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Shear band localization in saturated porous media (*)

B.A. SCHREFLER, C.E. MAJORANA
and L. SANAVIA (PADOVA)

A COMPUTATIONAL ANALYSES of dynamic strain localization in multiphase solids is presented in this
paper. The governing equations are obtained by means of averaging theories based on spatial aver-
aging operators. Continum wave propagation is used for the study of localization. The directions
of localization are obtained by means of an eigenvaluc analysis of the acoustic tensor. The inves-
tigation of the development of localized bands is carried out by means of a finite element code.
The influence on localization of coupling between the constituents is studied. Several examples are

shown,
Notation
s solid phase,
F fluid phase,
g gaseous phase,
! liquid phase,
a solid acceleration,
a’  fluid acceleration,
b body force vector,
B acoustic tensor,
¢ acceleration wave specd,
O, specific moisture content,
Cr tangential copstitutive tensor,
D Eulerian strain rate tensor,
d/dt malerial iime derivative with respect to the moving solid,
e void ratio,
fi 8f)0m:i,
fre 8fj8X:,
7 gravity acceleration,
E deformation tensor,
F deformation gradient tensor,
G dynamic seepage matrix,
H permeability matrix,
I identity matrix 3 x 3,
K. solid grain bulk modulus,
Ko overall skeleton bulk modulus,
K fluid phase bulk modulus,
k. liquid phase relative permeability,
kot absolute permeability tensor,
k = k,,;kﬁ& permeability tensor,
Kr tangential stiffness tensor,
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initial stress tensor,

velocity gradient tensor,
mass matrix,

1110007,

gas pressure,

water pressure,

equivalent force vector,
coupled matrix,

average relative water velocity,
average relative gas velocity,
rotation tensor,
compressibility matrix,

walter saturation,

gas saturation,
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surface traction tenosor,

solid displacements,

right stretch tensor,

solid velocity,

fluid velocity,

relative velocity,

left stretch tensor,

spin tensor,

Biot’s coefficient,

Newmark’s parameters,
linear elastic strain tensor,
material rotation rate tensor,
normal jump of the spatial velocity gradient,
liquid dynamic viscosity,
"porous medium density,
solid grain density,

water density,

gas density,

Cauchy stress tensor,

J&  Jaumann stress rate tensor,
o' effective stress tensor,
¢  porosity.

Variable with overbar refers to the nodal values.
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1. Introduction

(GEOMATERIALS EXHIBIT, both in laboratory experiments and in field situations
strain accumulations in well defined narrow zones. In such shear bands, material
behaviour is inelastic, while the remaining zones are elastic, with infinitesimal
strains. The triggering mechanisms for the formation of shear bands are inho-
mogeneities in the material and stress concentrations. Typical examples can be
found in brittle geomaterials such as concrete and rocks, where progressive dam-
age produces strain softening, or in soil as for instance in case of slope instability
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or foundation failure. When the frictional properties of the material are miore
critical than the cohesive properties, we have Mode II (shear banding) dominated
processes which may be simulated by plasticity models.

The analysis of strain localization is of importance in engineering practice be-
cause localization is a precursor to failure. In this work we present the theoretical
framework of localization in geomaterials and the results of the first developments
of computational investigations. Geomaterials are considered as multiphase ma-
terials in fully saturated conditions. The final aim however is to develop a model
applicable both to fully saturated and partially saturated conditions.

It will be shown that the role of the fluid in localization is fundamental, since
shear band formation preceding failure is affected by the interaction between
solids and fluids, in terms of time sequence of band formation and the way of
shear band development. '

The topic of strain localization has been analysed in recent years by many
authors, in particular in connection with single-phase solids [14]. The problem
of dynamic localization in single phase solids has been investigated, e.g., by
SLuys [19]. Strain localization in multi-phase materials received less attention.
Quasi-static cases were studied by Rice [16] and Rupnickr [17]) and dynamic
cases by VARDOULAKIS [22]. A finite element analysis of dynamic strain localiza-
tion of saturated porous media was first presented by LoreT and PrRevosT [10].

