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Abstract

A major computational issue in the finite element (FE) integration of coupled consolidation equations is the repeated solution in time
of the resulting discretized indefinite system. Because of ill-conditioning, the iterative solution, which is recommended in large size 3D
settings, requires the computation of a suitable preconditioner to guarantee convergence. In this paper the coupled system is solved by a
Krylov subspace method preconditioned by an inexact constraint preconditioner (ICP) preserving the same block structure as the native
FE matrix. The conditioning number of the preconditioned coupled problem depends on the quality of the approximation of the block
corresponding to the structural stiffness matrix. An efficient algorithm to implement ICP into a Krylov subspace method is developed.
Numerical tests performed on realistic 3D problems reveal that ICP typically outperforms standard ILUT preconditioners and proves
much more robust in severely ill-conditioned problems.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The time-dependent distribution of displacements and
fluid pressure in porous media is governed by the consoli-
dation theory. This was first mathematically described by
Biot [1], who coupled the elastic equilibrium equations with
a continuity or mass balance equation to be solved under
appropriate boundary and initial flow and loading
conditions.

The coupled consolidation equations are typically
solved numerically using finite elements (FE) in space, thus
giving rise to a system of first-order differential equations
the solution to which can be addressed by an appropriate
time marching scheme. A major computational issue is
the repeated solution in time of the resulting discretized
indefinite equations. In particular, with the small time inte-
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gration steps typically required in the early phase of the
analysis the final linear system may be severely ill-condi-
tioned [2], so that obtaining an accurate solution may
prove difficult with any numerical approach.

Because of the large size of realistic three-dimensional
(3D) consolidation models (and particularly so in problems
related to fluid withdrawal/injection from/into geological
formations) the use of iterative solvers is strongly recom-
mended. Among them, projection (or conjugate gradient-
like) methods based on Krylov subspaces for unsymmetric
indefinite systems, such as Bi-CGSTAB (bi-conjugate gra-
dient stabilized [3]), are attracting a growing interest on
the grounds of their robustness and efficiency [4–9]. How-
ever, a key issue to guarantee and accelerate convergence
is the selection of an ad hoc efficient preconditioning strat-
egy, which must prove both a good and inexpensive
approximation of the inverse of the coupled native matrix.
The ILUT preconditioner [10], based on an incomplete tri-
angular factorization with controlled fill-in and supple-
mented with a preliminary left and right scaling [6], has
proved one of the most robust and efficient tools for the
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iterative solution to the FE coupled consolidation equa-
tions. In particular, the use of a proper preliminary scaling,
such as the Least Square Log (LSL) algorithm [7], helps
stabilize CG-like methods to round-off errors with a signif-
icant increase of ILUT robustness in severely ill-condi-
tioned problems.

The block matrix structure arising from the FE discret-
ization of generally coupled problems may suggest the use
of block preconditioners. For example, a recent work [11]
discusses the development of a block ILU preconditioner
to solve a strongly coupled system discretizing a fluid–
structure interaction. The coefficient matrix of FE
consolidation equations can be also viewed as an example
of saddle point problem as it typically arises in the discret-
ization of Navier–Stokes equations, where diagonal block
preconditioners have been successfully employed [12]. To
accelerate Krylov solvers in the solution of saddle point
problems the so-called ‘‘Constraint Preconditioners’’ have
been first introduced in constrained optimization [13]. This
terminology has been preserved in other fields as well,
including least squares and also Navier–Stokes equations
[13–18]. For a thorough review of the constraint precondi-
tioning see also [19] and references therein. The aim of the
present paper is to investigate the performance and the
robustness of a novel Inexact Constraint Preconditioner
(ICP) developed for the solution to the symmetric indefi-
nite system arising from the FE integration of the coupled
consolidation equations. After a brief review of the FE
coupled consolidation equations, the ICP properties are
summarized and an efficient algorithm is proposed for
the implementation into a Krylov subspace method. The
ICP performance with two realistic medium and large size
3D problems is compared to that of the Exact Constraint
Preconditioner and the LSL-ILUT strategy with optimal
fill-in degree. In particular, the comparison is performed
for both normally conditioned and severely ill-conditioned
problems. Finally, the ICP potential for real long-term sim-
ulations is addressed and some conclusive remarks close
the paper.

