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[1] This paper aims at a first theoretical step toward the probabilistic modeling of nutrient
contents in catchment-scale soil states. To this end, we wish to characterize
probabilistically the slow, leaching-prone component of the hydrologic response,
which chiefly determines the export of dissolved nutrients from soil, as a result of
interactions between mobile/immobile phases along the pathways of runoff formation.
The influence of temporal fluctuations of soil moisture on slow components of the
catchment-scale runoff is thus investigated by means of a stochastic framework, where the
intermittency of rainfall is modeled by a marked Poisson process with exponentially
distributed intensities. The probability distribution of the relevant runoff components and
its moment-generating function are derived by coupling a stochastic description of soil
moisture dynamics with a suitably simplified flow model. New exact solutions are
achieved in two different cases, namely, when (1) infiltration rates are assumed
proportional to the incoming rainfall depths, i.e., when surface runoff is negligible, and
(2) infiltration rates are upwardly bounded by episodical soil saturations (e.g., for shallow
soils). In both cases, the derived probability density functions of slow components of
runoff are well described by a Gamma distribution, whose shape is controlled by the ratio
between the runoff frequency and the inverse of the mean residence time of subsurface
flow. The framework developed allows one to link the probabilistic structure of slow
components of runoff with simple (pluviometric, soil, vegetation, and geomorphologic)
macroscopic parameters, with implications for the ecohydrology of fluvial systems and for
drought prediction in ungauged basins. Comparisons with Monte Carlo simulations of a
more detailed rainfall-runoff model to a real catchment located in northeastern Italy
suggest the ability of the approach proposed to capture the main features of runoff
probability distributions in heterogeneous catchments.
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1. Introduction

[2] The hydrologic runoff at the closure of a river basin is
the byproduct of complex hydrometeorological and ecolog-
ical processes. The pronounced temporal variability of
runoff obviously reflects the random characters of key
hydrologic fluxes, but also the heterogeneity of the transport
dynamics in channeled and unchanneled regions of the
basin. A proper analytical characterization of the statistical
properties of the different components of runoff thus repre-

sents a challenging task because of the large number of
stochastic processes involved, which require to be properly
modeled at the scales of interest (i.e., the basin scale). This
paper aims at a first theoretical step toward the probabilistic
modeling of nutrient contents in hydrologic-scale soil states.
Actually, our aim is to find reasonable analytical expres-
sions for the stationary state of the probability distribution
of soil nutrient concentrations. This is a natural extension of
pioneering works [Rodriguez-Iturbe et al., 1999; Rodriguez-
Iturbe and Porporato, 2004] where the dynamics of water-
controlled vegetation was tackled by studying the stationary
probability distribution of soil moisture. To this end one
needs to characterize, among other things, the slow, leach-
ing-prone component of the hydrologic response (i.e., the
base flow), which chiefly determines the export of dissolved
nutrients from soil, as a result of interactions between
mobile/immobile phases along the pathways of runoff
formation.
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[3] The analytical approach originated by Rodriguez-
Iturbe et al. [1999] and further developed by Laio et al.
[2001], Porporato et al. [2004], and Rodriguez-Iturbe and
Porporato [2004] is aimed at the probabilistic modeling of
the soil moisture dynamic at a point and provides an explicit
linkage between temporal soil moisture fluctuations and
underlying climatic and ecohydrologic processes. Accord-
ing to the above approach, the temporal dynamic of the soil
water content is seen as the result of deterministic, state
dependent loss processes (e.g., evapotranspiration, leakage)
and stochastic (positive) increments driven by intermittent
rainfall forcings.
[4] Several analytical and numerical studies [Milly and

Dunne, 1993; Porporato et al., 2004; Botter et al., 2006]
have shown that similar stochastic equations can also be
employed to describe the average soil moisture content over
entire hydrologic catchments. At the basin scale, in fact, the
soil moisture loss function can be typically simplified and
described by macroscopic effective parameters. Here, fol-
lowing Porporato et al. [2004], the analytical approach
developed by Rodriguez-Iturbe et al. [1999] for modeling
the water balance at a point is reinterpreted and applied to
describe the temporal evolution of the average soil water
content in heterogeneous catchments. The episodical
exceedance of some critical level s1 (comprised between
the field capacity and complete saturation) is seen as the
triggering mechanism for water release from soil toward the
catchment outlet. The stochastic character of the rainfall
volumes contributing to runoff is thus strictly related to the
temporal fluctuations of soil moisture. It should be noted
that the approach of linking basin-scale soil moisture
content (or surface storage) to streamflow production is
typical of some semidistributed hydrologic models [e.g.,
Kavetsky et al., 2003]. Moreover, Rodriguez-Iturbe et al.
[2006] recently extended the above quantitative general
basis to both temporal and spatial intertwined dynamics.
[5] In this paper, a stochastic description of soil moisture

dynamics and of the rainfall volumes contributing to runoff
is coupled with a simplified transport scheme to provide an
analytical characterization of the probability distribution
function (pdf) of base flows in river basins. The main
features of the base flow pdf are thus directly linked to
macroscopic rainfall properties, to relevant soil-vegetation
parameters, and to basic morphological features, with
implications for the ecohydrology of fluvial systems, in
particular for what concerns the analysis of drought fre-
quency and low flows. It is worth emphasizing that the base
flow pdfs derived in this paper are deduced on the basis of
spatially averaged, catchment-scale properties. We therefore
neglect effects related to the detailed description of the
network morphology and of the spatial distribution of soil
properties. Nevertheless, the effect of complex network
structures and of heterogeneous soil, rainfall and vegetation
properties on the statistical properties of the overall dis-
charge can be actually included in the proposed framework.
The above issues, however, would render the analytical
treatment of the problem by far more complex and will be
discussed elsewhere.
[6] The paper is organized as follows: Section 2 discusses

the stochastic nature of the effective rainfall series due to the
random character of the soil moisture dynamic in river
basins. The probability distributions of the catchment-scale

slow runoff components are then derived in section 3, where
two different infiltration schemes are discussed. Section 4
presents the comparison of the analytical model with
numerical results, derived from the Monte Carlo application
of a numerical rainfall-runoff model to a real catchment
located in northeastern Italy.

2. Soil Moisture Dynamics and the Production of
Surface Runoff and Deep Percolation

[7] The soil moisture dynamics and the related runoff
production mechanisms at the catchment scale are mostly
controlled by the temporal variability of rainfall processes,
which strongly affect the water balance in the hydrologi-
cally active topsoil layer. Following Rodriguez-Iturbe et al.
[1999], the rainfall occurrence is here modeled as a zero-
dimensional Poisson process of rate lP [T�1] (Figure 1a).
The latter assumption postulates catchments sizes smaller
than the correlation scale of rainfall events and timescales
greater than the characteristic duration of single rainfall
events (e.g., daily), so that the internal spatial and temporal
structure of rainfall events can be neglected. Moreover, we
model the dynamics of catchment-averaged soil moisture
(and the ensuing runoff production mechanisms) as a state-
dependent point process taking place in the topsoil layer,
which is assumed to be labeled by constant, spatially
averaged properties (e.g., depth, Zr [L], porosity, n (dimen-
sionless), soil moisture, s (dimensionless)). Lateral flows in
the upper soil layer are neglected, possibly preventing the
extension of the approach described in this paper to the case
of steep mountain basins, where lateral flows play a decisive
role in soil saturation dynamics during intense rainfall
events. Daily rainfall depths, h [L], are assumed to be
exponentially distributed with parameter g0P (Figure 1a)
and the dominant runoff production mechanism is supposed
to be Dunnian (as typical in flat temperate regions). Fur-
thermore, we neglect ecosystem dynamics, thus focusing
on average, constant hydroecological parameters (i.e.,
representative of a whole season). Under the above assump-
tions, the procedure employed by Rodriguez-Iturbe and
Porporato [2004] to derive the steady state probability
distribution of soil moisture at a point can be interpreted
and applied to heterogeneous catchments, where spatially
averaged soil moisture pdfs can be described by macro-
scopic (rainfall, soil and vegetation) parameters [Porporato
et al., 2004; Botter et al., 2006]. Under the above assump-
tions, the mass balance within the topsoil layer of a
catchment can be written in terms of the spatially averaged
(relative) soil moisture, s(t), as

