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[1] In recent years geophysical methods have become increasingly popular for
hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a
potentially powerful tool for subsurface solute transport characterization since a full picture
of the spatiotemporal evolution of the process can be obtained. However, the quantitative
interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical
inversion, the constitutive models linking geophysical and hydrological quantities, and the a
priori unknown heterogeneous properties of natural formations. Here an approach based on
the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data
assimilation technique is applied to assess the spatial distribution of hydraulic conductivity
K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-
dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous
aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet
numbers the spatial moments of the evolving plume are dominated by the spatial
distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D
images allows updating of the hydrological state as well as the spatial distribution of K.
Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can
be achieved at the same time by means of this interpretation of time-lapse electrical images
from tracer tests. We assess the impact on the performance of the hydrological inversion of
(i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and
(ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can
be integrated into a hydrological model even within an uncoupled inverse modeling
framework. The reconstruction of the hydraulic conductivity spatial distribution is
satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside
from the issues commonly affecting inverse models, the proposed approach is subject to the
problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K
prior geostatistical parameters.
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1. Introduction
[2] Detailed knowledge of soil hydraulic properties is

essential in all hydrogeological applications requiring pre-
dictive modeling and especially for prediction of water flow
and contaminant transport in heterogeneous aquifers. The
challenges posed by aquifer heterogeneity are widely recog-
nized, with abundant literature over the past decades and
many research groups active in developing rigorous stochas-
tic theories [e.g., Dagan, 1989; Gelhar, 1993; Zhang, 2002;
Rubin, 2003]. Unfortunately, these theories have still not

been applied extensively, due to difficulties in collecting
field data suitable to characterize heterogeneity; only a
handful of applications based on actual field sites have been
reported [e.g., Sudicky, 1986; LeBlanc et al., 1991; Neuman
et al., 2007; Sudicky et al., 2010], where an exceedingly
large number of sampling points was available.

[3] Many of the in situ sampling methods that can be
used to determine hydrological properties are expensive
and time consuming, and typically provide only point or in-
tegral measurements, which may not be suitable for charac-
terizing heterogeneous systems. A competitive alternative
is represented by geophysical methods, such as ground
penetrating radar (GPR) [e.g., Annan, 2005] and electrical
resistivity tomography (ERT) [e.g., Binley and Kemna,
2005], which are increasingly used in hydrological and
environmental research and applications. These methods
are relatively inexpensive, nondestructive, and minimally
intrusive, and may allow for hydrogeological properties to
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be estimated at scales of interest to hydrological modeling
[Rubin and Hubbard, 2005; Vereecken et al., 2006]. How-
ever, although these methods promise a significant benefit
to subsurface research, they are intrinsically inaccurate,
due to their need for a geophysical inversion, which is an
ill-posed problem. In other words, identification of many pa-
rameters using relatively little, somewhat noisy information
that is collected only at the domain boundary clearly repre-
sents a difficult challenge [e.g., Menke, 1984]. In addition,
suitable constitutive models linking geophysical and hydro-
logical parameters are needed [e.g., Brovelli and Cassiani,
2010, 2011], often to be calibrated on a site-by-site basis.
These limitations can make geophysical methods more of a
qualitative tool, unless information concerning the relevant
hydrological processes involved are properly taken into
account.

[4] A promising means of using geophysical methods
effectively for hydrological characterization involves there-
fore acquiring time-lapse geophysical data as changes
occur in an aquifer as a result of dynamical variations in
the hydrological state of the subsurface. In ERT, for
instance, the electrical conductivity field is reconstructed
based on current and voltage measurements from boreholes
and/or the ground surface. Electrical conductivity and thus
voltage measurements are sensitive to changes in water sat-
uration or solute concentration [Archie, 1942; Daily et al.,
1992]. Therefore, ERT measurements are not directly
related to the hydraulic parameters needed to predict flow
and transport in variably saturated porous media. For this
reason, geophysical data collected statically may provide
insufficient information regarding the distribution of a par-
ticular hydrological property. In a single image both ‘‘struc-
tural’’ information, related to the medium properties, and
‘‘dynamic’’ information, related to the interactions of the
solute with the porous matrix and pore fluid, are present,
often mixed in an inextricable manner. However, since the
temporal evolution of water content or solute concentra-
tion/salinity, which obviously depend on hydraulic proper-
ties, affect electrical conductivity, a set of time-lapse data
that are sensitive to changes in these hydrological state var-
iables is more closely linked to the distribution of hydraulic
properties through the underlying hydrological process
[e.g., Binley et al., 2002; Kemna et al., 2002; Singha and
Gorelick, 2005; Vanderborght et al., 2005; Cassiani et al.,
2006; Deiana et al., 2007, 2008; Monego et al., 2010].
Several attempts to constrain the hydrogeophysical inverse
problem to reduce inversion error have recently been made
using time-lapse geophysical measurements through a
coupled inversion approach, where the numerical models for
the geophysical and hydrological processes are linked to-
gether such that the geophysical data are inverted directly for
the hydrological properties of interest. Recent applications
include model parameterization obtained from one-dimen-
sional or two-dimensional infiltration experiments in the
vadose zone monitored by GPR [e.g., Looms et al., 2007;
Finsterle and Kowalsky, 2008; Jadoon et al., 2008] or ERT
[e.g., Lehikoinen et al., 2010; Hinnell et al., 2010; Huisman
et al., 2010; Rings et al., 2010] and by ERT monitoring of
tracer test experiments in shallow aquifers [e.g., Pollock and
Cirpka, 2010; Irving and Singha, 2010]. The advantage of
coupled inversion over separated or uncoupled inversion is
that it avoids the formation of geophysical tomographic

images, which are subject to artifacts caused by the regulari-
zation of the geophysical inverse problem that can signifi-
cantly affect the resulting hydrological state estimates [Ferré
et al., 2009].

[5] Although the coupled hydrogeophysical inversion is
an interesting approach that deserves to be fully explored,
in most cases only a deterministic or quasi-deterministic
inversion framework has been considered, which does not
allow for adequate assessment of the inherent heterogenous
nature of the coupled hydrogeophysical system and corre-
sponding model parameter and prediction uncertainties. On
the other hand, because of the high computational effort
typically required by this type of coupled inversion, only in
a few cases has a stochastic approach been considered.
Kowalsky et al. [2005], for instance, did manage to esti-
mate soil hydraulic parameters for a two-dimensional syn-
thetic heterogeneous example and a three-dimensional field
infiltration experiment, by means of a joint inversion of
GPR and hydrological data. Other studies have been lim-
ited only to two-dimensional domains, with some expedi-
ents to reduce the dimensions of the state or parameter
space, such as the integration of temporal moments of elec-
trical potential perturbations as an alternative to the full
transient time series of geoelectrical signals [Pollock and
Cirpka, 2010] or the development of a facies-based subsur-
face parameterization instead of a full cell-based character-
ization of the hydraulic properties [Irving and Singha,
2010].