2. Finite element coupled consolidation equations

The system of partial differential equations governing
the 3D coupled consolidation process in fully saturated
porous media is based on the classical Biot’s formulation
[1] as modified by van der Knaap [20] and Geertsma [21]:

ðkþ lÞ o�
oi
þ lr2ui ¼ a

op
oi

i ¼ x; y; z; ð1Þ

1

c
rðkrpÞ ¼ ½/bþ cbrða� /Þ� op

ot
þ a

o�

ot
; ð2Þ

where cbr and b are the volumetric compressibility of solid
grains and water, respectively, / is the porosity, k the med-
ium hydraulic conductivity, a the Biot coefficient, k and l
are the Lamé constant and the shear modulus of the porous
medium, respectively, c is the specific weight of water, $ the
gradient operator, x, y, z are the coordinate directions, and
t is time. The independent variables are the incremental
pore pressure p and the components of incremental dis-
placement ui along the i-direction, with the medium volu-
metric dilatation � equal to

P
ioui/oi.

Integration by FE in space yields a system of first-order
differential equations which can be written as
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where K, H, P and Q are the elastic stiffness, flow stiffness,
flow capacity and flow-stress coupling matrices, respec-
tively, {u,p}T and f _u; _pgT are the vectors of the unknown
variables ui and p and the corresponding time derivatives,
and {f u, f p}T is the vector of the nodal loads (f u) and flow
sources (f p).

Eq. (3) can be written in a more compact form as

K1xþ K2 _xþ f ¼ 0; ð4Þ
where the meaning of the new symbols above is immediately
derived from comparison of Eqs. (3) and (4). Eq. (4) is inte-
grated in time by the well known h-method (e.g. [22])

hK1 þ
K2

Dt

� �
xmþ1 ¼

K2

Dt
� ð1� hÞK1

� �
xm

� hf mþ1 þ ð1� hÞf m½ �; ð5Þ

where Dt is the time integration step.
Eq. (5) is to be repeatedly solved to obtain the displace-

ment and the pore pressure in time. The non-symmetric
matrix controlling the solution scheme reads

A ¼ hK1 þ
K2

Dt

� �
¼

hK �hQ
QT

Dt hH þ P
Dt

" #
: ð6Þ

Matrix A can be readily symmetrized by multiplying the
upper set of equations by 1/h and the lower set by �Dt,
thus obtaining the following sparse 2 · 2 block symmetric
indefinite matrix:

A ¼ K BT

B �C

" #
; ð7Þ

where B ¼ �QT and C ¼ hDtH þ P . The blocks K and C

are both symmetric and positive definite (SPD). In 3D
problems, denoting by n the number of FE nodes,
C 2 Rn�n, B 2 Rn�3n, and K 2 R3n�3n.

The set of Eq. (5) is unconditionally stable for any Dt

provided that h P 0:5 [22]. If h < 0:5 the following upper
bound for the time step holds:

Dt <
2

1� 2h
1

#1

; ð8Þ

where #1 is the largest eigenvalue of the generalized SPD
eigenproblem [5]

Hv ¼ #ðQTK�1Qþ P Þv: ð9Þ
The main difficulty with the repeated solution to (5), how-
ever, is the possible ill-conditioning of matrices (6) or (7)
which depends on the interrelation between Dt, the hy-
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dro-mechanical properties of the porous medium and the
FE discretization. Ferronato et al. [2] have shown that a
critical time step Dtcrit exists that can be defined as

Dtcrit ¼ vðw; hÞ V c
kE

; ð10Þ

where E is the Young modulus of the porous medium, V a
characteristic size of the FE grid (e.g. the elemental volume),
w ¼ /bE, and v is a generally unknown dimensionless factor
depending on w, h, and the element distortion. For
Dt 6 Dtcrit the conditioning of A orA suddenly worsens with
the solution to system (5) quite difficult to get independently
of the selected solver. In long-term simulations a small Dt is
typically needed in the early stage of the consolidation pro-
cess, while larger values may be used as the system ap-
proaches the steady state. Hence, the initial steps are the
most difficult and expensive ones, with the convergence gen-
erally accelerating as the simulation proceeds and Dt grows.