In the present paper we also use the dynamics of wave propagation [2] to
investigate localization. Loret et Prevost applied a uniform axial compressive
velocity jump along the top and bottom of a specimen, while Stuys used compres-
sive impact loading. In both cases high frequency situations are studied where
localization is initiated when the elastic loading wave hits the symmetry line (or
immediately after). Here we show that dynamic localization may also be initiated
by ramp loading which is more common in practical engineering situations. Lo-
calization starts here well after the first wave front hits the symmetry line but, as
in the above cases, no weak element is needed to trigger off the formation of a
shear band. This means that at least in fluid saturated media, propagating waves
are not negligible even if a relatively small number of low frequencies govern the
response. :

The acoustic tensor is used as a search algorithm to determine the inclination
angle of the shear band and as a check of the obtained numerical solution. This
information may be used for mesh alignment. Coupling phenomena between solid
skeleton and pore fluid are investigated in detail and the influence of permeabil-
ity in fully saturated sitnations is pointed out. Pore pressure localization is also
shown.

Since we aim to extend the model to partially saturated conditions, we treat
the porous medium as a three-phase continuum, with the pores filled by water
and air.

The fully saturated case, dealt with here, is only a subcase of the more general
model. This model is explained next, following [12].




580 B.A. SCHREFLER, C.E. MAJORANA AND L. SANAviA

2. Mechanics of porous materials

2.1. Mathematical framework

2.1.1. Kinematics. The kinematics needed in the following is briefly recalled first.

Strain behaviour is locally defined by the deformation gradient tensor F [11,
12]. The polar decomposition theorem allows to express pure straining by the
right stretch tensor U or the left stretch tensor V, while the rigid body rotation
is described by the skew-symmetric tensor R: '

(2.1) Fij =i = Rip Up; = Vip B .

The deformation process is described by the velocity gradient tensor L, which,
referred to spatial coordinates, is given by

(2.2) L =uv;= (R;m Unik + Rim é’mk) (R Uiy

Tts symmetric part is the Bulerian strain rate tensor D, related to pure straining
component according to:

1 1 . . :
@23) Dy =5 + L) = 3Rk | Ukn )™ + Uin) ™ V] B,

while its skew-symmetric component is the spin tensor W. This is commonly
associated with the material rotation rate tensor ® = RRY [13] (giving the
angular velocity of the material [4]}, even if it differs from it according to the
following expression:

1 - 1 .
(2.4) Wi = s(Li; — Lji})= RigRjp + ERik [Ukn(Unm)_l

2
_(U;m)“1 T,-fnm] Bim .

The approach adopted here to study the overall behaviour of multiphase me-
dia is an updated Lagrangian formulation, where the reference configuration is
the last converged step. This description is properly Lagrangian only for the solid
phase, while it is Eulerian in nature for the fluids: their relative flows are of im-
portance here, hence their motion is referred to the actual configuration assumed
by the solid skeleton.

The velocity and acceleration of each fluid particle can then be written with
reference to the ones of the corresponding solid points, once the relative velocity,
v", is introduced. Assuming that kinematics variables not explicitly marked refer
to the solid phase motion, we can write:

du?
di

where d/dt is the material time derivative with respect to the moving solid.

(2.5) vl = v 407, af =a;+ + o5 (v + 075,
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An average relative fluid velocity is obtained through averaging technique over
a representative volume element dV. This velocity component is indicated by ¢;
for the liquid phase [18]:
_ dVy dV;
P av dvy

(2.6) v’ =g (v7) = 68 (v,")]

and by g; for the gaseous phase.

(2.7) 09 = q; dVy 4V,

= i N — _ VG
7 4 dV de Eh )g ¢(1 S)(’Ui )g *

The averaging symbol ( ) is omitted in the following.

2.1.2. Balance equations. The macroscopic balance equations of mass and momen-
tum are also obtained by means of systematic application of averaging procedures
[7-9, 18] to the relevant balance equations of the constituents at microscopic
level. The ensuing macroscopic balance equations coincide under appropriate as-
sumptions with those of the classical mixture theories, integrated by the concept
of volume fractions [6].

In the following, deviatoric stress components are not considered in fluids and
compressive pore pressure is defined as positive, At the macroscopic level, the
effects due to deviatoric stress components are accounted for through Darcy’s
law, by viscous drag forces exerted on the solid phase. Isothermal conditions and
no phase changes are assumed and the phases are immiscible and chemically
non-reacting.