[6] Three-dimensional reconstruction of heterogeneous
fields of hydraulic conductivity has been attempted by incor-
porating information from other (i.e., nongeophysical) meas-
urements (hydraulic head, hydraulic conductivity, and solute
concentration) by means of Bayesian methods integrated in
groundwater flow and transport modeling frameworks. Chen
and Zhang [2006], for instance, used the ensemble Kalman
filter (EnKF) [Evensen, 1994, 2003] to estimate the aquifer
hydraulic conductivity distribution by assimilating piezomet-
ric values in a relatively limited number of points, while Liu
et al. [2008] used EnKF to assimilate solute concentrations
and assess the distribution of flow and transport parameters
in an experimental site. A different approach, the maximum
a posteriori probability, was adopted by Castagna and Bellin
[2009] to interpret the measurements derived from a syn-
thetic hydraulic tomography experiment and to characterize
the spatial variability of hydraulic conductivity in two- and
three-dimensional domains.

[7] In spite of the recent popularity of fully coupled
inversion approaches, their superiority over ‘‘more tradi-
tional’’ uncoupled methods still needs to be proven. Here a
recent approach [Crestani et al., 2010], developed to infer
the saturated hydraulic conductivity spatial distribution by
the assimilation of geophysical data, is applied using electri-
cal conductivity measurements derived from ERT imaging
of a synthetic tracer test experiment. The objective of this
paper is to demonstrate the effectiveness of the proposed
approach, which integrates a Lagrangian transport model
and an EnKF data assimilation scheme to retrieve the heter-
ogeneous hydraulic properties at the local scale and to
reduce the uncertainty typically associated to the application
of stochastic theories in subsurface hydrological modeling.
A three-dimensional synthetic heterogeneous aquifer with
known statistics (mean, variance, and correlation scales of
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the hydraulic conductivity field) is first generated. A hypo-
thetical tracer cloud with known initial distribution is then
released and the plume evolution in response to a natural
gradient is monitored by the ERT technique in a 3-D cross-
borehole setting. The electrical conductivity field derived
from a state-of-the-art geophysical inversion is then assimi-
lated into the transport model by means of an ensemble Kal-
man filtering approach for a number of different numerical
experiments. Each scenario is characterized by different val-
ues of the prior statistical parameters of the hydraulic con-
ductivity field and different thresholds for the electrical
conductivity values to assimilate, giving useful insights
about the capabilities of the proposed approach to retrieve
hydraulic properties of natural formations in real world
applications.

2. Theory and Methods
2.1. Flow and Transport Model

[8] Following Dagan [1987], we consider a steady ve-
locity field VðxÞ in a saturated heterogeneous porous for-
mation where the concentration is C ¼ 0 everywhere. At
time t ¼ t0, a solute cloud of concentration C0 is injected in
a volume V0. Under the assumption that the solute does not
interact with the solid matrix or the pore water, the entire
plume can be viewed as a sum of infinitesimal particles,
each of mass

dM ¼ �C0ðaÞda; (1)

where � is porosity and a the generic coordinate inside the
volume V0. Field findings [e.g., Gelhar, 1993] show that po-
rosity in natural sedimentary formations exhibits a smaller
variability than other hydraulic properties, e.g., the hydraulic
conductivity KðxÞ, thus for the sake of simplicity � is
assumed constant in the whole domain. According to the
Lagrangian approach, each particle moves along a trajectory
of equation x ¼ Xtðt; a; t0Þda, so that the inherent associated
concentration can be expressed as

�Cðx; t; a; t0Þ ¼ C0ðaÞ�ðx� XtÞda; (2)

where � is the Dirac delta function. From equation (2) the
space-time definition of the concentration is straightfor-
ward and is obtained by simple integration over the whole
injection volume V0. However, our interest is related more
to the average concentration C over a finite voxel �V
whose centroid is located at x, the resulting concentration
field being

Cðx; t; t0Þ ¼
1

�V

Z
�V

Z
V0

�Cðx0; t; a; t0Þdadx0;

¼ 1
�V

Z
�V

Z
V0

C0ðaÞ�½x0 � Xtðt; a; t0Þ�dadx0:

(3)

The size of the voxels can be properly chosen by taking
into account also the physical device used to detect the
value of C in real field applications. For instance, it may be
related to the resolution of a 3-D ERT experiment, as in our

case. Equation (3) links the spatiotemporal concentration
distribution with the Lagrangian flow field, expressed by

Xtðt; a; t0Þ ¼ aþ X ¼ aþ
Z t

t0

V½Xtðt0; a; t0Þ�dt0: (4)

In equation (4) a represents the coordinate vector at time
t ¼ t0 of each trajectory within the volume V0, whereas X
is the displacement originating from the fluid convection
process. In porous formations the effective velocity is
V ¼ q=�, q being Darcy’s velocity, which can be obtained,
for the case of a steady flow field, from the solution of the
fluid mass balance equation:

r � qðxÞ ¼ �r � ½KðxÞrhðxÞ� ¼ 0; (5)

subject to Dirichlet and/or Neumann boundary conditions
and where h is hydraulic head.

[9] In natural aquifers KðxÞ manifests spatially erratic
fluctuations characterized by a correlation length �, and dis-
persion of tracer solutes is dominated by the spatial variabil-
ity of hydraulic properties at large scales [e.g., Gelhar,
1993; Dagan, 1989]. As a consequence we assume that all
phenomena occurring at a spatial scale � << �0 can be
neglected, �0 being the characteristic pore scale. Under this
hypothesis, the dispersion process depends only on the spa-
tial variability of the saturated hydraulic conductivity,
which controls, via (5) and (6), the tracer evolution
described by (3). In this study the 3-D Lagrangian transport
is simulated by means of a finite volume solver for steady
state groundwater flow, coupled with the Pollock’s particle
tracking algorithm for the computation of particle trajecto-
ries [Pollock, 1988; Salandin et al., 2000]. Realizations of
the random function KðxÞ are carried out by an improved
sequential Gauss simulation algorithm [Baú and Mayer,
2008] similar to the one developed by Deutsch and Journel
[1997]. The hydraulic conductivity field is assumed log-
normally distributed (Y ¼ lnK) with expected value hY i,
variance �2

Y , and exponential isotropic correlation structure
�Y ¼ expð�jnj=�Þ, n ¼ x2 � x1 being the lag distance. The
flow field is then calculated by the finite volume solver at
steady state with appropriate boundary conditions that
ensure a mean gradient J ¼ const. The Eulerian velocity
field is used for the computation of the trajectories of a
number Np of particles suitable for the simulation of a con-
taminant release. Denoting by M ¼ �C0V0 the integration
of (1), i.e., the total mass uniformly injected in the system, a
dimensionless concentration field is computed as [Crestani
et al., 2010]