3. Constraint preconditioner

To solve the indefinite system

Ax ¼ b ð11Þ

we employ a Krylov method preconditioned with M�1,
where

M ¼ G BT

B �C

" #
ð12Þ

and G is an SPD approximation of the structural stiffness
matrix K. Its inverse G�1 can be viewed as a preconditioner
for K, and it is assumed to be explicitly known.

The proposed preconditioner is intended to produce a
cluster of eigenvalues of the iteration matrix M�1A around
unity. In particular, it can be proved that, whatever G,
there are at least n unit eigenvalues with the remainder
bounded by the extreme eigenvalues of G�1K [23]. The suc-
cess of M�1 in accelerating the convergence rests therefore
on the following conditions:

(1) G�1 must be a good preconditioner of block K;
(2) the application of M�1 in the solver algorithm, i.e.

solution of the linear system My ¼ r with r the resid-
ual vector, must be computationally as inexpensive as
possible.

After some calculations, the (right preconditioned) iter-
ation matrix can be written as

AM�1 ¼
X Y

0 In

� �
; ð13Þ

where X is equal to ðK þ BTC�1BÞðGþ BTC�1BÞ�1, Y is a
3n� n block whose explicit expression is not essential for
the discussion that follows, and In denotes the n-order iden-
tity matrix. It is well known that the classical Precondi-
tioned Conjugate Gradient (PCG) method can be used
with SPD matrices only and produces a sequence of resid-
uals rk ¼ PkðAM�1Þr0, where Pk denotes a polynomial of
degree k [24], k the iteration count and r0 the initial resid-
ual. Due to the block structure of the preconditioned ma-
trix, if r0 ¼ ½̂r0; 0�T, then

rk ¼
PkðX Þr̂0

0

� �
: ð14Þ

Eq. (14) implies that the Conjugate Gradient method used
with the preconditioned matrix (13) exhibits the same
behavior as the Conjugate Gradient used with the block
X, i.e. the SPD matrix ðK þ BTC�1BÞ preconditioned with
the SPD matrix ðGþ BTC�1BÞ�1. Therefore, it may be con-
cluded that the classical PCG algorithm can be successfully
used with our indefinite linear system, as is also proved in
Ref. [25], provided that the last n components of r0 are
zero. To fulfil this requirement the iterative procedure is
started with x0 ¼M�1b

r0 ¼ b�AM�1b ¼
I3n � X �Y

0 0

� �
b1

b2

� �
¼

r̂0

0

� �
: ð15Þ

The application of M�1 in the PCG algorithm requires at
each iteration the computation of M�1r ¼ y, i.e. the solu-
tion to the system My ¼ r (see Eq. (12)):

G BT

B �C

" #
y1

y2

� �
¼

r1

r2

� �
: ð16Þ

A way to solve (16) relies on deriving y1 from the upper set
of equations

y1 ¼ G�1ðr1 � BTy2Þ ð17Þ
and substituting in the lower set, thus obtaining

Sy2 ¼ BG�1r1 � r2 ð18Þ
with

S ¼ ðBG�1BT þ CÞ: ð19Þ
Matrix S is the Schur complement of system (16) and can
be computed explicitly provided that G�1 is known. Hence,
the cost for applying M�1 basically rests on the efficient
solution to the n� n linear SPD system (18) at each itera-
tion. This can be done, for example, by an inner PCG iter-
ation. The preconditioner M�1 will be referred to as Exact
Constraint Preconditioner (ECP).