ds tð Þ
dt

¼ �r s tð Þ½ � þ xt: ð1Þ

The last term of equation (1), xt, represents stochastic
instantaneous inputs due to infiltration from rainfall. The
latter is modeled as a marked Poisson process of rate lP and
normalized depths, h/(nZr), extracted from an exponential
distribution of parameter gP = g0PnZr

xt lP; gPð Þ ¼
X
i;ti<t

hi

nZr
d t � tið Þ; ð2Þ

2 of 14

W02417 BOTTER ET AL.: STOCHASTIC BASE FLOWS IN RIVER BASINS W02417



where d is the Dirac delta function. Thus the interarrival
times between subsequent rainfall events are distributed
according to an exponential distribution of parameter lP.
The term r[s(t)] in equation (1) is the (normalized)
catchment-scale soil loss function. For the sake of simplicity
we focus here on the case of linear loss functions, which
have been proved to be a reasonable approximation of

actual evapotranspiration fluxes, particulary when consider-
ing large spatial scales [e.g., Wetzel and Chang, 1987;
Porporato et al., 2004]

r sð Þ ¼ s� swð Þ
s1 � swð Þ

ETmax

nZr
s 	 s1ð Þ; ð3Þ

where s1 is a critical soil moisture level, typically larger than
field capacity [e.g., Porporato et al., 2004]. For soil
moisture levels below s1 rainfall is assumed to instanta-
neously infiltrate (at the daily timescale), while above s1
rainfall is assumed to be instantaneously lost as deep
percolation and/or surface runoff [Porporato et al., 2004].
Note that soil moisture levels above s1 can be reached only
due to the instantaneous duration of the rainfall pulses.
According to equation (3), evapotranspiration is assumed to
vanish below the wilting point, sw, and linearly increasing
above sw up to a maximum rate, ETmax [L][T

�1].
[8] The master equation for the evolution of the spatially

averaged basin-scale relative soil moisture pdf can be
obtained as described by Rodriguez-Iturbe et al. [1999].
The corresponding steady state solution in the case of linear
losses can be expressed by a truncated gamma distribution

p sð Þ ¼ c s� swð Þ
lP
h �1

exp �gPsð Þ; ð4Þ

where c is the normalization constant [see Porporato et al.,
2004] and h is the normalized maximum evapotranspiration
rate, i.e., h = Emax/[nZr(s1 � sw)].
[9] The production of surface runoff and/or deep perco-

lation in the considered catchment is schematically illus-
trated in Figure 1b. When the spatially averaged, relative
soil moisture s(t) exceeds the threshold s1, the water
volumes exceeding s1 are instantaneously lost from the
upper soil layer (Figure 1c). They constitute the effective
rainfall for the catchment, i.e., the fraction of rainfall that
propagates within the hillslopes and eventually reaches the
outlet through the channel network. A key point that needs
to be addressed in order to describe the probabilistic
structure of streamflow at the daily timescale is thus the
statistical characterization of the occurrences of surface
runoff and/or deep percolation, which embeds the random
character of the rainfall input, as well as the interaction
between ecological and hydrologic processes.
[10] According to our simplified scheme, the distribution

of the occurrence of surface runoff and/or deep percolation
is determined by the soil moisture crossing of the threshold
s = s1. A complete description of the distribution of the
crossing times L, pL(L), [T

�1], presents serious analytical
difficulties [Rodriguez-Iturbe and Porporato, 2004]. How-
ever, the mean crossing time can be quite easily expressed
in terms of the soil moisture pdf as [Porporato et al., 2001;
Rodriguez-Iturbe and Porporato, 2004]

hLi ¼ 1

r s1ð Þp s1ð Þ : ð5Þ

The numerical pdfs of runoff interarrivals pL(L) (suitably
normalized with respect to the mean interarrival hLi)
obtained from Monte Carlo simulations of the soil moisture
model described by equations (1)–(3) are shown in Figure 2,

Figure 1. Schematic representation of the soil moisture
and runoff models: (a) Temporal evolution of the overall
rainfall depths (synthetic data). The interarrivals and the
rainfall depths are exponentially distributed with a
frequency lP = 0.3 d�1 and with the following values of
the parameter controlling the (normalized) intensities: gP =
16.6, respectively. (b) Temporal evolution of the (catchment
averaged) relative soil moisture, s(t), which is commanded
by the intermittent rainfall forcings shown in Figure 1a and
by the deterministic decay due to evapotranspiration
process, according to equation (1). The dash-dotted line
represents the threshold s1, whose up crossing determines
the triggering of runoff events. (c) Temporal sequence of
effective rainfall, driven by the exceedence of the threshold
s1 for the soil moisture s(t). (d) Temporal evolution of the
overall, specific (i.e., for unit area) discharge. The soil,
vegetation, and transport parameters employed for this
simulations are n = 0.55, Zr = 30 cm, sw = 0.18, s1 = 0.6,
ETmax = 0.35 cm/d, and k = 0.6 d�1.
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where we explore runoff frequencies ranging from 0.05 d�1

(circles) to 0.14 d�1 (triangles). The graph reported in
Figure 2 suggests that the actual distribution of the
interarrivals is relatively well approximated by an expo-
nential distribution (solid line) as the runoff frequency
increases. We thus assume that the exponential distribution
is a reasonable approximation of the runoff interarrival
distribution, particularly when the ratio between the average
runoff interarrival, hLi, and the characteristic time of the
loss process (e.g., (s1 � sw)nZr /ETmax) is smaller than 0.1,
and we rely on numerical simulations to assess the influence
of the above approximation on the ensuing runoff pdf (see
section 3.3). A similar simplification was adopted also by
Laio [2006], even though in a different context.
[11] On the basis of the above considerations, we can

model the temporal evolution of the effective rainfall
depths, I [L], as a new marked Poisson process, whose
frequency l is linked to the underlying probability
distribution of soil moisture according to the following
relationship

l ¼ r s1ð Þp s1ð Þ: ð6Þ

From now on we shall refer to l as the runoff frequency,
regardless of the fate (surface runoff and/or subsurface flow)
of the rainfall volumes exceeding the threshold s1 (see
below). Thus the rate of stochastic runoff and/or deep
infiltration events, commanded by the temporal evolution of
the soil moisture in the topsoil layer, is described as