~Cðx; t; t0Þ ¼
�

M

Z
�V

Z
V0

C0ðaÞ�½x0 � Xtðt; a; t0Þ�dadx0

¼ 1
Np�V

Z
�V

XNp

i¼1

�½x0 � Xtðt; ai; t0Þ��adx0;

(6)

where, with respect to equation (3), the continuously dis-
tributed injection in V0 is substituted by the release of a fi-
nite set of particles regularly spaced at intervals �a, being
�a << �V and ai the centroid of �a.
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2.2. Geophysical Model and Inversion

[10] Electrical conductivity of porous media depends
mainly on moisture content, pore water salinity, and, in
clay-rich formations, on the surface conductivity of the
solid matrix. Neglecting the latter term, the above relation-
ship is generally expressed by Archie’s law [Archie, 1942]:

� ¼ 1
a
�m Sn

w �w; (7)

where � is the bulk electrical conductivity, �w is the elec-
trica conductivity of the pore water, Sw is water saturation
(always equal to 1 in this study), � is porosity, and a, m
(‘‘cementation exponent’’), and n (‘‘saturation exponent’’)
are site-specific empirical parameters.

[11] Electrical resistivity tomography (ERT) allows the
reconstruction of the bulk electrical conductivity field � in
2-D or 3-D space and in time-lapse, starting from current I
and voltage V measurements (and the corresponding resist-
ance values, as voltage/current ratios) at electrodes placed
at the ground surface and/or in boreholes [Binley and
Kemna, 2005]. In order to derive the electrical conductivity
images, an inversion procedure is implemented that must
make use of (i) a forward model, predicting resistance val-
ues, given the space-time distribution of bulk electrical
conductivity, and (ii) an inverse procedure aimed at guiding
the forward model to matching the experimental data. The
forward model is generally a numerical solution of the par-
tial differential equation:

r � ð�rV Þ ¼ 0; (8)

subjected to suitable boundary conditions. The inverse pro-
cedure seeks an electrical conductivity distribution that
reproduces the data to a specified level of uncertainty, usu-
ally derived from a quantitative estimate of measurement
errors. This is generally achieved by minimizing a penalty
function constructed as a sum of the squared differences
between measured and simulated data, weighted with the
inverse of squared data errors. However, since the inherent
nonuniqueness of the resistivity inverse problem can effec-
tively lead to an ill-posed problem, additional constraints
must be imposed on the inversion. This is normally accom-
plished by solving the inverse problem as a regularized
optimization problem [Tikhonov and Arsenin, 1977] where
the objective function to be minimized can be expressed as

 ðmÞ ¼  dðmÞ þ � mðmÞ; (9)

with  d being the data misfit:

 dðmÞ ¼ jjW½d� fðmÞ�jj2; (10)

where m is the vector of unknowns distributed over a grid,
and generally consisting of the log-transformed electrical
conductivities of each grid voxel; d is the vector of data,
generally consisting of the log-transformed electrical resis-
tances measured at each quadripole of electrodes; fðmÞ is
the vector of electrical resistances predicted by the forward
model based on the numerical solution of equation (8); W
is a data weighting matrix associated with the individual

(generally uncorrelated) data errors;  mðmÞ is a regulariz-
ing term usually constructed on the basis of a roughness
matrix GðmÞ that in this paper has been chosen to be a nu-
merical approximation of the second spatial derivative of
the m field; � is a regularization parameter that controls
the tradeoff between influence of data misfit and model
objective function in the inversion. The optimal value of �
is generally made dependent on the error level in the data,
and the corresponding solution is the smoothest compatible
with the data within their error bounds (an Occam’s type
solution), as defined by Binley and Kemna [2005]. The
minimization of the objective function (10) is usually con-
ducted using iterative methods (e.g., Gauss-Newton) thus
requiring the computation of a Jacobian matrix A. Corre-
spondingly, the covariance matrix of the estimated m field
can be computed as

Cmm ¼ ðAT WT WAþ �GÞ�1; (11)

where A, �, and G are computed at the convergence m val-
ues. Since m is built by the log-transformation of � values,
the corresponding measurement error covariance matrix C!!

is computed from (12) by renormalizing each term i; j as

Cði;jÞ!! ¼ �
ðiÞ
b �
ðjÞ
b Cði;jÞmm : (12)

In this work, for both forward and inverse solution of the
electrical current flow problem, we used the 3-D ERT code
R3 by A. Binley, Lancaster University (http://www.es.lancs.
ac.uk/people/amb/Freeware/freeware.htm), which is based
on a finite element forward model solution and on an
Occam’s approach to regularized inversion.

2.3. Dynamic Data Assimilation

[12] Whatever model is used for the description of a
physical process, it will be unavoidably affected by errors
and uncertainties, related to the model structure, parameter
estimates, initial conditions, and boundary conditions. Data
assimilation (DA) techniques have the objective to com-
bine measurements of the system state into the model in
order to obtain an optimal estimate of the system state
itself. There are several DA methods available in the litera-
ture. Among these, we elected to use the ensemble Kalman
filter (EnKF) [Evensen, 2006], which is an extension of the
classic Kalman filter [Kalman, 1960] based on a Monte
Carlo approach and specifically developed for dealing with
nonlinear models and measurement operators. A possible
alternative could have been the extended Kalman filter
(EKF), such as the one used by Lehikoinen et al. [2010] in
their dynamic inversion of ERT data for an infiltration
experiment in the vadose zone. However, the EKF would
require the computation of the Jacobian matrices for both
the evolution and the observation models, resulting, in our
application, in a significant and unsustainable increase of
the algorithm complexity. The EnKF, instead, is particu-
larly suitable for this study because of its ease of imple-
mentation and because it can be naturally combined with
the stochastic nature of the evolution model described in
section 2.1.

[13] Defined as NMC the ensemble size (number of real-
izations), we consider NMC state vectors consisting of the
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dimensionless concentrations ~Ci and saturated hydraulic
log-conductivities Yi ¼ lnðKiÞ :

yjðtÞ ¼ f~C1 . . . ~CN ; Y1 . . . YNgj; j ¼ 1; . . . ;NMC; (13)

where the state vector yj has dimension 2N , with N the
number of voxels of the three-dimensional grid. The basic
goal of the data assimilation procedure is to estimate these
uncertain states by combining information from a physical
model and from available hydrogeophysical measurements
in the form of ERT images. While the true concentration
distribution ~Cðx; tÞ is assumed to be known by Crestani
et al. [2010], the observation data considered in this study
are realistic electrical conductivity values estimated from
tracer tests monitored by time-lapse ERT.