Unfortunately, solving system (18) at each iteration can
be quite expensive also with a very sparse G�1, thus affect-
ing significantly the performance of the whole algorithm.
To make the M�1 application cheaper, we can compute
an approximate solution to (18) by the use of an approxi-
mation of S�1. Using an incomplete Cholesky factorization
of S, with either partial fill-in and drop tolerance sI (ILLT)
or zero fill-in (IC(0))

S�1 ’ ~L~LT
� ��1 ð20Þ

the true solution to system (18) is replaced by ‘‘inexpen-
sive’’ forward and backward substitutions:
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~L~LT
� �

y2 ¼ BG�1r1 � r2: ð21Þ

This is equivalent to applying a new preconditioner cM�1

that no longer satisfies the ECP theoretical properties, with
the convergence of PCG for our indefinite system no more
guaranteed. Therefore preconditioner cM�1 must be imple-
mented into a Krylov method designed for generally
unsymmetric and indefinite systems, such as for instance
Bi-CGSTAB, and will be referred to as Inexact Constraint
Preconditioner (ICP).
3.1. Choice of matrix G�1

G�1 is a key factor for the overall quality of the pro-
posed preconditioner. This matrix, which is to be explicitly
known as is needed for the computation of S, should be a
good preconditioner for the elastic stiffness block K.

The simplest and cheapest choice for G is diag(K), i.e.
the Jacobi preconditioner. The related ICP has been suc-
cessfully experimented with in a different context, i.e. inte-
rior point methods for quadratic optimization [26,16,27].
Unfortunately, as the elastic stiffness block is not diago-
nally dominant, the Jacobi preconditioner may prove so
a poor approximation of K�1 as to preclude in many
instances the solver convergence.

Recently a new class of preconditioners based on the
sparse approximate inverses involving only matrix–vector
products has been developed, see among others SPAI
[28], AINV [29,30] and FSAI [31]. For an extensive com-
parative study of these preconditioners the reader is
referred to Benzi and Tůma [32].

We elected to use AINV which is generally more efficient
than FSAI and SPAI as accelerator of Krylov solvers on
scalar machines, due to its flexibility in the generation of
the pattern of the approximate inverse factor. Its cost
and fill-in are controlled by a user-specified parameter sA

equal to the fraction of the diagonal term below which
an AINV coefficient is dropped. The larger sA, the cheaper
Fig. 1. Algorithm 1: solution to the coupled consolid
and sparser AINV. The AINV preconditioner is provided
in the convenient factorized form

K�1 � G�1 ¼ ZZT; ð22Þ

where Z is upper triangular. Hence ICP with the AINV
approximation of K�1 and the incomplete decomposition
of S can be factorized as follows:

cM�1 ¼ I3n �G�1BT

0 In

" #
G�1 0

0 �ð~L~LTÞ�1

" #
I3n 0

�BG�1 In

� �

¼ Z �ZZTBT~L�T

0 ~L�T

" #
ZT 0

~L�1BZZT �~L�1

" #
¼ UL;

ð23Þ

where U and L are upper and lower triangular matrices,
respectively. The factorized form (23) of cM�1 is very well
suited to an efficient implementation.

3.2. Numerical algorithms

The application of both M�1 and cM�1 requires the
explicit knowledge of the Schur complement matrix S

(Eq. (19)). Forming the Schur complement may be time
and memory consuming, S being the result of two sparse
matrix–matrix products and one sparse sum of matrices.
However, it should be noted that the evaluation of
S0 ¼ BG�1BT, which involves the main computational bur-
den in building S, is independent of the time step Dt, and
therefore can be done just once at the beginning of the
simulation.

Since S is generally less sparse than A, the efficiency of
its storage can be increased by dropping the terms below a
user-specified tolerance sS. This can be done only with ICP
because dropping some terms of S introduces a new
approximation.

The new complete algorithms (Algorithms 1 and 2) for
the transient solution of a coupled consolidation problem
with nstep Dt values using ECP and ICP, respectively, are
ation problem by PCG preconditioned with ECP.



Fig. 2. Algorithm 2: solution to the coupled consolidation problem by Bi-CGSTAB preconditioned with ICP.

Fig. 3. Algorithm 3: application of ECP in the PCG iteration.
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shown in Figs. 1 and 2. Note that with ECP step 4b of
Algorithm 2 is skipped and PCG is used instead of Bi-
CGSTAB. Moreover, sA is the only parameter controlling
the ECP performance, while with ICP sS and sI are also to
be provided. Steps 1–3 in both algorithms are independent
of Dt and will be referred to as ‘‘preprocessing’’ in the
sequel.