The linear momentum balance equation for the whole mixture may be locally
written in its Eulerian form [12] as:

(2.8)  obi+o0ij; — oai — dor(a’ — a;)

dv f » _
= le + JJ:/'J — Q0; = @f [gb di + q_? (’Ui/j + 'Dz/.;u)] = 0

When this local conditicn is written for one phase alone, a specific term must be
introduced to take into account the mechanical interactions occurring at the real
interfaces with the other phases. These surfaces differ, in fact, from the boundary
of the representative volume element over which the quantities are averaged. The
external momentum supply represents the dissipative part of fluid-solid exchange,

(2.9) S5 = ¢osaf - Py — desbi.

The mass conservation equation is introduced in its local form for the mixture
water plus solid:

(I-¢)dos ¢ dor ¢dS i
05 dt+gldt+57ﬂ+5

% =
(2.10) vigi +Sm@M 0,
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and for the mixture gas plus solid:

s ¢) dos _i@_g__*_ ¢ d1-5) dy

@) my 25 a-5) d (1-5)
+'——S—)'Q—(Qg)/1 =

According to the updated Lagrangian formulation applied, the convective
components of acceleration must be considered only for the relative velocity of the
fluids. Effective stress with the correction for multiphase flow, where saturations
are used as weights, and with the further correction [24] for the deformability of
the grains (with @ = 1 — Kr/Kg), is now introduced in the linear momentum
balance equation. The equilibrium condition for the whole mixture can be written
in its weak form as virtual velocity equation:

(2.12) f [0t — abii(Sp + (1~ S)py)] DijdV — f fvidA — ] obiv; dV
14 . A Vv

v Q%—v’dhﬁ[g‘gd (75) + 00~ 9% (zrtss )| v

+ V/ ¢ {91% (g—g) p + 049, <w%5) /j] v dV =0

The weak form of the continuity equations is obtained by integrating over the
porous media volume the local conditions weighted with functions §p,, which
have continuity up to their first derivatives and satisfy the boundary conditions.
The equation for water plus solid becomes [12]:

(213) /5p[ {O:S'Di,i + CH}'.)J + C[g}'-).é + [-(I%qs—)(pg —pg) + ¢] 5 } dv
14
+ [on e(g‘)’ ‘v + [Eppav + ] Spigen:dA = 0
v v

and for the mixture gas plus solid:

. . [C :
@19 [op, {all= S+ Cunby + Cuby - [ Rl —m) + 6] 5 fav
14

+ f 844 /N f ()i AV + / §pyainidA =0
v & v A

(see Appendix for the coefficients Cyy, Cjy and Cyp).
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2.13. Constitutive relationships. A hypoelastic constitutive relationship is here ado-
pted. When dealing with large deformation effects, involving also large rotations,
care must be taken in the material frame invariance of the law itself. This can
be obtained by expressing the constitutive law as a function of objective fields,
which here are chosen as the objective Eulerian strain rate D (Eq. (2.3)) and the
associated objective stress rate measure defined by Jaumann [12], which is related
to the Cauchy stress rate by the non-objective spin tensor, W (Eq. (2.4) through:

Jr = 2 . = A R ...
(2.15) Gij = 0ij — 0 Wik — O jWen = 645 — Gy
with RO',-J- = oW + oWk -

The constitutive law taking into account the modified effective stress principle
mentioned above can thus be written in incremental form as:

(2.16) 5 = Ciju Dyt ~ a5z;~ (sz +(1- S)Pg) +Fay;.

The Jaumann stress rate tensor can be properly used as a co-rotational measure
associated with D in an updated Lagrangian approach with the strain increments
kept small enough in each step of the analysis. In this hypothesis not only D gives
a suitable description of the strain rate, but also W is an accurate approximation
of the local angular velocity. This approach can also be used for elasto-plastic
analyses, and leads to a good approximation in the hypothesis of small elastic
components of deformation [12].

As far as the fluid phases are concerned, the constitutive equation governing
the momentum exchange among different phases can be expressed as a function
of average relative velocity, ¢/, once its frame invariance is proved. The latter
variable depends on volume fractions, which are objective being scalar, and on
the relative velocity, v", which is also frame indifferent [12].