[14] Each uncertain state vector is propagated in time by
the Lagrangian transport model with the only uncertain
input represented by the hydraulic conductivity field KðxÞ.
The model, based on the mass and momentum conservation
principles described in section 2.1, can be written concisely
as a generic vector-valued discrete-time state equation:

yjðtÞ ¼ F½yjðtpÞ; bj� ; t0 � tp < t; yjðt0Þ ¼ yj
0; (14)

with j ¼ 1; . . . ;NMC. The vectors bj represent the sets of
saturated hydraulic conductivities (we recall here that po-
rosity is assumed constant in space and time), while the ini-
tial condition at time t ¼ t0 is given by yj

0, in which only
the set of hydraulic log-conductivities vary with each real-
ization, the initial concentration field being equal for each
ensemble member. The operator F basically describes how
the state at a previous time tp is related to the state at the
current time t.

[15] In order to estimate the system states from hydro-
logical measurements, it is necessary to define a transfer
model operator O that describes how observed variables
are related to the system states. Analogously to the state
equation, this model can be concisely expressed as a vec-
tor-valued discrete-time measurement equation:

zj
i ¼ O½yj;xj

i; ti�; (15)

where zj
i is the jth of NMC vectors containing electrical

conductivity data obtained at time ti and xj
i is a random

noise term that accounts for measurement errors. In this
specific case O reflects therefore the constitutive relation-
ship linking concentrations to electrical conductivities.
More details on this relationship, which involves Archie’s
law, will be given later on in section 3.2.

[16] At time t0, each state vector yj associated with
replicate j is initialized with the same field of initial concen-
tration ~C0 uniformly distributed over V0, but a different real-
ization of the hydraulic log conductivity distribution Y ðxÞ.
Analogously, each vector bj contains a realization of the hy-
draulic conductivity distribution KðxÞ used to solve the
steady state flow field. For each replicate, the state vector is
propagated forward in time to the first measurement time t1,
according to equation (14). Note that in the process only the
concentrations vary, while the hydraulic log-conductivities
remain unchanged. At t1 each replicate, including the hy-
draulic log-conductivities, is updated (or conditioned) to
reflect the effect of the measurements z1. The new vectors bj

are then built using the updated hydraulic conductivities and
the transport problem is solved again for the time period
½t0; t2�. This process continues sequentially: first a propaga-
tion step over each interval between to and measurement
time tiþ1 and then an update step at each measurement time
tiþ1 (Figure 1). This two-step structure is slightly different
from the sequence typical of Kalman filter methods, because
in this case after every update we need to restart from t0 and
the same initial concentration field, in order to ensure mass
conservation throughout the simulation.

[17] The update step is expressed as [e.g., Margulis
et al., 2002]

yjðtiþ1jZiþ1Þ ¼ yjðtiþ1jZiÞ þKiþ1fzj
iþ1 � O½yjðtiþ1jZiÞ�g; (16)

where the Kalman gain Kiþ1 is a measure of the relative
level of confidence given to the model and to the measure-
ments. The updated states are written yjðtiþ1jZiþ1Þ to indi-
cate their dependence on all measurements collected
through tiþ1. The Kalman gain is dependent on the system
state covariance matrix Cyy, computed by sampling the

Figure 1. Illustration of the update procedure used in this study. The horizontal axis is time and the
measurements are indicated at regular intervals. The vertical axis indicates the number of updates with
measurements. The blue arrows represent the forward ensemble integration, the red arrows are the intro-
duction of measurements, and the green arrows denote updates.
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ensemble statistics, and the measurement error covariance
matrix C!!, which is computed according to the method
described in section 2.2, equation (12). The Kalman gain is
expressed as

Kiþ1 ¼ Cyyðtiþ1jZiÞHT ½HCyyðtiþ1jZiÞHT þ C!!��1; (17)

where the matrix H represents the linearization of the mea-
surement operator O (H ¼ O when the operator is linear).
The computation of the update step implemented in this
study follows the square root algorithm introduced by
Evensen [2004].

3. Synthetic Tracer Test
3.1. Setup

[18] Taking L to be an arbitrary length unit, we simulate
a three-dimensional aquifer with dimensions 16 L � 8 L � 8
L, discretized along each direction into L=4 intervals, for a
total of 65 � 33� 33 ¼ 70785 nodes. The boundary condi-
tions are as follows. Hydraulic head is imposed (Dirichlet) at
x ¼ 0 (h ¼ 100 L) and at x ¼ 16 L (h ¼ 90:4 L), resulting in
a mean gradient of 0.6 along the main flow direction, while
no-flow boundary conditions (Neumann) are imposed along
the remaining sides of the domain. A reference hydraulic log
conductivity Y field has been generated with nominal mean
hY i ¼ 0:00 (the geometric mean saturated hydraulic conduc-
tivity KG ¼ 1:0 L/T, where T is any consistent time unit),
nominal variance �2

Y ¼ 0:50 (which corresponds to a mild
heterogeneity), and isotropic exponential correlation structure
with integral scale � ¼ 1 L. The actual values of mean and
variance resulting from the pseudo-random generation are
hY i ¼ 0:19 and �2

Y ¼ 0:47 (the corresponding statistics for K
are KG ¼ 1:21 L/T and �2

K ¼ 0:92 L2=T2).
[19] The solute is assumed to be instantaneously injected

in a well with diameter of 0.5 L, vertical size of 5.625 L,
i.e., screened between z ¼ 1:375 and z ¼ 7:0 L, and cen-
tered in x ¼ 0:875 L and y ¼ 4:125 L. The injection is
simulated by 1104 particles initially distributed along the
well screen as shown in Figure 2. The dimensionless con-
centration ~C is computed according to equation (6), i.e., pro-
portional to the ratio between the number of particles within
a voxel of the domain and the total number of injected par-
ticles. A larger number of particles would probably result in
sharper concentration images and improved electrical tomo-
grams. However, the objective here is to reproduce a realis-
tic, albeit synthetic, experiment and we thus accept blurrier
concentration images. The concentration distribution ~CðxÞ
is recorded every 0.5 T, for a total of 16 concentration
images that are used as input for the generation of as many
electrical conductivity images by the hydrogeophysical
inversion procedure described in section 2.2.