In Algorithm 1, the actual solution to Ax ¼ b is accom-
plished in step 4b. The application of M�1 in the PCG
scheme is described by Algorithm 3 (Fig. 3) implementing
Eqs. (17) and (18). The most expensive task is performed
in step 3 where the solution to a SPD system is needed. This
can be efficiently done by using the PCG scheme precondi-
Fig. 4. Algorithm 4: application of ICP in the Bi-CGSTAB iteration.
tioned with the incomplete Cholesky decomposition, thus
defining an inner PCG cycle within the outer PCG
iteration.

In Algorithm 2 the actual solution to Ax ¼ b is accom-
plished in step 4c. Here the standard Bi-CGSTAB method
has to be modified to implement the efficient application ofcM�1. As the preconditioner is known in the factorized
form (23), i.e. cM�1 ¼ UL, we can use the so-called ‘‘split’’
preconditioning technique which proves most effective.
Based on Eq. (23), Fig. 4 shows the steps needed to com-
pute y ¼ cM�1r (Algorithm 4).

In the sequel with ECP and ICP performance we refer to
the performance of PCG preconditioned with M�1 (Algo-
rithms 1 and 3) and Bi-CGSTAB preconditioned withcM�1 (Algorithms 2 and 4), respectively. The terms AINV
and Jacobi are related to the choice of G�1, while IC(0)
and ILLT to the approximation of S.

4. Test problem

A vertical cross-section of the cylindrical porous
volume used as a test problem is shown in Fig. 5. The
medium consists of a sequence of alternating sandy and
clayey layers, with the hydraulic conductivity ksand ¼
10�5 m=s and kclay ¼ 10�8 m=s, the Poisson ratio m ¼
0:25, and the Young modulus E = 833.33 MPa, corre-
sponding to a uniaxial vertical compressibility
cM ¼ 10�3 MPa�1. Standard Dirichlet conditions are pre-
scribed, with fixed outer and bottom boundaries, and
zero pore pressure variation on the top and outer surfaces
(see Fig. 5). The second-order Crank–Nicolson finite dif-
ference scheme is used (h ¼ 0:5), with a variable time step
Dti, i ¼ 1; . . . ; nstep.

The sample problem is solved using fully 3-D grids made
of linear tetrahedral elements. The pressure and displace-
ment components are discretized with equal-order basis
functions. In the first test case, denoted as M3Dsm, the grid
is generated by projecting a plane triangulation made of



Fig. 5. Schematic representation of a vertical cross-section of the stratified
porous medium used as a test problem.

Table 1
Problem M3Dsm: CPU time (s) for Bi-CGSTAB preconditioned with
optimal LSL-ILUT

Dt # iterations CPU time [s]

Preconditioner Bi-CGSTAB Total

100 155 8.32 13.75 22.07
101 163 7.95 12.04 19.99
102 162 7.64 12.13 19.77
103 155 6.00 12.83 18.83
104 150 3.94 13.13 17.07

The number of Bi-CGSTAB iterations are given.

2652 L. Bergamaschi et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2647–2656
209 nodes and 400 triangles onto 17 layers located at differ-
ent depths [33]. The grid M3Dsm totals n ¼ 3553 nodes with
a global matrix size N equal to 14,212. This grid is then
used to generate a severely ill-conditioned problem
(M3Dsm_1) by changing the values of kclay to 10�11 m/s
and cM to 10�2 MPa�1 [2].

