRNAs; (3) the kinetics of the transcript tax/rex; (4) the kinetics of the proteins Tax and Rex; 
and (5) the kinetics of the incompletely spliced transcripts. 
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The transcription of the primary transcript gag: gag synthesis S1(t) is due to the basal transcription S11(t) and to 
the transcription induced by transactivation S12(t). Chemical reactions of the transcription processes S11(t) and S12(t), 
with their mathematical formulations, are shown in Table A.4, where the concentration of RNA polymerase 
(RNAp), is assumed to be constant or in great excess with respect to the viral promoter sites it interacts with. In 
Table A.4, β1 indicates the gain in transcription, i.e. the number of transcripts generated by the binding of a molecule 
of RNAp to DNA and the subsequent process of gag transcription, kt is a reaction rate constant [1/h] and c0 a 
multiplicative constant. 
 
Table A.4. Chemical reactions of transcriptions and the corresponding syntheses of nuclear gag. 

Basal 
transcription 

                  kt NTPrS^ 	 RNAp→NTPrS^ 	 RNAp 	 �� nuclear Gag    
���t� � ��#rs$QNTPrS^R�+� �� ��#rs$K
��hK
�$hK
khK
jhK
ghQNTPrS$R�t� 
With 
transactivation 

              c0kt TPrS^ 	 RNAp → TPrS^ 	 RNAp 	 �� nuclear Gag  
�%�t� � ��t$#rs$QTPrS^R�+� �� ��t$#rs$K
��mK
�$mK
kmK
jmK
gmQTPrS$R�t� 
From the transcription processes S11(t) and S12(t), in molecules/h, of Table A.4, we derive the transcription rates 

S=β1ktp0K
’
11AK

’
10AK

’
9AK ’

8AK ’
7A and S’=β1c0ktp0K

’
11BK

’
10BK

’
9BK ’

8BK ’
7B, in 1/h, for the basal transcription and 

transcription following transactivation, and we call c1 their ratio, i.e. c1= S’/S. To have a better insight on the effects 
of the Tax-induced transactivation on the total gag synthesis S1(t), we introduce the multiplicity of infection (MOI), 
which is the mean number of viral genomes integrated in the host genome per cell. Then, we indicate with [cells] the 
cell concentration in a sample, in number of cells/l. Consequently, the concentration of retroviral genomes integrated 
in the host cells, m, equals MOI*[cells], in number of viral molecules/l. Now, making the working hypothesis that 
all the promoters are demethilated, i.e. none of them is a priori prevented from being involved in transcription, we 
derive that: 

m � QTRER�t� 	 QNTPrS$R�t� 	 QTPrS$R�t� (A.1) 

The total transcription S1(t) is the sum of S11(t) and S12(t). Therefore, by summing up we have: 


��t� � S QNTPrS$R�t�	S’ QTPrS$R�t��  
�QNTPrS0R�t� 	 c1QTPrS0R�t�" (A.2) 

where the constant c1 was introduced to obtain the right-hand side of the equation. Then, from Eq. A.1 and A.2, and 
by some algebraic passages we obtain: 


��t� � 
�m � QTRER�t� 	 �c� � 1�QTPrS$R�t�" �  
�m � QTRER�t�" w1 	 QTPrS$R�t�
m � QTRER�t� �t� � 1�x (A.3) 

Now, we focus on the term Qayz{|R���
}~Qa��R���  of Eq. A.3 and call q3(t) the Tax concentration. From Eq A.1 and 

equilibria of Table A.1 we obtain: 

QTPrS$R�t�
m � QTRER�t� � QTPrS$R�t�

QNTPrS$R�t� 	 QTPrS$R�t� �  q'�t�%
h�% 	 q'�t�% with: h�% � �`���`�

1
�^K%K� (A.4) 

Eq. A.4 shows that an elevated Tax concentration increases the number of transactivated promoter sites among 
the promoters involved in transcription, which are [TPrS0](t)+[NTPrS0](t). Then, by inserting the right term of Eq. 
A.4 in Eq. A.3 the synthesis of nuclear gag becomes: 


��t� �  
�m � QTRER�t�" 	 �m � QTRER�t�" 
 �′� ������
����������   (A.5) 

where β’
1=c1-1 is the transactivation constant (adimensional). Eq. A.5 shows a saturative effect of Tax concentration 

on gag synthesis given by the term 
������

���������� , which can be due to the limited number of integrated viral promoter 

sites; in other words once they have been all transactivated, the gag transcription S1(t) saturates and no further 
increase is possible. Now, let p1=[CREB], which is assumed to be constant or in great excess with respect to the 
viral promoter sites it interacts with, and focus on the term m-[TRE](t). From equilibria of Table A.1 and Eq. A.1, 
and by several algebraic passages we obtain: 

m � QTRER�t� � m � ;
f�p�, q'�t��  (A.6) 

where: 
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f�p� , q'�t�� � 1 	 p�
%