3.2. Geophysical Inversion

[20] We completed the synthetic model described in sec-
tion 3.1 by assuming that 12 boreholes equipped with elec-
trodes are available for a 3-D time-lapse ERT acquisition.
The boreholes are located as shown in Figure 2 defining 5
ERT blocks along the plume path. Each borehole is
equipped with 16 electrodes, vertically spaced 0.5 L. Each
ERT block is bounded by four boreholes, and the inner part
is a squared-base rectangular prism 1.75 L wide and 7.5 L

high. For the purpose of electrical forward and inverse
modeling, each block is modeled separately, with a finer
discretization in the region between boreholes and a pro-
gressively coarser mesh in the outer part. All boreholes are
assumed to have the first electrode at z ¼ 8:0 L (ground sur-
face) and therefore the deepest electrode is at z ¼ 0:5 L.
The inner part of the block is discretized into 28 � 28� 30
finite elements (rectangular parallelepipeds) having dimen-
sions 0.0625 L � 0.0625 L � 0.25 L. In total, including the
elements outside the block, each finite element mesh is
composed of 48� 48� 44 elements. In all blocks and at
all simulated measurement times, the forward model was
run to produce a simulated data set composed of 1653
measurements acquired according to a completed skip-2
dipole-dipole configuration (dipole separation of three elec-
trodes), involving all 64 electrodes located in the four bore-
holes bounding the block. The only error present in the
simulated data is the numerical error of the finite element so-
lution of the forward model, which has been estimated to be
on the order of a few percent of the simulated resistances.

[21] In order to compute the bulk electrical conductivity
� from the simulated dimensionless solute concentration,
we applied Archie’s law (8) for fully saturated media, using
a porosity � equal to 30%, a cementation exponent m ¼ 1:3
and a parameter a equal to its theoretical value of 1. We
decided not to introduce uncertainty with respect to the
Archie’s law parameters (the formation factor a=�m, essen-
tially). There are some well defined reasons for this. (i) We
wanted to assess the performance of the proposed approach
highlighting its essential features, with no interference of
other uncertainty issues. (ii) If the formation factor is assumed
to be spatially homogeneous, albeit uncertain, the expected
impact on the results of our analysis is minimal. Archie’s
law is a linear relationship for any value of a=�m under satu-
rated conditions. Since the key information for hydraulic con-
ductivity estimation is the tracer arrival time, and not its true
concentration, an incorrect value of this concentration still con-
tains the same key information. This has been acknowledged

Figure 2. Schematic representation of the ERT configu-
ration, with indication of the electrodes (red points) and the
five blocks. The initial distribution of the particles (black
points) along the simulated well is also shown (the upper
left inset box represents a zoomed plan view).
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recently by, e.g., Irving and Singha [2010], who studied the
impact of Archie’s law parameter uncertainty in a similar
framework. (iii) If the formation factor is assumed to be
spatially heterogeneous, the consequences will impact the
results well beyond the scope of the present paper. In order
to convert dimensionless concentrations into �w values, we
assume that the maximum dimensionless concentration
(equal to 1/92 ¼ 0.01087) corresponds to the maximum
dimensional concentration of 6 g/liter, considered to be the
maximum solute concentration for which gravimetric sinking
is not observed. We further assume that the dissolved solute
is NaCl, and we use the relationship between molar concen-
tration and water electrical conductivity established by Sam-
buelli and Comina [2010]. Note that any other equivalent
relationship would not have produced very different results.
The inverse of the same relationship was used to convert
forecasted dimensionless concentrations into � values for
data assimilation (operator O in equations (15) and (16)).

[22] In order to reduce the number of degrees of freedom
of the inverse problem, the ERT inversion parameterization
was a 2� 2� 2 block of neighboring finite elements
(0.125 L � 0.125 L � 0.5 L), sharing the same (unknown)
bulk electrical conductivity value. The inversion was run
independently for each block, as this approach is computa-
tionally much more efficient than inverting all collected
data at once. Even though examples of inversion of a com-
plete data set over multiple boreholes exist [e.g., Coscia
et al., 2011] there is no clear evidence that the results of a
complete inversion are superior to splitting the inversion in
blocks, as done most commonly. In our approach, anyway,
we account for the presence of the plume outside the inver-
sion block, as the 3-D finite element mesh of each block
extends well beyond the four boreholes. When computing
the forward model to generate synthetic data for each block
we imported electrical resistivity for the entire 3-D finite
element mesh, thus incorporating the effect of the plume
within the entire domain. A Gaussian data error model with
5% standard deviation was assumed. Only the inner part of
each block is considered to produce reliable � estimates, so
the entire plume is imaged by considering together, at each
time step, the inner parts of all five ERT blocks.

3.3. Hydraulic Conductivity Estimation

[23] In order to assess the ability of the proposed
approach to retrieve the reference field of hydraulic conduc-
tivity, a number of synthetic experiments were carried out.
In each experiment we start from an ensemble of hydraulic
conductivity realizations characterized by geostatistical
properties that are intentionally different from those used to
create the reference field. The prior geostatistical parameters

are assigned only at the beginning of the simulation, for the
generation of the initial ensemble of realizations. These
realizations are then updated only on the basis of the EnKF
assimilation step and the resulting geostatistical parameters
(mean, variance, correlation scale) are estimated ‘‘a posteri-
ori’’ as sample statistics. Table 1 summarizes the prior geo-
statistical properties of the initial hydraulic log conductivity
fields for each experiment. Based on previous studies [Cres-
tani et al., 2010] and preliminary runs, we elected to use an
ensemble size NMC of 2000. Larger ensemble sizes (up to
5000) result in a significant increase of the computational
effort, with a limited improvement of the EnKF perform-
ance. The prior hydraulic conductivity field has been
assumed isotropic in all cases (� ¼ �x ¼ �y ¼ �z). To limit
the dimension of the problem and thus the computational
effort, which is basically controlled by the number of meas-
urements to be assimilated (equations (16) and (17)), two
minimum thresholds on the electrical conductivity values
assimilated have been considered. As a result, we present
two series of seven experiments each, the first series in
which we assimilate only electrical conductivity values
greater than 0.0040 S/L, the second series in which the mini-
mum threshold is reduced to 0.0021 S/L. The second thresh-
old (0.0021 S/L) is chosen so that we assimilate all the
electrical conductivity values that are greater than the mini-
mum electrical conductivity value corresponding to a con-
centration ~C > 0. In this way we are maximizing the
information derived from the geophysical inversion but at
the same time neglecting ‘‘structural’’ data, related to the
background medium properties that are constant in time and
thus not relevant. The first threshold (0.0040 S/L) has a
well-defined physical meaning, as can be deduced from Fig-
ure 3, which shows the standard deviation of the electrical
conductivity estimates as a function of � itself, as computed
by the geophysical inversion procedure. The threshold
0.0040 S/L corresponds to a value that allows us to consider
the relationship between the estimated electrical conductiv-
ity and its standard deviation as almost perfectly linear, i.e.,
data point deviations from the regression line are negligible
above 0.0040 S/L. Using this threshold we do not consider
low � values, associated to (i) measurement points located
near the ground surface, with higher coefficients of variation
(i.e., relative uncertainty), represented in Figure 3 by data
above the regression line; and (ii) measurement points close
to the boreholes, with lower relative uncertainty and higher
ERT sensitivity, but not covered by the passage of the saline
tracer, represented in Figure 3 by data below the regression
line. In other words, with the first threshold (0.0040 S/L) we
are considering mainly the portion of the domain that is
directly covered by the plume path, i.e., the center vertical