In the second test case, denoted as M3D, a plane triangu-
lation made of 1025 nodes and 2016 triangles is projected
onto 31 layers. The M3D problem totals n = 31,775 nodes
with N = 127,100.
Table 2
Problem M3Dsm: CPU time (s) for PCG preconditioned with AINV ECP

Dt # iterations outer (inner) CPU time [s]

Preconditioner PCG Total

100 112 (460) 5.17 31.79 37.37
101 112 (464) 5.13 29.05 34.57
102 107 (441) 5.09 24.70 30.14
103 113 (465) 5.09 31.38 36.80
104 114 (467) 4.94 29.12 34.47

The inner solution is obtained with PCG preconditioned with the
incomplete Cholesky decomposition. AINV is computed setting
sA ¼ 0:05.
Preprocessing AINV ECP: 5.28 s.
4.1. Numerical results

The ECP and ICP performance is compared to that of
the ILUT preconditioner with optimal fill-in applied to
the native LSL scaled and reordered system [7] for the test
cases described above. The LSL-ILUT preconditioning
provides an incomplete triangular decomposition of the
unsymmetric LSL scaled matrix A0. The fill-in degree is
controlled by two user-specified parameters q (maximum
number of non-zeroes stored for each row) and sI (drop
tolerance). Their optimal values, i.e. the couple (q,sI) giv-
ing the best solver performance, have to be found empiri-
cally via a trial-and-error procedure. The LSL-ILUT has
proved a robust and efficient preconditioner for Bi-
CGSTAB in the iterative solution to FE coupled consolida-
tion equations [6,7].

All the iterations are completed for a final solution x sat-
isfying the relative error e

e ¼ x� x�k k
x�k k 6 10�5; ð24Þ

x* being a prescribed test solution with all components
equal to 1. The experiments are performed on a Compaq
DS20 equipped with an alpha-processor ‘‘ev6’’ at
500 MHz, 1.5 GB of core memory, and 8 MB of secondary
cache. We use the pure Fortran 90 version of the code com-
piled with the f90 compiler and -O4 -tune=ev6 -ar-

ch=ev6 options.
4.1.1. Test case M3Dsm
Table 1 provides the Bi-CGSTAB performance for dif-

ferent Dt values using the LSL-ILUT preconditioner with
optimal parameters. The CPU times refer to one solution
of system (11) for a given Dt. Note that, as expected [2],
both the cost for computing the preconditioner and the
total cost decrease as Dt increases because the conditioning
of A improves with Dt. These results are used as a bench-
mark against PCG preconditioned with ECP and Bi-
CGSTAB preconditioned with ICP.

Using ECP with G�1 ¼ diagðKÞ�1 (Jacobi ECP), PCG
converges very slowly with e equal to about 10�1 after
10,000 iterations. Although each iteration is very cheap,
the slow convergence due to the poor G�1 quality precludes
its use as a preconditioner.

Table 2 summarizes the performance of ECP with
G�1 ¼ ZZT (AINV ECP) and sA ¼ 0:05. The preprocessing
time includes the cost for computing G�1 and S0, while the
preconditioner CPU time is actually the cost for computing
the preconditioner of the inner system (18). The inner PCG
iteration is completed with a relative residual equal to 10�4,
i.e. 4–5 inner iterations per single outer iteration suffice to
solve (18) at the required accuracy. As is known from the-
ory, a high inner accuracy is not really needed for the outer
PCG to converge. Comparison with Table 1 reveals that
LSL-ILUT is superior to AINV ECP. While AINV ECP
yields a reduction of the iteration count, providing evi-
dence of the better conditioning of the iteration matrix
M�1A, the solution to the inner system (18) at each outer
iteration turns out to be too expensive.
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Fig. 6. Problem M3Dsm: Convergence profiles of the relative error vs. the
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Table 3
Problem M3Dsm: CPU time (s) for Bi-CGSTAB preconditioned with
AINV-ILLT ICP and AINV-IC(0) ICP

Dt #
iterations

CPU time [s]

Preconditioner Bi-CGSTAB Total

AINV-ILLT
ICP

100 68 13.65 7.11 21.08
101 67 11.92 6.18 18.38
102 70 9.16 5.99 15.40
103 71 6.13 5.37 11.73
104 71 3.58 4.49 8.26

AINV-IC(0)
ICP

100 70 2.83 6.99 10.19
101 66 2.63 6.22 9.16
102 69 2.16 6.35 8.80
103 74 1.52 6.02 7.80
104 72 1.05 4.96 6.02

AINV is computed with sA ¼ 0:05, S with sS ¼ 10�4, and ILLT with
sI ¼ 10�3.
Preprocessing AINV-ILLT and AINV-IC(0) ICP: 5.28 s.