x0t l; g0P
� �

¼
X
j;tj<t

Ijd t � tj
� �

; ð7Þ

where the effective rainfall depths, I, are assumed to be
exponentially distributed with parameter g0P (see also
Figure 3 and the discussion therein) and the intervals
between subsequent events, L = tj+1 � tj, are sampled from
an exponential distribution with parameter l, whose value is
crucially dependent on rainfall properties and on soil and
vegetation parameters.
[12] It is also interesting to observe that the soil moisture

dynamics that transform (through the threshold s1) the total
rainfall into effective rainfall, from a mathematical stand-
point, act as a special form of censoring process on the
overall rainfall series. The underlying soil moisture
dynamic, in fact, changes the mean frequency of the original
rainfall process (from lP to l), but it does not alter the
distribution of the depths, which remains exponential with
mean 1/g0P. From an analytical point of view, this means
that soil moisture acts on rainfall variability as an effective
interception. The formalism developed by Rodriguez-Iturbe
et al. [1999] to describe the fraction of rainfall not inter-
cepted by plant canopy can thus be transferred in this
context to describe the production of runoff and/or deep
infiltration from the total rainfall.

3. Probability Distribution of Slow Components
of the Hydrologic Response

[13] According to the runoff production model described
above, surface runoff is assumed to be triggered by the
complete soil saturation (i.e., s = 1). It constitutes the fast
component of the hydrologic response and is thus deemed
responsible of producing discharge at timescales shorter
than 1 day. In order to achieve a relatively simple mathe-
matical treatment of the problem, however, we shall neglect

Figure 2. Results from the numerical Monte Carlo
simulation of the soil moisture model: probability density
function of the runoff interarrivals L, pL(L) (normalized with
the average runoff interarrival hLi), for different values of
the mean runoff interarrival hLi: 7 days (circles), 10 days
(crosses), and 20 days (triangles). The solid line represents
the exponential distribution. The parameters employed for
the simulations presented are sw = 0.18, s1 = 0.6, Emax =
0.3 cm/d, lP = 0.3 d�1, n = 0.55, and Zr = 30 cm. The
average rainfall depths are 0.8 cm (triangles), 1.2 cm
(crosses), and 3 cm (circles).

Figure 3. Results from the numerical Monte Carlo
simulation of the soil moisture model: Probability density
function of the effective rainfall intensities Y, pY (Y ),
suitably normalized with the average rainfall intensity hYi
for different values of the parameter r = gP (1 � s1) (see
text): r = 5 (triangles), r = 7 (crosses), and r = 9 (circles).
The corresponding mean runoff interarrivals hLi are 10 days
(circles), 15 days (crosses), and 20 days (triangles). The
solid line represents the exponential distribution. The
average rainfall depths are 0.8 cm (triangles), 1.0 cm
(crosses), and 1.2 cm (circles). The other soil, vegetation,
and rainfall parameters are those employed in Figure 2.
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the fraction of effective rainfall propagating as surface
runoff, thus focussing on deep infiltration dynamics and
its role in streamflow formation. Therefore we derive
probability distributions for the slow component of the
hydrologic response and we explicitly neglect the surface
contribution originated during intense storm events. For this
reason the terms ‘‘runoff’’ or ‘‘discharge’’ in what follows
are employed to indicate the streamflow contribution orig-
inated from subsurface processes (i.e., the base flow).
Furthermore, we note that slow components of the hydro-
logic response can be identified with daily discharges in
relatively small basins (i.e., when the characteristic time-
scale for surface processes is much shorter than 1 day):
under the above circumstances, in fact, the integration over
a time period larger than the characteristic time of surface
processes usually beclouds the contribution of the fast
component of the hydrologic response to the overall (catch-
ment-scale) runoff pdf.
[14] Deep percolation and subsurface runoff, instead, are

assumed to be triggered when the soil moisture s exceeds
the threshold s1. In particular, the deep percolation depths, Y,
are assumed to be equal to the pertinent effective rainfall
depth, I, if the effective rainfall is lower than (1 � s1) nZr
and equal to (1 � s1) nZr when I > (1 � s1) nZr (e.g., when
the soil is saturated). The rainfall depths contributing to
deep percolation (i.e., leakage), Y, are thus upwardly
bounded by the threshold nZR (1 � s1), which represents
the leakage volume in correspondence of soil saturation.
[15] The water pulses deeply infiltrating into soil, Y, are

then transported as subsurface flow and they are eventually
released toward the stream network. The search for coherent
transport models capable of reproducing the water dynamics
in soil and predicting catchment-scale hydrologic responses
has inspired a large part of the hydrologic literature in the
last decades. This is due to the fact that the water transport
in river basins is a complex process, characterized by
pronounced heterogeneities operating at different spatial
and temporal scales. Furthermore, a complete description
of all relevant soil water processes can hardly be made
through field observations.
[16] It should be noted that while the approach presented

here is not a rainfall-runoff model (as none of the key
assumptions would hold), it is reasonable to relate it to the
context of rainfall-runoff models as deterministic or sto-
chastic descriptors of the various components of the hydro-
logic response, thus including those sought after herein. As
we show for comparison in section 3.1, the slow component
that interests us could be obtained by suitably filtering the
output of complete models. In that context, deterministic
models are rather often applied in the form of spatially
distributed approaches, which include three dimensional,
grid element based models coupling surface and subsurface
flow [e.g., Bathurst et al., 1995; Bathurst and Cooley,
1996], land-atmosphere interactions [e.g., Wood et al.,
1997] and topography-based models [e.g., Beven and
Kirkby, 1979; Sivapalan et al., 1990; Beven et al., 1995;
Beven, 2001]. Catchment-scale hydrologic responses of
river basins have been also described by the use of lumped
models, for which a certain degree of conceptualization of
the physical processes involved is inevitably introduced. In
this context, the pioneering paper of Rodriguez-Iturbe and
Valdes [1979] showed the equivalence between the instan-

taneous unit hydrograph and the probability distribution of
the residence times t (i.e., the traveltime of a water particle
within the basin seen as the control volume for the transport
process). It turned out to be of particularly significance
because the stochastic formulation of transport by traveltime
distributions proved a general and profound theoretical
framework for basin-scale processes of various nature
pertaining both surface and subsurface hydrology [e.g.,
Dagan, 1989; Rodriguez-Iturbe and Rinaldo, 1997].
[17] In view of the main objective of the paper (i.e., the

analytical derivation of the pdf for the slow component of
the hydrologic response), a residence time approach is here
employed for modeling subsurface transport processes at
the catchment scale. The postulated absence of pronounced
topographic effects, in fact, prevent from the use of more
detailed models exploiting topographic properties. Further-
more, the framework based on the residence time distribu-
tion allows one to embed the effect of heterogeneities of
dynamical and geomorphological properties in a single
curve (i.e., the probability distribution of the residence time,
f (t)). In the literature, different types of residence time
distributions have been used to model the hydrologic
response of a river basin [e.g., Gupta et al., 1980; Rinaldo
et al., 1991, 1995]. In the present paper we adopt a
simplified scheme, where the effects of the network struc-
ture (and of the spatial organization of the drainage path-
ways) on the ensuing basin-scale hydrologic response are
neglected. This is consistent with the spatial and temporal
scales considered in this study, that allow to model the
rainfall as a sequence of uniform and instantaneous (i.e.,
daily) inputs. The whole catchment is simply modeled as a
linear reservoir, where the outflowing flux is assumed
proportional to the water storage. This is tantamount to
assume that the catchment-scale subsurface flow is charac-
terized by an exponential residence time distribution (i.e.,
f (t) = k exp(�kt), if k is the inverse of the mean residence
time). Even though theoretical and experimental reserva-
tions have been noted [McGuire et al., 2005; Troch et al.,
2004], the exponential distribution has been widely
employed in the literature [e.g., Boyd, 1978; Rinaldo et
al., 2006a], because it allows one to reproduce the slow
release of water from soil and it requires a single calibration
parameter. Furthermore, extensive validations against field
data have proved the robustness of the linear assumption in
modeling subsurface flows at large spatial scales in many
cases of practical interest [e.g., Rinaldo et al., 2006b].
[18] The overall catchment-scale runoff Q (in the sense

specified above) is thus linked to the temporal evolution of
the deep infiltration depths, Y(t), according to the following
relationship (see also Figure 1)