Table 1. Nominal and Prior Geostatistical Parameters Applied in the Test Cases

Test Case hYi �2
Y �

Reference 0.0 0.5 1.0
1. False prior variance 0.0 1.0 1.0
2. False prior mean �1.5 0.5 1.0
3. False prior mean and variance �1.5 1.0 1.0
4. Overestimated prior correlation length 0.0 0.5 1.5
5. Underestimated prior correlation length 0.0 0.5 0.5
6. Overestimated prior correlation length and false prior mean and variance �1.5 1.0 1.5
7. Underestimated prior correlation length and false prior mean and variance �1.5 1.0 0.5
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cross section. In real field experiments, appropriate thresh-
olds can be chosen only on the basis of information derived
from the electrical tomograms available before carrying out
the hydrological inversion. This is an advantage of our
uncoupled inversion framework, as we have the control on
the assimilation process and the option to neglect data that
we consider not reliable.

[24] Note that the hydrological and the geophysical mod-
els are based on finite volume and finite element solvers,
respectively, and thus work on different grids. Hence a spa-
tial interpolation was needed to compute the relevant elec-
trical conductivity values at the nodes of the hydrological
model grid.

[25] Figures 4 and 5 show the comparison between the
true synthetic hydraulic log conductivity distribution, the
prior Y field for test case 1 (see Table 1), and the estimated
Y field at the end of inversion in the case �thresh ¼ 0:0040
S/L. The prior distribution of hydraulic conductivity
appears homogeneous, as a result of the ensemble average
of a statistically homogeneous field over 2000 realizations.
From the three-dimensional cross section (Figure 4) it is
not immediately apparent that a satisfactory retrieval of the
Y field is achieved, especially for the portions of the

Figure 3. Synthetic ERT experiment, time 7, block 2:
relationship between electrical conductivity � and its stand-
ard deviation. Inset box represents a zoom of the zone near
the origin. Points falling above the line represent nodes
along the surface, where uncertainty is greater, while points
falling below the line represent nodes close to the electro-
des, where uncertainty is smaller.

Figure 4. (a) Synthetically generated true hydraulic log conductivity field, (b) prior log conductivity
field at the beginning of test case 1, (c) estimated log conductivity field resulting from the inversion in
test case 1 with �thresh ¼ 0:0040 S/L, and (d) average absolute error of estimation. Color bars indicate hy-
draulic log conductivity in lnðL=TÞ and black dots represent the only visible surface array of electrodes.
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domain that are not ‘‘sampled’’ by the tracer plume, e.g.,
the horizontal planes at z ¼ 8 L (for x > 7:5 L) and at z ¼ 2
L (for y < 2 L). However, a closer look at a vertical cross
section directly covered by the passage of the plume (Fig-
ure 5, y ¼ 4:125 L) reveals that, at the end of the inversion,
some of the main features of the true aquifer are reproduced,
mainly within the boreholes that form the last four ERT
blocks (from x ¼ 2:25 L to x ¼ 9:25 L). The spatial distribu-
tion of the average absolute error AAEY, computed as

AAEY ðxÞ ¼ jhY ðxÞi � YtðxÞj; (18)

where YtðxÞ is the true hydraulic log conductivity, is also
shown in Figures 4d and 5d. The error spatial distribution
obviously reflects the behavior of the reconstructed Y field,
with values that are relatively small across most of the do-
main, except for a few zones of misestimation, which are
clearly visible also from the comparison of panels (a) and
(c). These artifacts are localized mainly outside the path of
the saline tracer plume and thus are probably due to the
lack of measurements (when the threshold is 0.0040 S/L) or

the large uncertainty affecting the hydrogeophysical data
(when the threshold is 0.0021 S/L).

[26] The fact that the retrieval of the hydraulic conduc-
tivity field is actually satisfactory is confirmed by the anal-
ysis of Figure 6, which shows the comparison at t ¼ 8:0 T
between the electrical conductivity tomogram obtained by
the ERT inversion, the corresponding true tracer distribu-
tion, and the tracer distribution computed by a simulation
using the Y field reconstructed in experiment 1 with
�thresh ¼ 0:0040 S/L. Using the retrieved field results in a
plume pattern that has a significant effect of mass disper-
sion (Figure 6c). This reflects the characters typical of the
electrical inversions, which are prone to overdispersion of
the signal due to the regularization term (Figure 6a). Never-
theless, the shape of the plume obtained with the retrieved
Y field is very similar to the true one, probably due to the
fact that the assimilation process, and hence the updated
distribution of hydraulic conductivity, is more sensitive to
the electrical signal arrival times rather than to the actual
conductivity values assimilated. We will further discuss
this issue later on in section 3.3.

Figure 5. Same as Figure 4, but with zoomed vertical cross sections taken at y ¼ 4:125 L. (a) Syntheti-
cally generated true hydraulic log conductivity field, (b) prior field at the beginning of test case 1, (c)
estimated field resulting from the inversion in test case 1 with �thresh ¼ 0:0040 S/L, and (d) average abso-
lute error of estimation. Color bars indicate hydraulic log conductivity in lnðL=TÞ and black dots repre-
sent one of the two vertical arrays of electrodes.
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[27] For brevity we do not report the visualization of the
results for all the test cases; instead we summarize the
inversion procedure performance in Table 2, in terms of
root mean square error of the log conductivity (YRMSE),
computed as

YRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nb

XNb

i¼1

ðhYii � Yt;iÞ2
vuut ; (19)

where subscript i denotes the ith node of the discretization
grid and Nb is the total number of nodes falling within the
ERT blocks. With this definition we do not take into
account the performance of the method outside the domain
defined by the ERT blocks (Figure 2). Table 2 shows also
the comparison between the true and estimated hydraulic
log conductivity mean and variance, computed both inside
the ERT blocks and with reference to the whole domain. In
general, the Y mean and variance estimated within the ERT
blocks are closer to the true values than those computed for
the whole domain. It is clear that the inversion procedure
does not benefit by the reduction of the threshold value on
the electrical conductivities to assimilate. On the contrary,
the errors increase in almost all cases, even though for
experiment 1 there is a slightly better estimation of the
mean and variance of Y using �thresh ¼ 0.0021 S/L. How-
ever, this could be a sheer coincidence, as an objective
evaluation of the spatial field retrieval can be given only by
the YRMSE. This behavior can be explained by comparing
the true plume spatial moments with the ones computed
from the ERT tomograms as a function of the threshold
electrical conductivity, i.e., considering only concentration
values corresponding to � > �thresh. The spatial moments
of the solute body are defined as follows:

