
JOURNAL OF 
COMPUTATIONAL AND 
APPUED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 57 (1995) 99-114 

The polynomial approximation in the finite element method" 

S. De  March i ,  M. M o r a n d i  Cecchi*  

Dipartimento di Matematica Pura e Applicata, Universitd di Padova, Via Belzoni 7, 1-35131 Padova, Italy 

Received 20 October 1992 

Abstract 

In the analysis of a finite element method (FEM) we can describe the shape of a given element by a set of elementary 
functions known as shape functions. The approaches describing these functions are quite different ones. In the plane 
(x 1, x2), these functions are a product of Lagrangian polynomials when the coordinate system can be chosen with the 
axes parallel to the sides of the element, otherwise a system of barycentric coordinates (sometimes called area coordinates) 
could be introduced. 

The aim of this paper is the description and the representation of shape functions when the element has trianoular shape 
(the simplest). The representation has been done by using two algorithmic schemes: Neville-Aitken and De Casteljau. 
For  these schemes we have deduced very important properties. 
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I. Introduction 

We shall use the standard multi-index notation: ~jk stands for the set of multi-indeces, a real 
algebraic polynomial q(x) in k variables of degree ~< p will be denoted as a finite sum 

q(x)  = ~_, ,~,x', 
Ir] <~ p 

where as usual, r e  t~ k, [r[ = Z~=I ri and x" = 1-1~= 1 x?. We shall use H e as the space of all these 
polynomials. The dimension of Hp is 
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Following [7], a finite element in •" is a triplet (T, P, S) where 
(i) T is a closed polyhedron in ~"; 

(ii) P c ~S(T), s e /~  is a finite space of real-valued functions defined over the set T (we let 
N = dim P); 

(iii) S is a set of linear forms ~b~, 1 ~< i ~< N, linear independent, defined over the space P 
and by definition it is P-unisolvent. In particular there exist N functions p~ e P, 1 ~< i ~< N that 
satisfy 

O2(Pi) = bij, 1 <~j ~ N. (1.0.1) 

In particular the following identity holds 

N 

P = Y', 4,(P)Pi VpsP .  
i=1  

Functions q~ are known as degrees of freedom of the finite element T and functions p~ are known as 
basis functions of the finite element T. In engineering literature basis functions are called shape 
functions. 

The main characteristic of the spaces P is that they all contain a "full" polynomial space Ilk(P) 
for some k >/ 1. This paper is concerned with the case in which P = Ilk(P) allowing to consider 
shape functions of polynomial type. 

Given a triangle (2-simplex finite element) T with vertices {T1, Tz, T3}, which we shall call 
original triangle, there are several techniques that allow us to build a subdivision of it into smaller 
triangles, which we shall call derived triangles (see [1, 8]). 

The order of the triangle T is an integer p > 0. Given p, we can identify on T a set of node points 
whose number is m = (p + 1)(p + 2)/2. Using these nodes, we can describe the interpolating 
polynomial over T by a set of shape functions. In the plane (x, y) these generally are products of 
Lagrangian polynomials p(x) and p(y) (see [12]). When the shape is triangular a better choice is the 
use of area coordinates, av ~--- ( ( X 1 , ~ 2 , ~ 3 )  for the generic point P e T ,  where ~i = ai(x,y) and 
23=10~i---- 1. 

With the use of barycentric coordinates the ith polynomial shape functions N! k) (where k stands 
for the degree of the polynomial) can be written as 

Nlk)(a) = y '  2,a r, (1.0.2) 
Ir[ ~ k 

where r e ~l 3 and i = 1, . . . ,  m. 
We shall give an example how to build shape functions in Section 2. 
After a brief survey of barycentric coordinates and shape functions, we shall introduce 

Neville-Aitken and De Casteljau algorithms for the computat ion of shape functions. Extensions to 
some formulae for determinants will be given, as well. The Appendix is a collection of MATLAB 
routines and functions used to test the algorithms presented. 
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2. Generality: area coordinates and shape functions 

2.1. Area coordinates 

Let us consider the triangle in Fig. 1. While Cartesian coordinates are suitable for a rectangle, 
because they can be taken parallel to the sides, they are not convenient  for a triangle. A better 
choice is represented by area coordinates (sometimes called barycentric coordinates) that  represent 
a local coordinate  system (see [12]). 