Table 4
Problem M3Dsm_1: CPU time (s) for Bi-CGSTAB preconditioned with
AINV-IC(0) ICP

Dt # iterations CPU time [s]

Preconditioner Bi-CGSTAB Total

100 96 2.92 10.19 13.87
101 94 2.87 8.52 12.12
102 96 2.67 9.25 12.63
103 92 2.23 8.32 11.39
104 99 1.69 9.59 11.86

AINV is computed with sA ¼ 0:05 and S with sS ¼ 10�4.
Preprocessing AINV-IC(0) ICP: 5.28 s.

Table 5
Problem M3D: CPU time (s) for Bi-CGSTAB preconditioned with optimal
LSL-ILUT and AINV-IC(0) ICP

Dt #
iterations

CPU time [s]

Preconditioner Bi-CGSTAB Total

LSL-ILUT 100 178 71.81 156.90 231.21
101 185 70.08 169.08 241.66
102 163 63.57 130.44 196.51
103 150 40.05 122.43 165.98
104 79 22.97 67.62 93.08

AINV-IC(0)
ICP

100 234 12.66 213.61 229.17
101 230 12.81 216.37 231.87
102 227 12.92 206.32 222.03
103 239 12.30 222.03 236.96
104 251 11.38 232.47 246.37

AINV is computed with sA ¼ 0:1 and S with sS ¼ 10�4.
Preprocessing AINV-IC(0) ICP: 20.12 s.
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Table 3 shows the ICP performance using AINV
(sA ¼ 0:05) and both ILLT (sI ¼ 10�3) and IC(0) for
approximating S�1 (sS ¼ 10�4). As outlined earlier, PCG
is not theoretically guaranteed to converge, hence Bi-
CGSTAB is used. In both cases we obtain an improvement
in terms of number of iterations and CPU time as com-
pared to Table 1. Note that ICP with AINV-IC(0) yields
a speed-up larger than 2 with respect to LSL-ILUT for
any time step value.

The convergence profiles e vs. the solver CPU time for
various preconditioners and Dt ¼ 100 are shown in Fig. 6.
Notice the smooth PCG convergence (with ECP) as com-
pared to the erratic one of Bi-CGSTAB (with LSL-ILUT
and, to a lesser extent, ICP). However, the cost per (outer)
iteration of the former turns out to be too high to make it
competitive with the latter.
4.1.2. Test case M3Dsm_1
This is a very ill-conditioned test case where Bi-

CGSTAB preconditioned with LSL-ILUT does not con-
verge for a most standard choice (10�2–10�5) of the drop
tolerance sI. With smaller sI values (10�6–10�8) Bi-
CGSTAB converges very slowly satisfying the exit test
(24) after about 400 iterations and requiring a CPU time
of about 80 s, i.e. much larger than those of the previous
tests (Table 1), with the convergence degrading as sI

decreases. This may occur when the ill-conditioning of A
reflects on an ill-conditioned incomplete decomposition.
As a paradoxical result, the conditioning of the incomplete
factors can even get worse as the fill-in increases, i.e. for an
ILUT preconditioner theoretically approaching A�1. A
further explanation of this behavior could be connected
with the eigenvalue distribution of the preconditioned
matrix. As the ILUT drop tolerance sI approaches zero,
the preconditioned matrix should approach the identity,
i.e. all eigenvalues should approach 1. Therefore, reducing
sI the real part of the initially negative eigenvalues changes
sign. When this happens for a real eigenvalue in relation to
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some specific sI the preconditioned system becomes
singular.