M ¼ �
Z

~Cdx; R ¼ �

M

Z
x~Cdx

Sij ¼
�

M

Z
ðxi � RiÞðxj � RjÞ~Cdx;

(20)

where integration is extended over the entire domain. The
zero-order moment M is the total mass, R is the coordinate
vector of the center of mass, and Sij, the second-order spatial
moment tensor, is proportional to the moments of inertia
of the solute body. Taking into account only concentration
values that correspond to electrical conductivities greater
than the thresholds results in different values of the spatial
moments, as shown in Figure 7. The moment components
along the longitudinal direction x, which is the main direc-
tion of the plume, show that a lower threshold results in a
less accurate estimate of both R1 and S11. This is due to the
impact of less significant and more uncertain data that are
included in the computation. Table 3, which reports the
root mean square error of the inverted spatial moments
with respect to the true ones, confirms this consideration:
although the error on the total mass is slightly smaller for
�thresh ¼ 0:0021 S/L, the errors on the most relevant first
and second moments R1 and S11 are significantly smaller
when using �thresh ¼ 0:0040 S/L. A good estimate of the
first and second moments can be achieved only if the mean

Figure 6. Comparison at t ¼ 8:0 T between (a) the tomo-
graphic image of the electrical conductivity resulting from
the electrical inversion, (b) the tracer plume simulated with
the reference Y field, and (c) the tracer plume simulated
with the Y field reconstructed in experiment 1 with
�thresh ¼ 0:0040 S/L. Color bars indicate (a) electrical con-
ductivity in S/L and (b), (c) dimensionless concentration ~C.
Black dots represent the electrodes.
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arrival times of the plume are well captured by the ERT
survey. Thus, it is confirmed that for an effective assimila-
tion of electrical data into this hydrological model it is
more important to obtain a good reproduction of the tracer
arrival times rather than minimize the mass dispersion
effect typical of the inversion process.

[28] In general, the closer the prior statistics of Y to the
true statistics, the better the overall performance of the
inversion method (Table 2). However, although the mini-
mum YRMSE values at the end of the inversion are
achieved when the initial parameters are closer to those of

the reference field, the most significant improvements are
obtained when starting from a completely wrong prior Y
field. This is shown in Figure 8, which depicts for all the
experiments with �thresh ¼ 0:0040 S/L the time evolution of
the hydraulic log conductivity root mean square error
YRMSE and the concentration root mean square errors
CRMSE, the latter calculated by equation (19), using ~C
instead of Y. Note how in Figure 8 a wrong prior mean of Y
results in a decreasing behavior of YRMSE, with a rapid
reduction with the first updates and a stabilization toward
the end of the inversion. On the other hand, when the initial
root mean square error is small, YRMSE paradoxically
increases with the updates, with a final estimation that is,
on average, worse than the prior homogeneous field. This,
however, does not necessarily mean that the prior homoge-
neous field is better at reproducing the overall transport
process. The CRMSE, in fact, after the very first time steps
during which it increases from the initial value of 0.0 (we
recall that the initial position of the plume is correct through-
out the experiment), constantly decreases also for the scenar-
ios characterized by a progressive worsening of the YRMSE.
This indicates that the reconstructed Y field, though worse on
average than the prior, is able to reproduce satisfactorily the
solute concentrations thanks to the main features that mimic
the reference field structure. This is typical of all ill-posed
inverse problems, where the optimal solution is not unique.

[29] When the first guess for the correlation lengths is
wrong, but the other parameters are correct, we obtain differ-
ent results depending on whether � is overestimated or

Figure 7. Time evolution of the zeroth-order spatial
moment (total mass) M, the x coordinate of the first-order
spatial moment (center of mass) R1, and the x coordinate of
the second-order spatial moment (moment of inertia) S11
for the true tracer plume and the plume reconstructed by
the electrical inversions (tomographic images) with thresh-
olds �thresh ¼ 0:0040 S/L and �thresh ¼ 0:0021 S/L.

Table 2. Retrieval Performance of the Different Test Casesa

Test Case

�thresh ¼ 0.0040 S/L �thresh ¼ 0.0021 S/L

YRMSE hYib �2
Yb hYi �2

Y YRMSE hYib �2
Yb hYi �2

Y

Reference – 0.23 0.46 0.19 0.47 – 0.23 0.46 0.19 0.47
1 0.93 0.44 0.52 0.44 0.70 1.11 0.45 0.81 0.18 0.67
2 1.27 �0.29 0.94 �0.84 1.14 1.35 �0.51 1.11 �0.98 1.46
3 1.27 0.01 1.02 �0.65 1.36 1.52 �0.51 1.52 �1.07 1.79
4 1.33 0.44 1.18 0.51 1.12 1.15 0.63 0.72 0.46 0.94
5 0.95 0.30 0.44 0.15 0.55 0.96 0.26 0.50 0.04 0.62
6 1.16 0.03 0.93 �0.16 1.12 1.29 �0.06 1.22 �0.62 1.41
7 1.40 �0.37 1.30 �1.10 1.46 1.82 �0.91 1.75 �1.36 1.52

ahYib and �2
Yb are Y mean and variance, respectively, computed within the ERT blocks.

Table 3. Root Mean Square Error of the Plume Spatial Moments
Computed From the ERT Tomograms With Respect to the True
Onesa

Spatial Moment

RMSE

�thresh ¼ 0.0040 S/L �thresh ¼ 0.0021 S/L

M 0.053 0.044
R1 0.252 0.447
R2 0.043 0.125
R3 0.356 0.184
S11 0.967 3.170
S22 0.246 0.644
S33 3.828 3.270

aM is the zeroth-order spatial moment (total mass), Ri are the coordi-
nates of the first-order spatial moment (center of mass), and Sii are the
coordinates of the second-order spatial moment (moment of inertia).

W12508 CAMPORESE ET AL.: ASSESSMENT OF LOCAL HYDRAULIC PROPERTIES FROM ERT W12508

11 of 15



underestimated. We observe (Table 2) a worse performance
in the former case, probably due to the uncertainty in the
geoelectrical data, hence spurious updates are propagated
due to a larger correlation scale. Similar results were found
by Crestani et al. [2010]. On the other hand, the Y field
resulting from the inversion with a smaller correlation length
is characterized by smaller and differently shaped features
with respect to those of the true Y field (not shown). At a first
look, comparison between experiments 6 and 7 seems to
contradict the aforementioned considerations, as in this case
starting with an overestimated � gives better results than
starting with an underestimated �. However, it must be taken
into account that in experiments 6 and 7 the prior mean and
variance of Y are also very different from the true values and
thus a larger integral scale implies that significant correc-
tions are propagated more rapidly. Hence, with the same
number of updates, the final error in experiment 6 is smaller,
as a larger portion of the domain has been corrected.