Let T be a triangle of vertices { T~, T2, T3 } and let (x~, y~), i = 1,2, 3 be the coordinates of Ti in 
the (x, y)-plane. 

The following linear system represents the relation between area and Cartesian coordinates 

ai q- b i x  + c i y  
(zi = 2A , i =  1,2,3 (2.1.1) 

or in matrix form 

I 
~ l  

O~ 2 

O~ 3 

= ~  a2 b2 c2 

a3 b3 c3 

(2.1.2) 

where A = area T and ai, bi and ci are given by the following expressions: 

a~ = X j Y k  - -  X k Y j ,  b~ = y j  - -  Yk, Ci = Xk - -  X j ,  

where the triplet (i,j, k) e St3 ¢) (St3 e) is the 3-symmetric group of even permutations).  An algori thm for 
the computa t ion  of the area coordinates corresponding to a triangle of given vertices, is the 
M A T L A B  procedure careal presented in the Appendix. Relations (2.1.1) and (2.1.2) imply that  

\ 

(2 ,0 ,0)  \ ~ T~ 

\ o \ , 

OL I ~-- L ~ u~- i ~I ~ 0 
a2 = 0 c~2 = 1 
a 3 = O  aa = 0  a2 = 2  

0 1 3 ~ 0  

Fig. 1. Area coordinates in a triangle of order 2. 
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contours of, let us say a~, are equally placed straight lines parallel to the side joining vertices 
T2 and T3, where cq = 0 (see Fig. 1). An alternative definition of the barycentric coordinates of 
a point P ~ T deducible from (2.1.2) is 

a~) _ area PTj  Tk (2.1.3) 
A 

where (i,j, k) ~ S~3 e). Hence the name of area coordinates. Proving the following propositions comes 
easy. 

Proposition 2.1. Area coordinates are positive inside the domain triangle. 

Proposition 2.2. Area coordinates are symmetric: each side of  the triangle is treated the same way as 
the other ones. 

The use of area coordinates is thus easier and more elegant than that of Cartesian coordinates 
which need more distinctions for each side of the original triangle. 

2.2. Shape functions 

As will be stated in the next section, the ith shape function NI k) can be written as product of 
Lagrangian polynomials [12]. In area coordinates we have 

Nlk)(a) t s K = 11(o~l)ls(o:2)lK(O~3), (2.2.1) 

where each lq(ct~) with q ~ { I , J , K } ,  i = 1, 2, 3 is given by the usual Lagrangian ratio 

~ )  o~i(x, y) - ~i(xj, yi) 
l{(~,) = H . (2.2.2) 

j=o,i~q i( q , Y q ) -  i( j, Yj) 

The triplet ( I , J ,K)  identifies the node on T. For  example from Fig. 1 the node T1 has 
(I, J, K) = (2, 0, 0), the node T4 has (1, 1, 0) and so on. Therefore we consider a triangle T of order M, 
only on one of its sides, we shall have the sequence (M, 0, 0), (M - 1, 1, 0) . . . .  , (1, M - 1, 0), (0, M, 0). 

By definition, shape functions have local support. Moreover, from (1.0.1), shape functions must 
verify the interpolating condition 

N l k ) ( ~ l , ~ 2 , ~ 3 )  = 1 ¢~, ~ = ~ j ( x i , Y i )  , j = 1,2,3. (2.2.3) 

The maximum term involved expanding (2.2.1) is ~ (x2~ 3 J K when I + J + K = M. 

2.3. The Neville-Aitken algorithm 

From (2.2.1) a shape function in barycentric coordinates can be written 

[r[ ~ M 

where a,(a) r, r2 r3 ~-" ~ 1  0~2 ~ 3  • 

(2.3.1) 
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Problem 2.3. Does there exist a recurrent form for (2.3.1)? 

A first answer is given by the Nevi l l e -Ai tken  algorithm. In the unidimensional  case this algori thm 
can be expressed (see [11]) as follows: 

Given a set of points 5 P -- {(xi, y~): i = 0, 1 . . . .  , n} let us construct  the interpolat ing polynomial  
P e H,  by means of the following recurrent formulae: 

DO = Yi, 

pk k k - 1  k k - 1  = 2 i ( x ) P i  ( x ) + t z i ( x ) P i + l ( x ) ,  l < ~ k < . i ,  i - - 0 , 1 , 2  . . . .  , n - k ,  

where 

(2.3.2) 

2k(x) = Xi+k -- X t~k(x) _ X -- Xi (2.3.3) 
X i +  k - -  X i  ~ X i +  k - -  X i " 

Problem 2.4. In which way can we apply this algori thm to the representation of Lagrangian 
polynomials  for shape functions? 