�%
% 	

p�
%

�%
%

1
��%

q'�t�% with h%
% �

1
�`��K K' (A.7) 

Eq. A.6 implies that if there is a lot of Tax or CREB then f�p�, q'�t�� � m  and, consequently, m � QTRER�t� � ;, 
i.e. the number of promoter sites which are not involved in transcription becomes negligible. Therefore, by inserting 
the right term of Eq. A.6 in Eq. A.5, the synthesis of gag becomes: 


��+� � 
 w; � ;
��s� , �'�+��  x 	 wm � ;

��s�, �'�+��  x 
 ��
  q'�t�%
h�% 	 q'�t�% (A.8) 

The alternative splicing of gag and the transfer of mRNAs to the cytoplasm: in presence of nuclear Rex, the 
transcripts are transferred incompletely spliced to the cytoplasm whereas, in absence of Rex, gag is doubly spliced 
into tax/rex13. Quantitatively, the amount of incompletely spliced RNAs transferred to the cytoplasm depends on the 
fraction of gag molecules which interact with multimers of Rex in the nucleus. This fraction is represented by the 
function g(q��t�, � �t�, !), see Eq. A.9-11.  
 
g�q��t�, � �+�, !� � 

 �������),
�� �  �),

��-
�

��  
with �'D � �

������ If  
�),
��, . q� and q� / 0 (A.9) 

1 If  �),
��, / q�and q� / 0 (A.10) 

0 If  q� � 0 (A.11) 

where the variable q4(t) represents the Rex concentration in the sample, and the algebraic passages derive from the 
equilibria of Table A.3. The transcripts that are not transferred to the cytoplasm are degraded by the nuclear 
enzymes. Therefore, the total decay of gag in the nucleus is due to the nuclear export plus the nuclear degradation 
(see reactions in Table A.5, where ks and k01 are reaction rate constants, and c2 is a multiplicative constant; for 
simplicity, the splicing and the nuclear export are condensed into a unique reaction). 
 
Table A.5. Nuclear gag decay is due to the nuclear export of incompletely spliced RNAs (with Rex case), the splicing and nuclear export of 
doubly spliced RNAs (without Rex case) and to the nuclear degradation of the transcripts. 

with Rex 
                                 ks 
Nuclear gag + Rexz →  
→ Cytoplasmatic incompletely spliced RNA + Rexz 

L11�τ��  g�q��t�, � �+�, !� k����t� 

without Rex 
                                                         c2ks 
Nuclear gag+ ∑ �s��t��> ��t+��� � →  
→ Cytoplasmatic tax/rex +∑ �s��t��> ��t+����   

L12�τ�� �1 � g�q��t�, � �+�, !�" c% k����t� 
Nuclear 
degradation 

                      k01 
Nuclear gag→  D1�τ�� �1 � g�q��t�, � �+�, !�" k$����t� 

The sum of the three addends of Table A.5 is:  

Nuclear gag decay�t� � L���t� 	 L�%�t� 	 D��t� �   
(A.12) � g�q��t�, � �+�, !� k����+� 	 �1 � g�q��t�, � �+�, !�" c% k� ���+� 	  �1 � g�q��t�, � �+�, !�" k$����t� 

Therefore, by considering gag synthesis (Eq. A.8) and nuclear decay (Eq. A.12), the rate equation for nuclear 
gag is: 
���
�r  = 
��t� � ��t���� >�> �ecay�t� � 

(A.13) � 
 w; � ;
��s�, �'�+��  x 	 wm � ;

��s�, �'�+��  x 
 ��
  q'�t�%
h�% 	 q'�t�% � g�q��t�, � �+�, !�k����t� � �1 � g�q��t�, � �t��� �c% k� 	 #$�"���t� 

where q1(t) represents the concentration of nuclear gag, in molecules/l. 
The kinetics of the transcript tax/rex: tax/rex kinetics is given in Eq. A.14, where S2(t) is the synthesis following 

the double splicing of nuclear gag, i.e. S2(t)=L12(t) (Table A.5), and D2(t) represents the degradation; the reactions 
are reported in Table A.6, where k02 is the reaction rate constant of the tax/rex degradation process. Therefore, the 
rate equation for tax/rex is: 