[30] In all experiments, the YRMSE values obtained are
quite high with respect to similar studies [e.g., Chen and
Zhang, 2006; Crestani et al., 2010; Pollock and Cirpka,
2010]. However, this can be explained by the quality and
the uncertainty of the electrical data, which are derived
from a realistic ERT experiment and thus are more repre-
sentative of what we can expect from a real field study,
compared to a synthetic test where everything is perfectly
known. It is also interesting that, contrary to Pollock and
Cirpka [2010], in all our test cases the spatial variability of
Y is overestimated. Again, this can be explained by the

quality of the assimilated data, in combination with the
effect of filter inbreeding (or divergence) [Hendricks
Franssen and Kinzelbach, 2008; Evensen, 2009], i.e., a
progressive degradation of the updates typical of the en-
semble Kalman filter and caused by the loss of ensemble
variance. This can be clearly seen in Figure 9, which shows
the time evolution of the Y ensemble variance spatial distri-
bution in experiment 1 with �thresh ¼ 0:0040 S/L. The var-
iance, which is initially spatially uniform and equal to the
value imposed for the generation of the Y field, decreases
sequentially at each update, following the same spatial pat-
tern of the saline plume. As a result, the ensemble variance
is drastically reduced very quickly, eventually resulting in
values close to zero. According to Evensen [2009], we
argue that spurious correlations between supposedly uncor-
related variables, caused by the finite ensemble size and the
lack (or the large uncertainty) of measurements in zones of
the domain not covered by the path of the saline tracer,
accumulate small nonphysical updates in each ensemble
member, ultimately leading to realizations that are almost
equal to each other but with exaggerated hydraulic log con-
ductivity absolute values and thus overestimated spatial
variance �2

Y .
[31] Overestimation of �2

Y implies also that the correla-
tion structure of the true Y field cannot be easily recon-
structed. Figure 10 shows the correlation structure of Y
along the x direction for experiments 4 and 5 with
�thresh ¼ 0:0040 S/L. In general we observe that the initial
correlation length is not easily changed by the inversion
procedure; indeed the algorithm tends to maintain the cor-
relation structure as initially hypothesized. Again, in
experiment 5 the propagation of numerical artifacts is lim-
ited by the small correlation length imposed at the begin-
ning, resulting in an estimated �2

Y that is close to the true
value, but only because the prior mean and variance are
equal to the true values. When the prior Y field statistics are
poorly known the small correlation length does not allow
the corrections to be propagated (Table 2, experiment 7).

[32] Overall, the results are satisfactory, because in all
the considered cases the estimated hydraulic conductivity
field has been corrected in the portion of the domain
directly sampled by the passage of the saline tracer and is
thus suitable to reproduce a concentration distribution very
similar to the reference scenario.

4. Conclusions
[33] We applied a recent hydrological inversion procedure

for the assessment of heterogeneous hydraulic conductivity
fields at the local scale from ERT imaging of a synthetic
tracer test experiment. Using an ensemble Kalman filtering
approach integrated in a groundwater Lagrangian transport
modeling framework, we demonstrated that assimilation of
electrical conductivity data is useful to retrieve the spatial
distribution of hydraulic conductivity K. We also demon-
strated how the use of electrical conductivity images derived
from ERT inversion is a viable approach to hydraulic con-
ductivity identification in tracer tests. This result is due to
the fact that the data information content for hydraulic con-
ductivity estimation is condensed in the tracer arrival times.
As we consider an instantaneous injection of tracer, the rel-
evant timing is the peak concentration arrival. Therefore,

Figure 8. Time evolution of the root mean square error of
the hydraulic log conductivity field (top) and concentration
field (bottom) for all the experiments with �thresh ¼ 0:0040 S/L.
See Table 1 for a detailed description of all the test cases.
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even though the absolute value of concentration may be
lowered and early low concentration artifacts may be pres-
ent (both caused by ERT inversion) the timing of peak ar-
rival is unaffected, and the procedure is unbiased. In
addition, our results indicate that skipping the imaging pro-
cess in coupled approaches can be particularly damaging
for the problem at hand, since we can only consider reliable
the hydraulic conductivity distribution estimated in the
region where the plume has actually traveled. The electrical
resistivity images, albeit partly weakened by ERT inver-
sion, are essential to identify the region where hydraulic
conductivity can be adequately estimated.

[34] The performance of the method is affected by the
quality of ERT tomograms and by the choice of prior statis-
tics for the hydraulic conductivity field. Imposing a thresh-
old on the electrical conductivities to be assimilated had a
significant impact on the quality of the retrieved hydraulic
conductivity distributions, with better performance associ-
ated to the threshold for which a better estimation of the
tracer concentration spatial moments and, as a conse-
quence, of the arrival times, was obtained. Choosing prior
mean and variance of Y ¼ lnK close to the true values
resulted in a better final hydraulic conductivity distribution,

but with marginal improvements with respect to the scenar-
ios in which prior information misestimated the true statis-
tics. The proposed algorithm is sensitive to the problem of
the filter divergence, with a rapid decrease of the ensemble
variance with the number of updates, associated to overesti-
mation of the spatial variance of hydraulic log conductiv-
ity. Another important finding is that correlation lengths
are difficult to correct, since the inversion procedure tends
to maintain the initial values throughout the simulation.
Also, overestimation of integral scale can have either posi-
tive or negative effects on the inversion, depending both on
the quality of ERT data and the prior statistics used to gen-
erate the initial K field realizations.

[35] Possible directions for future studies include: the
application of the proposed approach to real field experi-
ments; the comparison with a smoothing approach, in
which all time-lapse data are inverted simultaneously rather
than sequentially; joint assimilation of electrical data with
other types of data (e.g., piezometric values) that are often
easily available in the field, although usually in a limited
number of locations; the implementation of an algorithm to
reduce filter inbreeding; and, most importantly, the develop-
ment of an EnKF-based coupled geophysical–hydrological

Figure 9. Spatial distribution of the ensemble Y variance at times (a) t ¼ 0:0 T, (b) t ¼ 2:0 T, (c)
t ¼ 4:0 T, and (d) t ¼ 8:0 T, for experiment 1 with �thresh ¼ 0:0040 S/L. Color bars indicate variance of
hydraulic log conductivity in ln2ðL=TÞ.
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inversion, which could include also the uncertainty of the
petrophysical constitutive relationship, to be compared with
the proposed uncoupled strategy for a better assessment of
the benefits stemming from a real-time exchange of infor-
mation between hydrological and geophysical processes.
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