A thermodynamically consistent constitutive equation is then introduced for
the dissipative part of fluid-solid exchange of momentum, which is related to fluid
relative average velocity through the resistivity tensor ®f

2.17) ' S“’f = ¢®fq; .

This relationship leads in fully saturated conditions to the generalised Darcy’s
law, which can be written in the following form:

(2.18) 0 = (kat)is [—(Pr)/j +oi(b; — aj)] -

For partially saturated conditions, the absolute permeability tensor k,; must be
multiplied by the relative permeability k., given as function of p; [18]. A similar
relationship has to be written for the gas phase.
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The symmetric tensor k,;, when the permeability is distributed in an anisotropic
way, is updated according to k } = R7k,R.

In finite deformations this permeability tensor should be further updated if it
is assumed to be a function of void ratio e, defined as the ratio between the void
volume over the solid one. Being ¢, in the initial configuration,

v} _dv,—dVp _ 4,
dvs —  dV: T 1—4,

(2.19) e, =

we have in the actual configuration

_ ¢ _dV _dv dv, dvy _ -1
(2.20) e—1_¢—d—_V:—l—d—V;;dVosts—l—*J(l—eg)Js .

Using an updated Lagrangian approach with time step increments small enough
to have in each of them only a negligible contribution from the second order
strain component, volume strain Is satisfactorily approximated by the trace of the
linear strain tensor. The current void ratio can then be evaluated by neglecting
the specific contribution of proper grain deformation to the overall volume strain,
which leads to

(2.21) e={1+e)1+tre)—1=e, + (1 +e,)tre.

2.1.4, Simplified governing equations. The numerical formulation actually implemented
is developed assuming the gas phase at atmospheric pressure (p, = 0).

Convective components of pressure and fluid density variation, which are secen
to be not significant, are neglected and air density is assumed to be zero. In this
case the mass balance of the rmxture gas plus solid gives only the au‘ flow and
needs not to be considered.

Another simplification arises when acceleration frequencws are low as is the
case in earthquake motion: all the terms involving the relative ‘component of fluid
acceleration can then be ignored [24], being:

i(3),
b5

d (g )

- | (5) + o
This allows for reducing the primary variables to solid displacements and fluid
pressure, and the final system to be solved consists of the momentum balance

condition for the whole mixture and the continuity equation for the mixture water
plus solid:

< |ail.

(2.22) \aj —a;

(2.23 ol D dV— (@b SpiDs; dV — [ fividA— fpbyv; dV — [p b0 dV = 0,
1 2 2
14 v A v v
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(2.24) j 5oy (asv,-,,- + % ;3,) v
14
K, )
+ /(5231)/5 {(kaf)ijI;’ [—(P!)/j + oi(b; ~ aj)] } av + /5P1qmi dA =0,
v ' A

where, in the hypothesis of an isotropic medium, Darcy’s law has been introduced
in its generalised form.

The incremental solution of our problem can be obtained once the incremental
form of the constitutive equation is given: -

(2.25) dagj = ;jkf.Dk[ dt — aﬁ;dep + dRO'gj
together with the saturation relationships
' ds
(226) = sz 5= S(pg), k,-[ = krg(pj), CS = ¢d_;u N
and the initial
(2.27) up =ug; ;U= g,  P=Po,
and the boundary conditions are introduced:
a) imposed displacements wu; =%; on I, for ¢>0,
(2.28) b) imposed tractions =1 on Iy for t>0,
) ¢) imposed pressures pm=p on Iy fort>0,
d) imposed flows ¢=q; on I, fort>0.

2.1.5. Spatial and time discretization. For a quantitative solution, Egs.(2.23) and
(2.24) are discretised in space by finite elements using Galerkin’s procedure, and
in time by Newmark’s scheme [26]. The unknown field variables are expressed in
the whole domain by global shape function matrices, N and N,, as functions of
nodal value vectors u and p;:

(2.29) u=Nw, p=Njp.

In the updated Lagrangian approach adopted, the strain operator, B,, which
relates the strain rate vector with the vector of nodal velocities, is referred to the
last known configuration

(2.30) D=B,v.