By contrast, AINV-IC(0) ICP with sA ¼ 0:05 and
sS ¼ 10�4 was successful with the performance shown in
Table 4. Notice the fast ICP convergence with the total
CPU times only slightly larger than in the M3Dsm test case.
50
4.1.3. Test case M3D
Table 5 shows the performance of optimal LSL-ILUT

compared to AINV-IC(0) ICP, which provides the best
result with sA ¼ 0:1 and sS ¼ 10�4. As can be also seen
from the previous results, ICP appears to be less sensitive
than LSL-ILUT to the Dt size. In this case for small time
steps ICP is comparable or a little better than LSL-ILUT,
while it appears to be less efficient for large time steps. This
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Fig. 7. Long term simulation (150 time steps). Cumulative CPU time (s)
to compute the transient solution of problems (a) M3Dsm, (b) M3D.
is more connected with the relatively good problem condi-
tioning rather than its size and provides evidence that ICP
can be viewed as an effective and robust alternative to LSL-
ILUT especially in ill-conditioned problems.
4.1.4. Long term simulation

One major drawback of ICP is perhaps the need for the
preprocessing of S0. Such an additional cost is, however,
made up for very quickly in long-term simulations. The test
cases M3Dsm and M3D are considered with variable time
step Dti ¼ f � Dti�1, i ¼ 1; . . . ; 150. The initial step size Dt0

is set to 10�1 s and the magnifying factor f to 1.10, so that
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Fig. 8. Long term simulation (150 time steps). CPU time (s) to compute
the preconditioner and solve the coupled system vs. the time step size for
problems (a) M3Dsm, (b) M3D.
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the time step progressively increases up to about 105 s as
the problem approaches the steady state. Fig. 7 summarizes
the LSL-ILUT and AINV-IC(0) ICP total CPU time for
running the 150-step transient simulations. Very few steps
suffice to make up for the preprocessing cost with a final
speed-up of AINV-IC(0) ICP in the M3Dsm case larger than
2. The computational cost as the simulation proceeds is
shown in detail in Fig. 8, which provides the CPU time
vs. Dt required by both the preconditioner computation
and the system solution. As is expected, both the costs
decrease as Dt increases, but ICP proves less sensitive than
LSL-ILUT to the Dt size and more efficient especially in the
initial (and more difficult) steps.

It is worth noting that in a long-term simulation the
optimal LSL-ILUT parameters are set for the smallest time
step and are not changed as Dt increases. This can affect the
LSL-ILUT performance for larger Dt, with the precondi-
tioner losing its optimal property. By distinction, the ICP
optimal parameters are much less sensitive to Dt with their
values generally varying within a pretty small range. For
instance, in the cases discussed above typical sA values vary
between 0.05 and 0.1 and sS values between 10�3 and 10�4

with no significant differences in the algorithm performance
over this range.
5. Conclusions

A novel block ICP (Inexact Constraint Preconditioner)
has been developed and implemented into projective conju-
gate gradient-like methods for the efficient iterative solu-
tion to FE coupled consolidation equations. ICP is based
on the factorized AINV preconditioning of the structural
stiffness matrix K and the incomplete Cholesky decomposi-
tion of the Schur complement S. A comparison with Bi-
CGSTAB preconditioned with optimal LSL-ILUT is made
on two realistic 3D consolidation problems. The results can
be summarized as follows:

• in the smaller test case ICP is more cost effective with a
speed-up larger than 2, while in the larger example the
two preconditioners behave similarly;

• ICP is successfully tested for robustness in a severely ill-
conditioned problem where LSL-ILUT does not allow
for Bi-CGSTAB to converge;

• long-term transient simulations show that the prepro-
cessing cost needed for the AINV and the Schur comple-
ment computation is readily compensated within a few
initial time steps;

• the ICP parameters sA and sS prove quite insensitive to
the Dt size and typically fall within a limited range of
variation;

• as anticipated from theory, ECP (Exact Constraint Pre-
conditioner) allows for PCG to converge with the indef-
inite FE coupled consolidation system. Though
theoretically elegant and attractive, ECP turns out to
be computationally less efficient than Bi-CGSTAB
implemented with either ICP or LSL-ILUT, because
of the larger cost per iteration required by the ECP
application.

On summary, the present analysis shows that ICP is an
efficient, robust and reliable preconditioner for the iterative
solution to FE coupled consolidation models and possesses
a promising potential for its application in real problems.
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