���
�r  = S%�t� � �%�+� �  �1 � g�q��t�, � �+�, !�"c% k� ���t� � #$% �%�t�   (A.14) 

where q2(t) represents the tax/rex concentration, in molecules/l. 
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Table A.6. Transcript tax/rex kinetics is due to two terms: synthesis, by double splicing of nuclear gag, and degradation. 

tax/rex synthesis                                                         c2ks 
Nuclear Gag+ ∑ �s��t��> ��t+��� � →  
→ Cytoplasmatic tax/rex +∑ �s��t��> ��t+����   

S2(t)= L12�τ�� �1 � g�q��t�, � �+�, !�" c% k� ���t� 
tax/rex 
degradation 

            k02 
tax/rex →  �%�+� � #$% �%�t�  

The kinetics of the proteins Tax and Rex: Tax and Rex are translated from the same transcript tax/rex; their 
synthesis reactions are shown in Table A.7, where kT3 and kT4 are reaction rate constants [1/h], β3 and β4 the gains in 
protein translations [protein molecules/transcript molecules], and β

’
3, β

’
4 their products [molecules/(molecules*h)]. 

 
Table A.7. Reactions of translation of the regulatory proteins Tax and Rex. 

Tax synthesis                 kT3 tax/rex  → tax/rex + �' Tax 
'(t) = ka' �' �%(+) = �
'��(t) 
Rex synthesis               kT4 tax/rex → tax/rex + �  Rex 
 (t) = #�  �  �%(t) = �
 ��(t) 

Therefore, the rate equations for Tax and Rex are: 

���
�r  =
'(t) � �'(t) = �
'�%(t) � #$'�'(t)       (A.15) 

��)
�r  =
 (t) � � (t) = �
 �%(t) � #$ � (t)          (A.16) 

where q3(t) and q4(t) represent the concentrations [molecules/l] of Tax and Rex, respectively, and k03 and k04 are the 
rate constants of the corresponding degradation reactions. 

The kinetics of the incompletely spliced transcripts: analogously to tax/rex, the rate equations of the 
incompletely spliced RNAs are:  

��� 
�r  =   
^�(t) � �^�(t) =  �̂ �g(q�(t), � (+), !) k� ��(+) � #$^�  �^�(t)  with i=1,..,n (A.17) 

where q5i(t) represent the concentrations of incompletely spliced RNAs, k05i are the rate constants of the 
corresponding degradation reactions, and �� are the fractions of nuclear gag singly spliced into each transcript (or 
remained unspliced in the case of the cytoplasmatic gag) and transferred to the cytoplasm. 

From the rate equations (Eq. 13-17), a system of differential equations was derived. To limit the complexity of 
the model, a number of assumptions were made: 

Simplification 1: Grone et al.14 observed that the total viral RNA in the sample is Rex-independent. From Eq. 
A.13, A.14 and A.17, total RNA is:  

¡ (���
�¢ + ��%

�¢ + £�
�

$
 ��^�

�¢ )�¢ = ¡ Q 
�(¢) � ��(¢) � �%(¢) � £��^�(¢)R�¢
r

$
  (A.18) 

If the nuclear degradation D1(t) is negligible with respect to the other addends, the total viral RNA does not 
depend on Rex, thus leading to k01 in Eq. A.13 much smaller than the transcript degradation rates. For simplicity, k01 
was set to 0 in Eq. A.13. 

Simplification 2: we assume that the multiplicity of infection is so low that 
¤

¥�¦�,��(r)� ≈ 0 in Eq. A.13.  Since the 

MOI can be regulated at the time of virus delivery by the titer of viral particles, this condition is attainable. 
Simplification 3: we assume that the nuclear-cytoplasmatic transport take place with the same rate for every 

transcript, i.e. ks≈c2ks in Eq. A.13.  

Simplification 4: since the kinetics of incompletely spliced RNAs do not affect the possible oscillatory behavior 
of tax/rex and gag, their kinetics were excluded from further considerations. 

From Simplifications 1-4, we obtain the system of differential equations of Eq. A.19-22: 
���
��  = m S + m 
 ��
  ��(�)�

������(�)� � k���(t) (A.19) 
���
��  = �1 � g(q�(t), � (t), !)" k���(t) � #$% �%(t)   (A.20) 

���
��  = �
'�%(t) � #$'�'(t) (A.21) 

���
��  = �
 �%(t) � #$ � (t) (A.22) 
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