- Once the coupling matrix Q, the mass matrix M and the external load vector f*
are introduced (see Appendix), the equilibrium equation (2.23) can be written as

(2.31) /BZG"dV —Qp +M u=f*.
1%
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The continuity Eq.(2.24) becomes:
(2.32) Hp, +Gu+Q i +Sp, =17,

where H is the permeability matrix, G the dynamic seepage matrix, S the com-
pressibility matrix and f? the flow vector (see Appendix). Since the effect of
the dynamic seepage forcing term is negligible [23], the coupled system at time
toy1 Is: :

233 M1 0,41 +Poi1 ~ QuiaPry = £549,

Q1 0yt + Hoy 1Dy + 841 Py = 144,

where P, is the equivalent nodal force vector. The Newmark scheme adopted
for time integration, with the lowest allowable order for each variable, permits to
write the variables and their derivatives at ¢,,,, as functions of their values at ¢,.:

Wl = Hnt Un AL+ JIATAL = L, + A1AT, A,

il 2 2= 2 dd 2

u, At + frAu, At =P+ BaAw, Al 3
2 2 -kl 2

]_)n+1 = I_,n + ﬁnAt + QAﬁnAt = Ef+1 + OA.ﬁ'n.Atr

(234)  Upqq = Un + WAL+

where ﬁ':H, u-,, and p? , are predicted values from known parameters at
time t,,. _

Insertion of Egs. (2.34) into (2.33) allows the coupled system to be written in
the form

v 1. = My 14 Tn +P,s1 — Quu1OALA, — Ei =0,
235 . : " '
WP = QL JiAtAT, +H,OAAD, + S AP, -F7,,=0.

At the beginning of each time step P,.; must be evaluated by integration of
the constitutive law, the stress field at the previous step being known. Relative
permeability and specific capacity (Eq.(2.26)) must be updated as well as void
ratio and absolute permeability.

- The nonlinear coupled system (2.35) is solved by an iterative procedure. If
a Newton-Raphson scheme is adopted to linearize the problem, the Jacobian
matrix of transformation, J, at the :-th-iteration is:

o ow
2 g 1
N A (4%) 2(89) |_ M+ 5xrsar Qo

o(a%) o(ap)
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The tangent stiffness matrix in Eq.(2.36) has been derived in [12] as

(237) dP = f [BTTB, + G756, ] dudv = (K + K,) du = Ky du.
Vv

Kr is the sum of two terms: the matrix K, corresponding to the linear elastic

stiffness matrix, but referred to the constitutive matrix C, modified by Cauchy
stresses at time ¢, as:

(2.38) C=C-0gy+0snp=C—-0y

and the initial stress matrix K, respectively equal to:

@39) K= [BITp,av, K, = [Gioc,av.
14 v

Since the matrix ¢, lacks in symmetry (see Appendix), K7 is also not symmetric,
but this fact is usually negligible [13].

The system to be solved can then be written in the following form, which is
symmetric provided the tangent stiffness matrix itself is symmetric:

M+%KT,62At2 —QOAt A —p
(2.40) ( )

L= 2]
_QToar -Zmoar+s)|\Ap 57
b1 1
Since the Newton-Raphson method requires the Jacobian matrix to be evalu-
ated and inverted at each iteration, also other modified schemes are used to
achieve convergence with less computational effort. In particular, the use of se-
cant updates, like Davidon’s and Broyden - Fletcher - Goldfarb - Shanno’s (BFGS)

methods are found advantageous in nonlinear analyses.

3. Dynamic localization theory in saturated porous solids

The finite strain localization theory is here based on the analysis of wave
propagation in continuous solids. The first fundamental investigations on this
subject are due to Duhem and Hadamard (1903). A presentation of the theory
in general form and systematic literature references can be found in TRUESDELL
and NorL [20], TruespELL and Toupv [21] and in CHeN [2].