First let us give an example. 
Let us take the values assumed by the first area coordinate  ~1: (2, 1,0). Our  conjecture is to 

consider these values as three different points. F r o m  property (2.2.3) of shape functions the values 
assumed by the polynomial  on these points are (1, 0, 0). Our  construct ion consists in taking the set 
5 e = {(2, 1), (1,0), (0,0)} and apply (2.3.2) with k = 0, 1, 2. For  the node T4 where ~1 and ~2 are 
different from zero, we have to consider the following two sets :T1 = {(1, 1), (0,0)} and oG°2 = {(1 ,  1), 

(0, 0)} corresponding to the area coordinates ~1 and ~2, respectively. It is worthwhile to note that  
the sets 5el and ~ ' ~ 2  a r e  not ordered sets. This means that  we can take the sets 5~'1 = {(0,0),(1, 1)} 
and 5e~ = { (0, 0), (1, 1)} which produce the same polynomials.  We can now summarize these steps 
in an informal algorithm: 

Algorithm 1 
• Suppose (I, J, K) is the point  at which the shape function is to be evaluated. The values o f / ,  J and 
K indicate the degree of the ith Lagrangian componen t  of the shape function. (Example: 
(2,0,0) ~ 12(~1), 1°(~2), l°(~3). This implies the shape function is a polynomial  of degree two in ~1 
and a constant  one equal to 1 in 0~ 2 and ~3). 
• By using the Nevil le-Aitken algori thm build the shape functions. 

(a) F r o m  a given set ocfl corresponding to the ith node compute  the Lagrangian componen ts  of 
the ith shape function; 

(b) Repeat (a) for all the node points  of the triangle. 
At the end we shall have all the shape functions. 

Let us go into relations (2.3.2). We can rewrite P~(x) as 

i + k  

P (x) = Y. 
j=l  

(2.3.4) 
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where  ~lki(x) are related to 2k(x) and  pk(x) by the fol lowing recurrence. 

Proposition 2.5. 

= A i t l i  i 

tlk.i k k - 1  k k - 1  j =2i t l j i  +Pi t l j i+ l ,  j = i + l  . . . .  , i + k - 1 ,  (2.3.5) 

t/~+k/ k ~ -  1 
= ~ l i t l i + k i + l ,  

with boundary conditions t l° = 1. 

Proof.  See [6]. [ ]  

Obse rve  that  the coefficients t/ki are the elementary Lagrange polynomials. 

~ i + k  k Proposition 2.6. Set ~k = Z.~j=i qji" Then 

~/k = 1 Vk ~>0. (2.3.6) 

Proof .  Wel l -known result on Lagrange  polynomials .  [ ]  

2.4. Generalized Neville-Aitken scheme 

In the fol lowing par t  we shall use some nota t ions  as in [9].  Let n ~ ~ and • be a c ommuta t i ve  
field of  zero characteristic.  Let  G be a general set of cardinal i ty  n at least. We  shall deno te  with I G[ 
its cardinali ty.  

Definition 2.7. A set of  con t inuous  funct ions J~ = { f l , f 2  . . . . .  f ,}  satisfies the Haar condition on 
G if any de te rminant  

f l ( x , )  "'" f , ( x , )  
H~(Xl ,  ... , x , )  . . . . . . . . . .  (2.4.1) 

f l ( x , )  "'" f,(x~) 

defined on the set of  distinct points  X = {xl,  ... ,x ,}  c G is not  vanishing. 

Definition 2.8. The set of  funct ions f f  = ( f l ,  f2,  . . . ,  f ,) ,  where  j~: G ~ •, is called a K Chebyshev 
system on G (in the following ~ - C S ) / f l i t  verifies the Haar condition (2.4.1). 

Definition 2.9. Given  a K-CS. It is called complete if and  only if for every k = n, n - 1, . . . ,  1 the 
subset  ( f l ,  . . . ,  fk) of f f  is a ~ -CS.  