Q tð Þ ¼ A

Z t

0

Y t � tð Þf tð Þdt; ð8Þ

where A is the basin surface, and f (t) = k exp(�kt). A
Langevin equation for runoff can be obtained deriving both
sides of equation (8) with respect to t,

dQ tð Þ
dt

¼ �kQ tð Þ þ kAx00t ; ð9Þ
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where the first term on the right-hand side represents the
deterministic (exponential) decay of the discharge due to
the slow release of water from soil and the last term on the
right-hand side represents the stochastic rate due to inputs
by deep percolation

x00t lð Þ ¼
X
j;tj<t

Yjd t � tj
� �

: ð10Þ

Note that the intervals between subsequent deep percolation
events, tj+1 � tj, are exponentially distributed with parameter
l (exactly as the total effective rainfall). Accordingly, the
master equation for the probability distribution of the
discharge p(Q, t) can be written as

@p Q; tð Þ
@t

¼ @ kQp Q; tð Þ½ �
@Q

� lp Q; tð Þ þ l
Z Q

0

p Q� z; tð Þ b zð Þdz;

ð11Þ

where b(Q) indicates the distribution of runoff increments,
DQ = kAY. The local temporal variation of the runoff
probability, p(Q, t), can thus be expressed as the sum of
three independent terms: the probability gain due to the
deterministic decay caused by slow release of water from
hillslopes; the loss of probability due to jumps forcing the
system to leave the discharge level Q; and the increment
of probability due to positive jumps from lower discharge
levels. The solution of equation (11) is related to the
specification of the pdf of the runoff increments, b(Q), as a
function of the effective rainfall, as discussed in the
following paragraphs.

3.1. Unbounded Runoff Jump Distribution
(Negligible Surface Runoff)

[19] In many cases, when the soil is relatively thick and
permeable, deep infiltration and subsurface runoff are much
more important than surface runoff in determining the
probabilistic structure of base flows. Let r be the ratio
between the soil storage capacity above the threshold s1
and the average daily rainfall

r ¼ gP 1� s1ð Þ: ð12Þ

When r � 1, we may neglect the upper bound in the
distribution of the water volumes infiltrating during rainfall
events represented by the soil saturation (i.e., s = 1).
Under the above assumption, the deep percolation depths
Y have the same exponential distribution of the effective
rainfall depths. This is shown numerically by Figure 3,
where we plot the deep percolation depths pdf, pY (Y),
derived by the Monte Carlo simulation of the soil moisture
model, for values of r ranging from 5 (circles) to 9
(triangles). The numerically obtained leakage probability
distributions shown in Figure 3 are suitably normalized
with respect to the mean depth hYi and refer to mean
runoff frequencies l ranging from 0.05 d�1 (circles) to
0.1 d�1 (triangles). In all the cases explored the
distribution of the effective rainfall depths closely fits
the expected exponential distribution (solid line). As a

consequence, the following exponential distribution applies
to the discharge jumps

b Qð Þ ¼ gQ exp �gQQ
� �

; ð13Þ

where the inverse of the mean discharge increment due to
incoming effective rainfall events is

gQ ¼ gP= n k A Zrð Þ: ð14Þ

Under such circumstances, the master equation for the
runoff probability distribution (equation (11)) reads

@p Q; tð Þ
@t

¼ @ k Q p Q; tð Þ½ �
@Q

� lp Q; tð Þ

þ lgQ

Z Q

0

p Q� z; tð Þ exp �gQz
� �

dz; ð15Þ

whose steady state solution can be shown to be a Gamma
distribution

p Q; t ! 1ð Þ ¼ c*Q
l
k
�1ð Þ exp �gQQ

� �
; ð16Þ

where c* = gQ
l/k/G(l

k
) is the normalization constant. The

mean and the variance of the runoff pdf can be easily
expressed in term of the parameters l, k and gQ as

hQi ¼ l
kgQ

hQ2i � hQi2 ¼ l
kg2Q

:
ð17Þ

Note that the probability distribution of base flows given
by equation (16) can be considered to account also for the
presence of a channelized network connecting the ground-
water system to the catchment outlet. In fact, after
neglecting hydrodynamic dispersion (which is known to
bear a negligible effect on the main features of the
hydrologic response at the basin scale [see, e.g., Robinson
et al., 1995; Botter and Rinaldo, 2003]), the runoff
propagation within a channel reach mainly produces a
kinematic delay between the output signal (i.e., the runoff)
and the forcing noise (i.e., the deep percolation), without
affecting the probabilistic structure of the steady state
probability distribution of runoff. According to equation
(16), the probability distribution of base flows is related to
the undergoing soil and vegetation properties (through the
parameter l) and to the key rainfall properties (through
both the parameters gQ and l), but it also depends on
important geomorphic factors such as the mean residence
time of the groundwater flow (1/k) and the size of the
basin (A). The shape of the runoff pdf is chiefly controlled
by the ratio between the runoff frequency, l, and the
inverse of the mean residence time in subsurface, k. When
l/k > 1 (‘‘wet conditions’’) the pdf of the runoff is bell-
shaped with p(Q = 0) = 0 (i.e., very low discharges are
characterized by zero probability, see Figure 4), while for
l/k < 1 (‘dry conditions’) p(Q) goes to infinity for Q ! 0,
and it monotonically decreases for Q > 0, approaching
zero as Q ! 1. The critical condition l = k, which
determines the shift between the ‘wet regime’ and the ‘dry
regime’ can be expressed in term of basic rainfall, soil and
vegetation properties by the use of equation (6). Among
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all the possible choices, we shall express the transition
condition in term of three dimensionless groups:

� ¼ lP

h
ð18Þ

b ¼ gPDs ð19Þ

a ¼ lP

k
; ð20Þ

where Ds = s1 � sw. The dimensionless parameters �, b, a
defined by equations (18)–(20) express the ratio between
the characteristic time of evapotranspiration processes and
the mean interarrival between rainfall events, the ratio
between the soil storage volume and the mean daily
rainfall volume, and the ratio between the rainfall rate and
the rate of water release from soil, respectively. By using
equation (6), and expressing both p(s) and r(s) in terms of
�, b and a, the transition between the ‘‘dry’’ and ‘‘wet’’
regimes (i.e., the inequalities l < k and l > k) can be
expressed as follows:

a
exp �bð Þb�

� G �ð Þ � G �; bð Þ½ � < 1 ) dry regime

a
exp �bð Þb�

� G �ð Þ � G �; bð Þ½ � > 1 ) wet regime ð21Þ

The transition between the above regimes is shown in
Figure 4, which graphically represents the dependence of
the runoff pdf on the dimensionless parameters a, b and �.
The solid line depicts the condition l = k in the (�, b)
plane, in the case a > 1. As a ! 1+, however, the
transition line approaches the x axis, and the wet region
progressively vanishes. The condition a < 1 is thus

sufficient (even though not necessary) for the existence of
a monotonous ‘‘dry’’ runoff pdf. We observe that runoff
pdfs of the ‘‘wet’’ type are unlikely to be observed in
nature, owing to the fact that in many circumstances the
average interarrival between rainfall events is larger than
the mean residence time within the catchment (i.e., a is
typically smaller than one).
[20] The key role exerted by the ratio l/k in determining

the shape of the runoff pdf is also shown by Figure 5, where
we compare the analytical solution given by equation (16)

Figure 4. Graphical (qualitative) representation of the
dependence of daily runoff pdf on the dimensionless
parameters a, b, and � provided by equations (18)–(20).
The solid line qualitatively represents the condition l = k
(which determines the transition from the ‘‘dry’’ to the
‘‘wet’’ region) in the (�, b) plane in the casea > 1. As a! 1+,
the transition line approaches the x axis, and the wet region
progressively vanishes. As a consequence, for a < 1 we only
observe monotone pdf belonging to the dry regime,
regardless of the values of the parameters b and �.

Figure 5. Numerical validation of the analytical runoff pdf
(equation (16)) and sensitivity analysis in the case of
unbounded infiltration. (a) Analytical probability distribution
of daily runoff (solid line) in the case of dry conditions
(lP = 0.2 d�1, Emax = 0.35 cm/d and k = 0.5 d�1) for different
values of the average daily rainfall (gP = 30, 16, 10). The
ensuing ratios l/k (i.e., the product between the runoff
frequency, l, and the mean residence time in subsurface, 1/k)
are 0.003, 0.04, and 0.12, respectively. The simulated values
of the runoff pdf resulting from the Monte Carlo application
of the runoff model provided by equation (9) are reported
as circles (l/k = 0.12), triangles (l/k = 0.04), and squares
(l/k = 0.003). (b) Same as Figure 5a but for wet conditions
(lP = 0.45 d�1, Emax = 0.15 cm/d and k = 0.2 d�1). The
resulting values of the ratio l/k are in this case greater than 1:
l/k = 1,1 (circles), l/k = 1.5 (triangles), and l/k = 1.75
(squares). Common parameters to all the simulations shown
are sw = 0.18, s1 = 0.6, n = 0.55, and Zr = 30 cm. Note that the
resulting values of r (see text) are 4 (circles), 7 (triangles),
and 12 (squares).
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with the Monte Carlo simulations of the runoff model for
different values of the rainfall and vegetation parameters in
the case of unbounded runoff increments. Figure 5a refers to
the case of ‘‘dry’’ runoff pdfs, corresponding to average
runoff interarrivals greater than the mean catchment resi-
dence time. As the average rainfall depth increases (in the
examples reported in Figure 5a from 0.6 cm (squares) to
1.65 cm (circles)) the ensuing average runoff frequency
decreases, leading to decreasing values of the ratio l/k (from
0.003 to 0.12 d�1). Figure 5a shows how the distance
between the runoff pdf and the origin of the axis tends to
decrease as the frequency of runoff events, l, decreases.
Furthermore, according to equations (17) the first moments
of the distribution (e.g., the mean and the variance) are
linearly increasing with l, whereas the probability of low
discharges is decreasing with the runoff frequency. Figure 5b
shows the behavior of the runoff pdf in the ‘‘wet’’ regime,
which is related to average runoff interarrivals (in this case
ranging from 4.5 days (squares) to 2.5 days (circles)) smaller
than the mean catchment residence time 1/k (here about 5
days). Figure 5b also shows that the peak of the runoff pdf
decreases with l whereas the mode of the distribution
increases. Note that all the simulations reported in Figure 5
refer to ratios between the soil storage capacity and the mean
rainfall rate, r, larger than 4, therefore allowing the use of the
simplified runoff jump pdf provided by equation (13).

3.2. Bounded Runoff Jump Distribution

[21] In this section we derive the probability distribution
of base flows in the case when surficial runoff cannot be
neglected, i.e. when the soil storage capacity is comparable
with the average daily rainfall. If r 	 1, the distribution of
infiltrating volumes is significantly affected by the existence
of the upper bound corresponding to the soil saturation (i.e.,
s = 1). Owing to the fact that the water volumes exceeding
the threshold s1 are assumed to be instantaneously released
from the topsoil layer toward deeper soil layers, the perco-
lation depths, Y, follow a truncated exponential distribution
with the same parameter characterizing the distribution of
the effective rainfall. Accordingly, the probability distribu-
tion of the runoff jumps, b(Q), is given by

b Qð Þ ¼ gQ exp �gQQ
� �

H Q� Q
� �

þ d Q� Q
� � Z 1

Q

gQ exp �gQQ
� �

dQ; ð22Þ

where H[�] is the Heaviside step function, d(�) is the Dirac-d
function and gQ is defined by equation (14). Q is the
maximum available runoff increment due to incoming
rainfall events (i.e., the runoff increment resulting from
complete soil saturation)

Q ¼ 1� s1ð ÞnkAZr ¼
r

gQ
: ð23Þ

The corresponding master equation for the runoff prob-
ability distribution reads

@p Q; tð Þ
@t

¼ @ k Q p Q; tð Þ½ �
@Q

� lp Q; tð Þ þ lgQ

Z Q

0

p Q� z; tð Þ

� exp �gQz
� �

H Q� z
� �

dzþ lp Q� Q; t
� �

� exp �gQQ
� �

H Q� Q
� �

; ð24Þ

where the last term on the right-hand side represents the
gain of probability due to rainfall events determining
complete soil saturation. Equation (24) can be transformed
in the Laplace domain (Q ! u), leading to the following
first-order partial differential equation:

1

ku

@bp u; tð Þ
@t

¼ @bp u; tð Þ
@u

þ l
k

1� exp �Q gQ þ u
� �h i

gQ þ u

8<
:

9=
;bp u; tð Þ;