Let 2 be the wave front (here considered as a Riemannian manifold in motion,
through which the acceleration and the velocity gradient can be discontinuous
functions); n is the normal directed outward from the above manifold. Denoting

3.1) : n' = grad 'S
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the normal jump of the spatial velocity gradient of the i-phase along this manifold
(i = s, 1), Hadarmard’s compatibility conditions can be written as

il - 17 i
(3.2) “E.”—wi(n @n+ngr),
(3.3) )x = _cpft,
where Ei is the deformation tensor of the i-phase, ||...| denotes the jump of

the quantity inside the symbol, ¢ represents the velocity of the manifold X with
respect to the material frame of the analysed solid and ® is, as usual, the dyadic
or tensor product. Consequently, momentum equilibrium equations impose the
condition ‘

(3.4) I16°]m = giey'.
Expressing the constitutive relationship in incremental form, LORET and PREVOST

have shown in [10] that for the saturated case, ¢2, squares of the wave propagation
velocities coincide with the eigenvalues of the acoustic tensor B, expressed by:

B Bs[
(3.5) | B= ((Bs[)T Bl )’
1 K . - . 1 1-¢ .
where BY = = = > 0 is a positive scalar quantity, B* = ——Kmis a-
o' ¢ Voot ¢

1 . ..
vector and B** = —n-A®%.n is a second order tensor containing the tensor of the

solid moduli.

The hyperbolicity condition of the problem, implying an effective wave propa-
gation, requires real values of the propagation velocity ¢. Consequently the eigen-
values of the tensor B must be real and positive. B inherits the symmetry prop-
erties of the solid moduli tensor and is hence symmetric for associative plasticity.
In this case the eigenvalues are real and loss of hyperbolicity occurs in form of
a stationary wave. In [10] it has been shown that the loss of hyperbolicity cannot
occur for a positive plastic modulus. In case of non-associative plasticity B is no
longer symmetric and Ioss of hyperbolicity may occur in form of flutter instability
[10], where two square wave speeds become complex conjugate. In the following
we assume associative plasticity and monitor the loss of hyperbolicity checking
the sign of det B in the Gauss points.

Developing the determinant of B matrix, it can be observed that the global
result is related to the evolution of the constitutive parameters of the solid skele-
ton and the analysis of strain localization is reduced to the study of the sign of
n.A’*s.n [10]. '
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In the two-dimensional case, n; = cosd, ny = sind hold; if one poses z =
tan 9, the following expression is obtained

detB(n) = P(z) = asz? + a323 + ayz® + a1z + ag;

hence conditions for the onset of finite strain localization is transformed into
a problem of searching the roots of a fourth degree polynomial or to find its
minima by studying their signs (to find physically meaningful solutions).

4, Numerical examples

The two-dimensional domain of fully saturated porous material is discretised
by means of isoparametric triangular or quadrilateral finite elements. Linear finite
elements have been chosen because of their computational efficiency in nonlinear
analysis and their low distortional characteristics.

The finite elements used for discretising the problem have not been intention-
ally oriented along particular lines (unbiased mesh).

The performed analyses show in particular:

i) the necessity of softening in the constitutive law (associative plasticity) to
have shear band formation,

ii} the influence of permeability on band growth,

iii) particular patterns of stresses, pressures and strains with respect to the
corresponding ones in hardening plasticity or elasticity,

iv) a weak mesh dependence of the results.

4.1. Quadrilateral sample

The onset and growth of localized bands in a soil sample of rectangular shape
‘made of saturated material of dimensions 25 x 35m are analysed (Fig.1). The
sample is subject to axial compression by means of uniformly distributed loads
both on the upper and lower surfaces, as also indicated in Fig. 1.

The solid and fluid domains are not subject to any initial stress state (hence
gravitational effects or hydrostatic pressures are not accounted for). In the fluid
discretization the top and bottom surfaces are considered impermeablie.

In the considered model, homogeneous and isotropic solid and fluid phases
are taken into account. The constitutive relationship of the solid skeleton is of
Mobr-Coulomb type, with a linear displacement-strain relationship.

It can be noted that plastic strains are concentrated in narrow bands of finite
amplitude where high strain gradients occur (Fig. 2). In Fig. 3 localization direc-
tions are shown as found with the procedure based on the analysis of the acoustic
tensor. :

Figure 4 shows that in case of plasticity with hardening no band formation
appears. :
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F1G. 5. Comparison between total axial strains vs. time in a Gauss point close to the centre, in
the linear elastic case and in plasticity with softening.
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F16G. 6. Comparison between pressures vs. timé in the central node in the linear elastic case and
in plasticity with softening.