Examples  of  comple te  ~ - C S  are given in [9]. Fo r  a comple te  Chebyshev  system the fol lowing 
character izat ion is valid [9].  
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Proposition 2.10. Let  ( f l ,  f2 . . . .  , f , )  be an n-set o f  funct ions f j  : G ~ fl~. The  fol lowing statements are 
equivalent: 

(i) ( f l , f2 . . . . .  f . )  is ~ -CS;  
(ii) for  every funct ion f :  G ~ ~ and every set G. = {Xl ,X2,  ... , x . }  c G with [G.[ = n, there 

exists  a unique linear combination 

XI~ X 2 ,  . . .  , X n -  I , X  n 

such that 

p , f ( x i )  = f {x i ) ,  i = 1 ,2 , . . . , n ;  

?1 (iii) every nontrivial combination P. (x)  = Y~i= l cif i(x),  has in G up to n - 1 zeros. 
Such a polynomial will be called a C-polynomial. 

Proof. The proof  is based on Cramer 's  rule. [] 

The greatest monomia l  coefficient of the interpolant  p. f, in analogy with Newton 's  interpolat ing 
formula, is obtained generalizing the divided differences to a ~-CS. 

Definition 2.11. The generalized divided difference of a function f with simple knots { X l ,  X 2 ,  . . .  , X n } 

based on the ~(-CS ( f l , f 2  . . . . .  f , )  can be expressed by 

X 1 , X 2 ~  ~Xn 

f ~ , f 2  . . . .  , f , - , , f  [ 

X 1 ,  X2~ . . .  ~X n -  l , X n  

f l , f 2 ,  ... , f . - 1 , f .  " 

XI~ X2~ ~ X n - l ~ X n  

(2.4.2) 

Set the interpolat ion error 

rnS = : = f - - p . f  
X I ~ X 2 ~  ~ X n - l ~ X n  

By using (2.4.2), it can be rewritten as 

A , A ,  -.. , f . , f  

r . f ( x )  Xa, Xz, , x . ,  x 
= , x e G .  

I f l , f 2  . . . .  , f .  
Xl~  X 2 ,  . . .  ~Xn 

(2.4.3) 

The following theorem is the generalized Nevil le-Aitken scheme for a set of functions that  is 
a Chebyshev system on a field ~ (cf. I-9-]). 
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T h e o r e m  2.12. Let  m and n be two positive integers. Le t  ~ = ( f x ,  . . . , f , )  and ~ ' =  
( f l , . . . , f , , . . . , f , + m )  be two ~ - C S  on a set G. Then for  any f : G - - * K ,  any G,+m = 
{ x l , x 2 ,  ... ,X,+m} C G such that IG.+ml = n + m and any x E G, there holds the fol lowin9 recur- 

rence: 

pf [  fl,f2, ...,fn,'",fn+m I(X) = ~ . . . .  n fl,f2, ...,fn Iz , 
Xl,X2,  ... ,Xn, ... ,Xn+ml j=o /~J (x )pyLx j+l ,  ... , x i+ , j~x~ ,  (2.4.4) 

where the "coefficients" 2j, j = 0 , . . . ,  m are independent funct ions o f f  and such that yq~ o 2j(x) = 1 
V x ~  G. 

Set 

Y o . j = l ,  j = O , . . . , m ,  

[ f l , f 2 , . . . , J r ,  l ,  J = O , . . . , m ,  k = 1 , . . . , m ,  (2.4.5) rL+k Yk,j 
I X j + I ,  . . .  ~Xj+n~ 

then V x ~  G \  {x2, ... ,X,+m-1} 

N(x )  = det (Yk, j(X)) ~ O, j = O, ... ,m, k = 1, ... ,m (2.4.6) 

and uniquely V x e  G k { x 2 , . . . , x , + m - 1 }  and j = O , . . . , m  

2 j ( x ) -  ( - -Wdet (yk t (X)) ,  k = 1, . . . , m ,  l = O, . . . , j -  1, j  + 1 , . . . , m ,  (2.4.7) 
N(x )  

where for  x ~ {x2, ... ,Xn+m-1}, the "coefficients" ~j(X)E ~ can be chosen such that 

2j(x) = 1 (2.4.8) 
j=O 

i f  m >1 2 and p = 2, ... ,rn 

2j (x ,+p-1)  = 0, j = 0, ... ,p  - 2, (2.4.9) 

2 j ( x p ) = 0 ,  j = p , . . . , m .  