ð25Þ

where bp(u, t) is the Laplace transform of the runoff pdf
p(Q, t)

bp u; tð Þ ¼
Z 1

0

exp �uQð Þp Q; tð ÞdQ: ð26Þ

The steady state solution of equation (25), bp(u), which
represents the moment generating function of the runoff
pdf, can be written as

bp uð Þ ¼ ec uþ gQ
� ��l

k

exp
l
k
Ei �Q gQ þ u

� �h i� �
; ð27Þ

where Ei[�] is the exponential-integral function and

ec ¼ g
l
k

Q

exp lEi �QgQ
� �

=k
h i ð28Þ

is the normalization constant. According to equation (27),
the runoff pdf can be expressed as the convolution
between a Gamma distribution (which derives from the
antitransformation of the polynomial part of the moment
generating function (27)) and a nonanalytical function (the
inverse transform of the exponential function appearing on
the right-hand side of equation (27), whose effects on the

ensuing runoff pdf decrease as Q increases). As expected,
for Q ! 1 (i.e., when the surface runoff is negligible),
equation (27) yields

bp uð Þ ¼ g
l
k

Q uþ gQ
� ��l

k

; ð29Þ

whose inversion leads to the runoff pdf derived in
section 3.1 (equation (16)).
[22] When the distribution of the runoff jumps, b(Q), is

bounded, the probability distribution of runoff cannot be spec-
ified in a closed form, owing to the fact that equation (27)
cannot be inverted analytically. However, thanks to the
properties of the moment generating functions, i.e.,

hQni ¼
Z

Qnp Qð ÞdQ ¼ �1ð Þnd
nbp uð Þ
dun

����
u¼0

; ð30Þ

suitable analytical expressions can be derived for the
moments of the runoff pdf. From equations (27) and (23),
the following expressions are obtained for the average
runoff hQi and for the corresponding variance, var(Q):

hQi ¼ l
kgQ

1� e�r½ �

var Qð Þ ¼ hQ2i � hQi2 ¼ l
kg2Q

1� 1þ rð Þe�r½ �: ð31Þ

The ratio between the first two moments of the runoff pdf in
the case of bounded infiltration and the corresponding
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moments in the case of unbounded infiltration (equation (17))
are reported in Figure 6 as a function of r. Because of the fact
that the terms in square brackets in equations (30) are smaller
than unity, the first two moments of the runoff probability
distribution in the case of shallow soils are always smaller
than the corresponding moments in the case of unbounded
runoff jumps (Figure 6). The upper bound of the runoff
jumps therefore leads to an overall runoff distribution
which is characterized by a shorter tail with respect to the
case of unbounded infiltration. As expected, for r ! 1 the
factors appearing within square brackets on the right-hand
side of equation (31) approach 1 (Figure 6), and the
expressions derived in the case of unbounded infiltration
(equation (17)) are straightforwardly recovered. Figure 6 also
suggests that the effect of the upper bound in the runoff
increments on the runoff probability distribution is more
pronounced for the higher-order moments.
[23] The effect of the finite water storage capacity of the

soil on the base flows probability distribution can be further
investigated by the use of numerical Monte Carlo simula-
tions. Figure 7 shows a comparison between the numerical
runoff pdf in the case of bounded runoff jumps (circles) and
the corresponding analytical runoff pdf derived in the case
of unbounded infiltration (equation (16), dark solid line) for
the case l < k. The ratio between the soil storage capacity
and the average daily rainfall depth, r, ranges from 2.4
(Figure 7a) to 0.44 (Figure 7c). Also shown (light solid line)
is the approximated analytical Gamma distribution obtained
rescaling the runoff distribution corresponding to the case of
unbounded infiltration (equation (16)) so as to produce the
same average base flow obtained for bounded infiltration

p Qð Þ ¼
g0l=kQ

G l=kð ÞQ
l
k
�1ð Þ exp �g0QQ

� �
; ð32Þ

with

g0Q ¼
gQ

1� e�r
: ð33Þ

Figure 6. Effects of the upper bound in the runoff jump
distribution, b(Q), on the moments of the runoff probability
distribution. The graph reports the ratio between the first
two moments of the runoff pdf in the case of bounded
infiltration (equations (31)) and the corresponding moments
in the case of unbounded infiltration (equations (17)).

Figure 7. Effect of the finite soil storage capacity on the
daily runoff probability distribution (case l < k, when the
runoff frequency is smaller than the inverse of the mean
residence time in subsurface): comparison of the numerical
runoff pdf in the case of a bounded runoff jump pdf
(circles) with the corresponding analytical pdf derived for
unbounded infiltration (equation (16), dark solid line) and
a rescaled Gamma distribution with the same average
runoff hQi obtained in the case of bounded infiltration
(equation (32), light solid line). In all the simulations we
assumed n = 0.28 (porosity) and Zr = 13 cm (soil depth).
The average rainfall intensities are (a) 0.6 cm, (b) 1.65 cm,
and (c) 3.3 cm, leading to the values of r indicated. All the
other parameters are the same as used in Figure 4.

W02417 BOTTER ET AL.: STOCHASTIC BASE FLOWS IN RIVER BASINS

9 of 14

W02417



Figure 7 clearly shows that the effect of the upper bound of
the runoff jump distribution on the runoff probability
distribution is indeed small, in the dry regime, even for low
values of r (Figure 7c). The above effect becomes
completely negligible when r > 1 (Figure 7a). We note
also that the approximated analytical Gamma distribution
provided by equation (32) is a satisfactory approximation of
the actual runoff pdf in all the cases explored.
[24] Figure 8 illustrates the same comparison shown in

Figure 7 but for the case l > k (wet regime). We observe
that in the ‘wet’ regime the effect due to the upper bound of
the runoff jump distribution on the runoff probability
distribution is more pronounced than in the dry regime.
This is possibly due to the increase of runoff frequency,
which emphasizes the differences in the distribution of
runoff jumps. In such cases, significant differences related
to the bound of the runoff jump pdf appear in the runoff
distribution even when r > 1 (Figure 8a). Nevertheless, the
rescaled Gamma distribution (equation (32)) is able to
provide a reasonable approximation of the numerically
obtained runoff distribution for all the runoff frequencies
investigated. The approximate analytical solution, however,
allows a proper description of the behavior of the actual
runoff pdf only for relatively high values of the discharge,
whereas a bias appears at low flows when r 	 1 (Figures 8b
and 8c). We also observe that the capability of the approx-
imate solution (32) of capturing the main features of the
runoff pdf decreases, in the case of bounded runoff jumps
pdf, as the runoff frequency increases.

3.3. Leakage Interarrivals and Runoff Probability
Distributions

[25] In the derivation of the analytical runoff pdfs, as well
as in all the numerical simulations shown in sections 3.1 and
3.2, we assumed an exponential distribution of the leakage
interarrivals, i.e., pL(L) � exp(�L/hLi). However, the actual
runoff interarrival distribution (as it derives from the appli-
cation of the soil moisture model, equation (1)), can be
reasonably approximated by an exponential distribution
only for large runoff frequencies (e.g., l � 0.15 d�1).
When the occurrence of leakage events, as controlled by
the soil moisture dynamic in the active soil layer, is a
(relatively) rare circumstance, the actual runoff interarrival
distribution leads to higher probabilities of the smallest
interarrival times with respect to the exponential distribution
(Figure 2). To asses the impact of the nonexponential
behavior of the runoff interarrivals pdf, we compare the
analytical runoff probability distribution derived in sections
3.1 and 3.2 with the numerical pdfs derived from the coupled
Monte Carlo simulation of the soil moisture and runoff
models (equations (1) and (9)). We focus on the case of
relatively thick soils (n = 0.55 and Zr = 30 cm) and
‘‘dry case’’ runoff pdfs (lP = 0.3 d�1, k = 0.5 d�1),
because of the fact that the above circumstances ensure the
lowest runoff frequencies. Figure 9a refers to an average
runoff interarrival of 10 days and shows the comparison
between the analytical runoff pdf (obtained assuming an
exponential leakage interarrival distribution; solid lines) and
the numerical results derived from the Monte Carlo appli-
cation of the soil moisture and runoff models (where the
leakage interarrivals are nonexponentially distributed,
according to the soil moisture dynamic (circles)). We
analyze both the cases of bounded (open circles) and