The time transients of strains (Fig. 5) and pressures (Fig. 6) are characterized
by a wave form, with a marked regularity up to the onset of the shear band
formation (¢ < 0.3s), since the plastic effect is yet limited. Plastic strain shows
a different pattern, characterized by a plateau (Fig. 7). For ¢t > 0.3s loss of peri-
odicity can be noted in Fig.5, as well as a sudden development of pore water
tractions (Fig. 6). -
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F1a. 8. Effective plastic strains at ¢ = 0.375s with a permeability of 0.25E — 03ms.
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It should be noted that the material properties for the Mohr-Coulomb model
chosen are those of a sand which dilates because of shear. The shear -band has
hence higher porosity, which implies transient flow into it. In the example, water
cannot flow fast enough hence pore water traction develops in the shear band
as can be clearly seen in Figs. 6 and 10.

4.2, Influence of permeability

The permeability affects the degree of coupling between the two phases and
presents a siganificant role in the development of localization. The lower is its
value, the higher is the part of the load increment assumed by water and the
slower is the transfer to the solid skeleton. Hence coupling effects increase as the
permeability decreases.
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F1a. 9. Effective plastic strains at 1 = 0.375 s with a permeability of 0.25F — 10m/s.

In localization this implies the variation of the plastic strain levels (Fig. 7), the
change of band dimension (compare Figs.2 and 8) up to the disappearance of
their formation (Fig. 9). For a permeablhty of 0.25 F — 03 m/s, pore water pressure
localization develops as shown in Fig. 10. As noted previously, we have pore water
tractions in the shear band. For a permeability value of 0.25m/s, no such pore
pressure localization has been observed.
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Fri. 10. Nodal pressures at ¢ = 0.375s with a permeability of 0.255 — 03 m/s.

4.3. Dependence on spatial discretization

Using in a single phase material a rate or gradient-independent material
model, the localization is strongly dependent on the chosen discretization, and
the numerical solution cannot have a physical meaning. This is connected with
the presence of a softening branch in the constitutive relationship, responsible
for the loss of hyperbolicity in the equations of motion. The wave propagation
disappears because either a wave with zero velocity or two waves with imaginary
velocities {stationary jump) appear. Such statement can be easily demonstrated

in the one-dimensional case, where the wave velocity is equal to &1/ Dep/o, Dep
being the elastoplastic modulus (negative in the softening branch). Hence the sys-
tem of differential equations becomes ill-posed, i.e. is strongly dependent on the
initial and boundary conditions. The absence of a scale parameter in the consti-
tutive law leads to the dependence of the band width on the element dimension.
Such an internal length scale may be introduced either by using a model with
polar constituents, see e.g. PASTOR ef al. [15], gradient-dependent plasticity {6] or
rate-dependent plasticity.

The tests carried out with program Swandyne [23, 12] have shown that for a
multiphase material the situation is not so dramatic, because of the natural pres-
ence of a Laplacian (Eqs. (2.10) and (2.18)). The use of rate-dependent plasticity,
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e.g. of the model of Duvaut-Lions [5], improves the performance only slightly,
This topic will however be further pursued.
5. Conclusions

This paper shows early results of a research in progress on localization in two
or three-phase geomaterials. The possibility of initiation of shear band formation
using ramp loading has been shown in fully saturated conditions. The influence
of permeability on shear band formation has been investigated in some detail.
Many questions are still open, especially as far as partially saturated conditions
are concerned. The numerical tool presented in this paper is however a good
starting point to solve these problems with some degree of confidence.
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Appendix
coupling matrix Q = / BI'SmN, dV,
- v
mass matrix M = / NTos(1 — ) + 0:$SN, 4V,
A .
permeability matrix H = / (VN,)T K, VN, dV,
1%
dynamic seepage matrix G = f (VNP)T k o/N, dV,
%
compressibility matrix S = f Ng—clj—Np av,
v
external load vector f* = / NT[os(1 — ¢) + 16STbdV + / NTtdA,
v A

flow vector f? = / (VN,) kb dV — / NqundA,
v A

equivalent force vector P = j Blo"dv,
' v
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