Proof .  See [9-1. An a l ternat ive  p roo f  based on  Sylvester 's  ident i ty  for de t e rminan t s  is given in 
[3]. [ ]  

Rema r k .  Subs t i tu t ing  f = f~+k in (2.4.4) for k = 1, . . . ,  m we can  see tha t  necessari ly 

~" 12 j ( x ) =  1, (2.4.10) 
j=O 

~ Y k . j ( X ) 2 j ( x ) = O ,  k = l  . . . . .  m. 
j=O 

(2.4.11) 
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Definition 2.13. Given the interpolating polynomial  pk(x )  obtained with the Neville-Aitken 
scheme (2.3.2) or (2.4.4), a set ~¢r = {Wo,Wl,  ... } c E and a set F = {717: ~t/-~ E}, we define the 
functional 

i+k 
= 

j = i  

As in [6], we call it reference funct ional  associated to pk(x).  

(2.4.12) 

Obviously, ~k(7 ) = pk if we take 7(w j) = yj. It means that 7(w) is the interpolating polynomial at 
the set d = {(wj, yj): j = O, 1, ... }. We are interested in the following problem. 

Problem 2.14. Does there exist a subspace / - k  = (70 ,  . . .  , T k }  of F such that 

JtOrk(Wi, . . . ,Wi+k)  = 

~o(Wi) 7o(Wi+l) "'" ~o(W--) 

~l(wl) ~l(wi+l) "'" ~l(wi+~) 

~k(Wi) ~k(Wi+~) "'" ~(Wi+k) 

=/= 0 (2.4.13) 

and 

1, j = O, (2.4.14) 
~k(TJ)=  O, j =  1, 2, 3 . . . . .  k? 

We shall refer to the subspace F k a s  characteristic space of ~k.  

Theorem 2.15. Given the interpolatin9 polynomial o f  Lagranoe pk(x)  and its associated reference 
funct ional  ~ k ,  the characteristic space I "k exists and we have 

i rk  = span (7i) ,  i -- 0, . . . ,  k, 

where 7o(W) = 1 and 7i(w) = x i - w i, i = 1, . . . ,  k. 

Proof. F rom Theorem 2.12 we know that the functions 7k.j(X), k , j  = 0 . . . .  , m given in (2.4.5) satisfy 
relations (2.4.10) and (2.4.11) that are equivalent to (2.4.14). In the case of Lagrangian polynomials 
these functions have the expression 7k,j(X) = X k -- X k for k > 0. If we fix x, we may consider 7k,j only 
as functions o f x  j, i.e., 7k, j(X) = 7k(Xj). Moreover,  the k + 1 functions 70(w) = 1 and 7i(w) = x i - w ~, 
i = 1, . . . , k  satisfy the Haar  condition and are linearly independent. They span a subspace of 
dimension k + 1 of all the functions from W = {w~, ...,W~+k} to ~. []  

2.5. The De  Casteljau algorithm 

So far, we have seen that the Neville-Aitken scheme can only be applied to the Lagrangian 
component  of (2.3.1). Our  next step consists in looking for a global scheme which allows to 
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compute  shape functions in their most  general form. Since we are considering barycentric coordi- 
nates, there is a general approach  that  comes from the theory of 'Bbzier patches' and its computa-  
tional algorithm: the De Casteljau algorithm. 

Some notation. We denote  the generic point  of the original triangle T, blj k by b~. This means that  
-Alll = i + j  + k. We always assume i,j,k >>.0 and i, j, k e N .  A B6zier patch of degree n on 
a triangle, in the (u, v)-plane, can be represented as (see I-2]) 

b(u,v) = ~ BT(a)bt (2.5.1) 
Itl =n 

with obvious meaning. The BT(a) is the lth Bernstein polynomial  of degree n, 

n )  i j k n! 
BT(a) = t ~ ' ~  - i!]~.k! ~ '  (2.5.2) 

where I11 = n = i + j + k. 
We shall assume that  B'](a) = 0 if some of the componen ts  of the triplet (i,j, k) are negative. The 

points bt are known as Bbzier points. Bernstein polynomials  satisfy the following recurrence. 