Figure 8. Effect of the finite soil storage capacity on daily
runoff probability distribution (case l > k, when the runoff
frequency is larger than the inverse of the mean residence
time in subsurface): comparison of the numerical runoff pdf
corresponding to the case of a bounded runoff jump pdf
(circles) with the corresponding analytical pdf derived in the
case of unbounded infiltration (equation (16), dark solid
line) and a rescaled Gamma distribution with the same
average runoff obtained in the case of bounded infiltration
(equation (32), light solid line). In all the simulations
reported we assumed n = 0.28 and Zr = 13 cm. The average
rainfall intensities are (a) 0.6 cm, (b) 1.65 cm, and (c) 3.3 cm,
leading to the values of r indicated. All the other parameters
are the same as employed in Figure 5.
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unbounded (shaded circles) infiltration. No significant dif-
ferences due to the finite soil storage capacity emerge,
owing to the fact that in this case r � 1. Figure 9a clearly
shows how the higher probabilities characterizing the small-
est interarrival times in the numerical leakage interarrival
distribution produce a long-tailed runoff pdf, where the
highest runoff values are characterized by larger occurrence
probabilities with respect to the analytical runoff pdf derived
in the case of exponential interarrivals. A similar effect could
be obtained in the analytical runoff probability distributions

(equations (16) or (32)) by increasing the average daily
rainfall (i.e., by decreasing the parameter gQ); see Figure 7.
The effect of the nonexponential behavior of the leakage
interarrivals could thus be included in the analytical model
by suitably rescaling the leakage depths. Figure 9b (which
refers to an average runoff interarrival of 5 days), instead,
shows that when the average runoff frequency is relatively
high, the analytical model based on the assumption of
exponentially distributed interarrivals of runoff events is
capable of predicting the numerical runoff probability dis-
tribution almost exactly. Note also that in such circumstances
a small difference appears between the cases of bounded and
unbounded infiltration, owing to the smaller value of the
ratio, r, between the soil storage capacity and the average
daily rainfall.
[26] We thus conclude that the analytical model given by

equations (16) and (32), based on the assumption of
exponential runoff interarrivals, provides a reasonable
approximation of the runoff probability distribution in many
cases of practical interest.

4. Comparison With a Detailed Geomorphic
Model of the Hydrologic Response

[27] In order to test the robustness of the analytical
approach developed in this paper, the derived probability
distributions of base flows are compared in this section with
numerical results obtained from the Monte Carlo application
of a continuous, geomorphically based rainfall-runoff model
to the Dese catchment closed at Villa Volpi (northeastern
Italy). The Dese catchment closed at Villa Volpi is a 53 km2

flat basin belonging to the drainage basin of the Venice
Lagoon, where extensive hydrologic studies have been
recently carried out [e.g., Rinaldo et al., 2005; Botter
et al., 2006; Rinaldo et al., 2006a, 2006b]. Runoff measure-
ments in the Dese catchments are available (in continuous)
at hurly time steps since 1999. Thus measured runoff time
series does not allow a proper evaluation of the statistical
properties of the discharges, owing to the limited extension
of the sample. Moreover, discharge measurements are only
available in tidal sections located downstream the closure
section of Villa Volpi considered in this application. The
above problem has been overstepped in the numerical
studies cited above by means of the application of finite
elements schemes capable of describing unsteady flows in
open channels (for a detailed discussion, see Rinaldo et al.
[2006b]). For the above reasons we shall rely on the
comparison with numerical simulations rather than using
observed runoff data sets.
[28] The detailed (numerical) continuous model of the

hydrologic response employed is based on the synthetic
generation of rainfall and climate series able to reproduce
the statistical properties of the observed series. This allows
to simulate the soil moisture dynamics and the ensuing
runoff fluctuations in response to prescribed (e.g., observed)
climate conditions. The stochastic generation of hourly
rainfall series in the Dese catchment is obtained through
the application of a (seasonally variable) cluster-based rain-
fall model of the Bartlett-Lewis type [see, e.g., Rodriguez-
Iturbe et al., 1987, 1988; Botter et al., 2006]. Owing to the
limited extent of the catchment at hand with respect to the
characteristic spatial scale of rainfall events, we employ
spatially uniform rainfall rates throughout the basin. It should

Figure 9. Complete numerical simulations of the soil
moisture and runoff models in the case of unbounded runoff
jump pdf (the porosity, n, is 0.55 and the active soil depth,
Zr, is 30 cm) in the case l < k (the rainfall frequency lP is
0.3 d�1, whereas the transport parameter, k, is 0.5 d�1).
(a) Comparison between the analytical runoff pdf (solid
lines lines) and the numerical results derived from the
Monte Carlo application of the soil moisture and runoff
models (circles). Both the case of bounded (open circles)
and unbounded (shaded circles) infiltration are explored and
compared to the pertinent analytical runoff probability
distributions (equations (32) and (16), respectively). The
average rainfall depth is 1.2 cm/d, leading to an average
runoff interarrival of 10 days. (b) Same as Figure 9a but
with an average rainfall depth of 3 cm/d, which leads to an
average runoff interarrival of 5 days. Common parameters
to both the simulations are sw = 0.18, s1 = 0.6, and Emax =
0.3 cm/d.
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be noted, however, that the resulting net rainfall shows a
certain spatial variability because of the heterogeneity of the
hydraulic soil properties.
[29] The synthetic generation of daily climatic series

(maximum and minimum temperature, maximum and min-
imum relative humidity, wind speed) has been achieved by
the use of a stochastic multivariate (AR(1)) model which
preserves the observed correlations between climatic varia-
bles [Botter et al., 2006]. Possible fluctuations into the
correlations among climatic variables due to the occurrence
of rainfall events are also taken into account. The seasonal
variability of daily climatic data is properly considered by
considering each month separately.
[30] On the basis of the underlying network structure,

suitably identified via topography and remote images
[Rinaldo et al., 2006b], the Dese catchment is subdivided
into 17 subbasins, whose characteristic size is of the order
of a few square kilometers. From the synthetically generated
climate and rainfall series, a continuously updated descrip-
tion of the soil moisture dynamics within each subbasin is
then achieved by the use of the Green-Ampt model for
shallow soils [e.g., Dingman, 1994]. The Green-Ampt
approach may account both for Dunnian and Hortonian
runoff production mechanisms. In the case at hand, however,
owing to the relatively weak average intensity of the incom-
ing rainfall, the production of surface runoff is chiefly related
to Dunnian processes, thus allowing the comparison with the
analytical model developed in this paper. The Penman-
Monteith equation integrated by the FAO approach is
employed to compute evapotranspiration fluxes on the basis
of (relatively) few micrometeorological, soil and vegetation
parameters, whose spatial distribution has been determined
via remotely sensed images. Accordingly with experimental
evidences deriving from field data, the soil thickness and the
porosity have been assumed uniform throughout the catch-
ment and they have been suitably calibrated on the basis of
continuous discharge measurements [Rinaldo et al., 2006b].
In a similar manner, other relevant vegetation properties
were calibrated for a single (predetermined) reference crop,
while the vegetation parameters for all the other crops
involved have been properly derived from the corresponding
parameters obtained for the reference crop. Further details on
the numerical water balance model employed are given by
Rinaldo et al. [2006b]. Even though in the numerical model
the mathematical computation of the water losses is some-
what more refined than that used in the derivation of the
analytical runoff pdfs of section 3, the physical processes
considered for estimating evapotranspiration and leakage
losses in both the approaches are very similar. In particular,
Botter et al. [2006] showed that the catchment-scale water
losses resulting from the numerical, Monte Carlo model
described above can be properly expressed in terms of the
spatially averaged relative soil moisture, s(t), through large-
scale (i.e., effective) soil and vegetation parameters.
[31] As a result of the application of the rainfall, climate