Proposit ion 2.16. 

B ~- l~a~ B [ ( a )  = o~ 1 t -e l [  I + 0~2B'1-12(a) + g3B~--13(a), I11 = r. (2.5.3) 

Proof. It follows from (2.5.2) by induct ion on r. []  

The De Casteljau algorithm, well known for the computa t ion  of B6zier curves, can be generalized 
to B6zier patches as follows. 

Algorithm 2 
* Given: a triangle of order n with nodes bt e ~3 (Ill = n) and point  P e (u, O-plane with barycentric 
coordinate  a = (~1, ~2, %). 
• Set: 

b ° ( a )  - -  bt ,  I / I  - -  n 
(2.5.4) 

, - 1  " -  ~ b L ) 3 ( a ) ,  r n, r b~t(a) = cqbt+,,(a) + ~2bt+e~(a) q- 0t3 = 1 ,  . . . ,  I / I  = n - 

where et = (1,0,0), ez = (0, 1,0) and ea = (0,0, 1). 

The equivalence between the De Casteljau algori thm (2.5.4) and the B6zier polynomial  (2.5.1) is 
stated as follows. 

Proposit ion 2.17. The generic point computed by the De Casteljau algorithm (2.5.4) can be expressed 
by Bernstein polynomials. This results in 

b~(a) = ~ B~(a)bi+/, [il = n - r. (2.5.5) 
Jjl=r 
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We want to look for determinant  formulae in this scheme as we did for the Lagrange poly- 
nomials. First of all, we define 

~ [ ( 7 )  = ~ B~(a)7(s), I i l  : n - r (2.5.6) 
Ijl=r 

the reference functional associated to b~. 

Theorem 2.18. There exists a "weak" characteristic space associated to the functional ¢¢~.. 

Proof. The proof follows the idea developed in the previous section about the Neville-Aitken 
scheme for Lagrange polynomials. Let us note that 3-variate Bernstein polynomials of given degree 
k are a basis for the space of 3-variate polynomials of degree k. They are linearly independent and 
on a set of distinct points they satisfy the Haar  condition. Moreover,  they are a Chebyshev system 
on R. F rom the hypotheses of Theorem 2.12, we can determine functions •k.j satisfying (2.4.10) and 
(2.4.11) equivalent to (2.4.14). [] 

Comments. We have found a solution by using an interpolating procedure starting from an 
approximating scheme. This is the reason we have called the associated characteristic space 
a 'weak' characteristic space. This idea can be generalized saying that if we are considering an 
approximating scheme we may work on an associated interpolating space for finding the character- 
istic space. 

Example. We apply Theorem 2.12 with n = 1 and m = 2. In this case the dimension d of the space 
of 3-variate polynomials of degree one is 3. The set o~ is formed of 3 basis functions that are the 
Bernstein polynomials of degree 1 in 3 variables, i.e., ~- (Bloo, 1 = Bolo, Bolol) = ( ~ 1 , ~ 2 , ~ 3 ) -  

To apply (2.4.10) and (2.4.11) we have to compute the functions 2~(~1, ~2, ct3), l = 0, 1, 2 and the 
6 functions 7k,j(~l, ~2, ~3), k = 1, 2, j = 0, 1, 2. With I GI = n + m = 3, we take as G the set formed of 
three distinct points al, a2, a3 with al = (al 1, a12, a13), a2 = (a21, a22, a23) and a3 = (a31, a32,  a33). 1 
By using (2.4.5) we get 

71, j (a)--  a j + l , 1  ~2 a j + l ' 2 0 c l ,  j = 0 , 1 , 2 ,  (2.5.7) 
£11,1 a l ,  1 

72,j(a) -- aj+l'--------!l ~ 3 a j + l ' 3 ~ l ,  j = 0 , 1 , 2 .  (2.5.8) 
a l ,  1 a l ,  1 

From these formulae, the point a~ may be chosen in such a way that al. 1 ~ 0. Then 

1 ( ~ 2 D  1 + ~1~2D2 n t- ~1~3D3),  N (a) = a2-----~j (2.5.9) 

1 Although area coordinates are not independent coordinates, we prefer to consider 3-variate polynomials. 
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where 

D1 = a12(a23 - -  a33)  + a22(a33 - -  a13)  + a32(a13  - -  a23),  

D2 = a l l ( a 3 3  - -  a23)  + a21(al3 - -  a33)  + a31(a23 - -  a13),  (2.5.10) 

D3 = all(az2 - a32)  + a21(a32  - a12)  + a31(a12  - a22). 
Funct ions  2j(~l, ~2, ~3), J = 0, 1, 2 are then given 

C~(a33a22 - -  a23a32 )  + O~lO~2(a31a23 --  a21a33)  + O~l~x3(a21a32 --  a22a31) 
20(a) = N'(a) ' 

ct~(a12a33 - a13a32) + ct10~2(a31a13 -- a l la33)  + ~l~3(al la32 -- a12a31) 
~ l ( a ) =  - -  N'(a) , (2.5.11) 

~x21(a12a23 - -  a22a13)  + O~l O~2(a21a13 --  a l i a 2 3 )  + ~xt o~3(all a22 --  a12a21)  
22(a)  = N ' ( a )  ' 

where N'(a) = af t  N(a). 
By definition it is easy to verify Y~=o 2j(a) = 1 and ~ = o  yk,j(a)~.j(a) = 0, k = 1, 2. It is worthwhile 

to note that  the functions 2s(a) have the proper ty  ~.j+l(ai) = 1, j = 0, 1, 2, i = 1, 2, 3 if i = j  + 1 
otherwise they are vanishing. This property suggests that  these functions can be seen as shape 
functions and their expressions (2.5.11) give a way to compute  them. 

Moreover,  the functions y(s) required in Theorem 2.18 have the following expressions yo(S) = 1, 
yk(Sj, 1, S j, 2, S j, 3) = S j, 10~k + 1 --  S j, 2~Xl, j = O, 1, 2, k = 1, 2. 

To conclude this section we would like to identify some points that  justify the preference to use 
this algori thm instead of the Neville-Aitken's.  The De Casteljau recursion formula together  with 
Proposi t ion 2.17 give a new recursion scheme to describe shape functions. 

The differences, in compar ison with the Nevil le-Aitken algorithm, can be summarized as follows: 
(i) The olobality of this expression. It means that  we can describe the interpolat ing polynomial  

only considering the barycentric coordinates of the interpolat ing points. 
(ii) The recursion scheme (2.5.4) is not trianoular. With reference to [6], a recursion scheme is 

called trianoular if there is an initialization step followed by a two-terms recursion part  (for 
example, the Nevil le-Aitken scheme). The recursion scheme (2.5.4) is called a three-terms recursion 
scheme since it involves 1 term in the initialization step and 3 terms in the recursion part. 

(iii) Expression (2.5.5) can be seen as a system of equations. Given a triplet 1 ~ ~ 3, 1 = (i,j, k), let 
I ! I = i + j + k be its length. We use the nota t ion m(l) for the total number  of triplets with length I/I. 
Rewriting expression (2.5.5) in matrix nota t ion  as Ac = b, we see that  A is an re(i) x m ( j )  matrix 
whose elements are bi+j. This matrix is symmetric if m(i) = re(j), c is the vector formed by the 
Bernstein polynomials  valued in a and b is the vector of the resulting B6zier polynomials.  
This observation implies that  we could seek for a characteristic space of ~ by orthogonalizat ion.  

3. Conclusions 

It is interesting to note that  the algori thm for the generalized Nevil le-Aitken polynomial  as 
suggested in [9] is an application of the E-Aloorithm, as verified in [4, 5]; furthermore,  such 
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a lgor i thm is of in terpolat ing nature.  Instead the De Castel jau a lgor i thm appears  more  flexible to 
give an approx imate  solut ion over a triangle. An improved  version with reduced computa t iona l  
complexi ty  of this a lgori thm,  is the VSC Algorithm based on a modif ied formula  of 
Bernstein-B6zier  polynomia ls  [10]. 
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Appendix 