and water balance models, both the temporal evolution of
the soil water content within each subbasin and the spatial
distribution of the rainfall volumes contributing to runoff
are achieved. The transport processes determining the
propagation of the effective rainfall within each subbasin
are then modeled following the geomorphological theory of
the hydrologic response. Accordingly, the catchment is

thought of as a nested structure of units (i.e., hillslopes
and channels), where the spatial distribution of runoff paths
defines the characters of the traveltime distribution at the
outlet of the basin. The units where paths originate (i.e., the
subbasins of the catchment) are labeled by an area Ai whose
size (e.g.

ffiffiffiffiffi
Ai

p
) has been chosen to reasonably reproduce the

observed drainage density. The overall catchment-scale
travel time distribution, f (t), is thus obtained by averaging
individual path residence time distributions, which are in
turn expressed by suitable convolutions of the traveltime
distributions within the channels, fci(t), and the hillslopes,
fAi
(t) [see Rinaldo et al., 2006b]. Flow discharges are finally

obtained by routing the net rainfall pulses provided by the
water balance model.
[32] The continuous, numerical rainfall-runoff model is

run at time steps of a few minutes for 250 years, during
which the meteorologic forcing is represented by the syn-
thetic series derived through the rainfall and climate gen-
erators. The temporal evolution of the soil water content
within each subcatchment and the spatial/temporal dynam-
ics of effective rainfall are achieved by means of the water
balance model. Finally, the application of the transport
model allows to derive the streamflow at the outlet of each
subcatchment and the runoff at the closure of the whole
basin. The probability distribution of daily runoff can be
thus easily estimated for each season by the use of standard
techniques of sample analysis. In what follows we will refer
to the runoff pdf for the spring season (from March to May).
[33] The aggregated parameters for the analytical model

are derived from the Monte Carlo numerical model as
follows: the corresponding average rainfall frequency, lP,
and the normalized average daily rainfall, 1/gP, of the
Poissonian rainfall model are deduced on the basis of the
synthetic rainfall series (during the springtime). It can be
shown, in fact, that the statistical properties of the rainfall
series derived through the application of the Barlett-Lewis
model described above, once aggregated at daily time steps,
do not differ much from that of a marked Poisson process
(at list in the case at hand). In particular, both the distribu-
tion of the daily depths and that of the interarrivals between
two subsequent wet days are nearly exponential. The same
property is also exhibited by the rainfall time series recorded
in a gauge station located nearby the considered test
catchment.
[34] The soil thickness, Zr, and the porosity, n, (which

have been considered as spatially uniform in the Monte
Carlo simulations) are derived by calibration of the numer-
ical rainfall/runoff model during gauged runoff events. The
mean residence time within the subsurface, 1/k, is instead
derived as a weighted average of the subsurface mean
residence time within the different subbasins. In the numer-
ical model, the mean residence time within the different
subcatchments has been assumed to depend on the extent of
the subbasins [see Rinaldo et al., 2006b], thus allowing the
calibration of a single parameter, i.e., the mean residence
time in a reference subcatchment.
[35] The macroscopic, large-scale soil and vegetation

parameters characteristic of the spring season (sw, s1, and
Emax) are instead derived by interpolating the numerical
relationship between the catchment-scale water losses, r,
and the spatially averaged relative soil moisture, s, resulting
from the Monte Carlo simulation, with an analytical func-
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tion of the type expressed by equation (3). The resulting
daily runoff pdf is then calculated on the basis of
equation (16); note that in this case the upper bound in
the runoff jump distribution is negligible. The comparison
between the numerical runoff pdf derived from the Monte
Carlo application of the climate, water balance and rainfall-
runoff models (circles) and the corresponding analytical
runoff probability distribution (equation (16)) is shown in
Figure 10. It is worth mentioning that the numerical runoff
pdf shown in Figure 10 also includes fast components of the
hydrologic response due to surface flow triggered by intense
floods. In the case at hand, however, the fast component of
the hydrologic response has characteristic times much
shorter than 1 day [e.g., Rinaldo et al., 2006b] and the
runoff volume deriving from surface processes is relatively
small, so that the surface contribution to the runoff pdf can
be neglected (particularly at the daily timescale). The
agreement between the numerical and the analytical runoff
probability distributions is reasonably satisfactory, particu-
larly if we consider the huge difference existing in the
computational and operational burden required by the two
models. Figure 10 therefore suggests that the analytical
approach developed in this paper can be able to provide
precious information on the probabilistic structure of daily
runoff in river basins, at the minimum cost represented by
the specification of a few macroparameters of clear physical

meaning. In particular, we stress the potential applicability
of the approach developed to the prediction of seasonal
runoff pdfs in ungauged basins, where all the model
parameters shall be roughly estimated on the basis of a
limited number of available data. From a gross geometrical
descriptions of a catchment, in fact, one should easily argue
reasonable estimates of the mean residence time, 1/k, and of
the basin extent, A. In the same time, naive climatic and
pluviometric information allows to estimate the average
runoff frequency, l, and the average daily rainfall depth,
which concur to define the scale parameter of the runoff
probability distribution, gP.
[36] Therefore the tools developed seem to be significant

in different contexts, in particular for large scale soil-
atmosphere interactions and for the analysis of drought
frequencies, which can be directly linked to the crossing
properties of the randomly fluctuating discharge, Q(t).

5. Conclusions

[37] The following conclusions are worth emphasizing.
[38] 1. The probability distribution of the slow compo-

nent of the hydrologic response (i.e., the base flow) and its
moment generating function have been derived by coupling
a stochastic description of the soil moisture dynamics in
river basins with a simplified transport model for subsurface
flow.
[39] 2. Analytical solutions are achieved in two different

cases, when the infiltration rates are upwardly bounded by
episodical soil saturations and when the infiltration is
unbounded. In both cases, the ensuing probability density
function of base flows can be described by a Gamma
distribution, whose shape is chiefly controlled by the ratio
between the runoff frequency and the inverse of the mean
residence time of subsurface flow.
[40] 3. The framework developed allows to link the

probabilistic structure of base flows with simple (pluvio-
metric, soil, vegetation and geomorphologic) macropara-
meters of clear physical meaning, with relevant implications
for the ecohydrology of fluvial systems.
[41] 4. The comparison with numerical results, derived

from the Monte Carlo application of a continuous, geo-
morphically based, rainfall-runoff model coupled with a
stochastic climate generator to a real catchment located in
northeastern Italy, suggests the ability of the approach
proposed to capture the main features of runoff probability
distributions in heterogeneous catchments at daily time-
scales.
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