*** Procedure  careal 
This procedure determines the system ofbarycentric coordinates of a generic point P, relatively to the 
given triangle T of vertices x(i), y(i) (i = 1, 2, 3) 
clear; 
x(1) = input ( 'x  coord ina te  
y(1) = input ( 'y  coord ina te  
x(2) = input ( 'x  coord ina te  
y(2) = input ( 'y  coord ina te  
x(3) = input ( 'x  coord ina te  
y(3) = input ( 'y  coord ina te  
a l (1 ,  :) = [x(1),y(1)]; 
a l (2 ,  :) = [x(2),y(2)]; 

of the first point: '); 
of the first point: '); 
of the second point: '); 
of the second point: '); 
of the third point: '); 
of the third point: '); 

a l (3 ,  :) = [x(3),y(3)]; 
aa = [a l  (1, :)', a l  (2, :)', a 1 (3, : )'3; 
aal = [aa, 
1,1,1]  
area = 1/2*det(aal ) ;  **** triangle area 
pe -- [2 3, 
3 1, 
1 2]; **** pe rmuta t ion  of remain ing  indices 
xp -- input  ( 'x coord ina te  point  P:  '); 
yp = input  ( 'y coord ina te  point  P:  '); 
for i = 1:3 
a(i) = al (pc(i, 1), 1)*al (pc(i, 2), 2)-al (pc(i, 2), 1)*al (pc(i, 1), 2); 
b(i) = al (pe(i, 1), 2)-al (pc(i, 2), 2); 
c(i) = al (pe(1, 2), 1)-al (pe(i, 1), 1); 
mat(i ,  :) = [a(i), b(i), c(i)]; 
end; 
u = 1/(2" area)* (mat) * [ 1 xp yp]'; 
disp( 'Requi red  barycentr ic  coordinates  '); 
u; 
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The following function determines 
all triplets (i,j, k) such that i + j + k = n 
n = input parameter (is the triple length) 

func t ion  f t e r n l ,  l] -- t e rn  (n); 
1 =  1; 
for i = n : - l :O  

f o r j  = O:n - i 
i f n # O  

te rn  l ( l , : ) I !  n - i - J , ! l  
n 

elseif  n = = 0 
te rn  1 (l, :) = [0, O, 0]; 

end;  
b(l,:) = [i,n - i - j , j ] ;  
l = l + l ;  

end; 
end;  
/ = l - l ;  
*** P r o c e d u r e  D e C a s t e  
This procedure implements the De Casteljau algorithm. Given a triangle of order n, it computes the 
Bernstein-Bbzier polynomial in a = (a l ,  a2, a 3 ) .  

n -- inpu t  ( 'Tr iang le  Orde r :  '); 
[br, m] = te rn  (n); 
f o r / - -  l : m  

x(i) = br (i, 1); 
y (i) = br (i, 2); 

end;  
v =  1; 
disp ( 'We  are  cons ide r ing  n o r m a l i z e d  b a r y c e n t r i c  coo rd ina t e s ,  i.e., such  tha t  a l  + a2 q- a3 = 1'); 
a l  = inpu t  (' 1 ° a r ea  c o o r d i n a t e  :'); 
a2 = inpu t  ( '2 ° a r ea  c o o r d i n a t e  :'); 

a 3 = I - - a l  - - a 2 ;  

f o r j  -- 0 : n  
g(J + 1) = 0 .5* ( j  + 1)*( j  + 2); 

end;  
f o r r =  l : n  

k =  1; 
[br 1, m] = te rn  (n - r); 
c lear  x; 
c lear  y; 
for  1 =  l : m  

x(l ) = br l(l,  1); 
y(1) = br 1(l, 2); 
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r = O  r = l  r = 2  

Fig. 2. De Casteljau table for n = 2. 

113 

r ~ O  r : l  r-----2 r - - - -3  

Fig. 3. De Casteljau table for n = 3. 

end;  
v = v + l ;  
br 1 = br; 
f o r / - - -  l : m  
i f / = =  1 
br(l,:) = a l* (br l ( l , : ) )  + a2*(br l ( l  + 1,:)) + a3*(br l ( l  + 2,:)); 
end;  
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if (0(k) < l & l  <<. o(k + 1)) 
br(l,:) = al *(brl(1,:)) + a2 *(br l(l  + 2 + k - 1,:)) + a3 * (br l ( l  + 2 + k,:)); 

end; 
if rein(l, o(k + 1)) = = 0 

k = k + l ;  
end; 
end; 

end; 
end; 
disp ('** Results * * '); 
disp (br(1, :)); 
The way in which the procedure DeCaste computes the Bernstein-B6zier polynomial can be seen in 
Fig. 2 (for the case n = 2 )  and Fig. 3 (for the case n = 3) .  
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