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INTRODUCTION

ScHAUDER’s fixed point theorem [1] asserts that any compact mapping of a convex set into itself
has a fixed point. Various attempts have been made to do fixed point theory in spaces more
general than convex sets, but no general theory is known.

A theorem by Lefschetz [2, corollary, p. 359] leads one to believe that each compact,
homologically trivial and locally connected set has the fixed point property, but Borsuk [3]
gave an example to refute this conjecture. His set is neither contractible nor locally contractible,
hence it leaves open the following version of Lefschetz’s corollary.

CoNJECTURE. Any contractible, locally contractible set has the fixed point property for compact
mappings.

Borsuk showed in [4] that this conjecture is true in finite dimensional metric spaces (see
theorem 1). Some particular cases of the conjecture—for decomposable subsets of L'—were
proved by Cellina [5] and Fryszkowski [6]. Furthermore, it has been proved that each
decomposable subset of L' is a retract of L' [7]. As Smart pointed out in a recent paper [8], these
authors do not mention or use the contractibility and local contractibility properties that these
spaces possess: Smart proved a weaker version of their theorem—an L”-continuous map of a
decomposable set M into an L*-compact subset of M has a fixed point—by a method related
to the contraction process in decomposable sets. Notice that this requirement is quite strong: it
means that no ‘‘cut and paste’’ of functions of 7(M) is possible; as an example the L!-
precompact subset of 1[0, 1] {X10,41> & € [0, 1]} is not L*-precompact.

Here I generalize Smart’s arguments in order to prove that each I”-compact mapping
(I = p < =) of a decomposable subset of L? into itself has a fixed point. This can be regarded
as a further step of the project aimed at the conjecture. The main tool is a consequence of
Liapunov’s theorem on the range of a vector measure as it is formulated in [9]: it enables the
construction of a nonconvex analogue of Schauder’s projection onto a nonsymmetrical
nonconvex analogue of the convex hull of a finite number of points. Its advantage with respect
to the more familiar decomposable hull is that the first is compact whereas the second is not,
unless it is trivial (see for instance [10]). As a consequence, each compact map of a topological
space into a decomposable set can be approximated by a sequence of functions having a
finite dimensional range. This property is in common with compact maps into a convex set
[11, Chapter VI].
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NOTATIONS AND PRELIMINARY RESULTS

Definition 1. A subset A of a topological space X is said to be contractible in the space X to
a set B C X provided that the inclusion 4 < X is homotopic (in the space X*) to a map with
values belonging to B. If 4 = X and B consists of a single point, then X is said to be
contractible.

Definition 2. A topological space X is said to be locally contractible at a point Xo € X provided
that each neighbourhood U of x, contains a neighbourhood U’ of x, which is contractible in
U to a point. The space X is said to be locally contractible if it is locally contractible at each
of its points.

It is clear that any convex set (and, as a consequence, any absolute retract) is contractible and
locally contractible (see [4] for details). The next theorem shows that the converse is true for
compact and finite dimensional spaces. By the dimension of a compact space X we understand
the covering dimension of X [12, Chapter V]. Specifically, we say dim X < n provided that
each open covering of X has a refinement of order <n (the order of a covering being the largest
integer n such that there are n + 1 members of the covering which have a nonempty inter-
section); if dim X < n is true and dim X < n — 1 is false, then we say dim X = n.

THEOREM 1 [4, V(10.5)]. A finite dimensional compact metric space is an absolute retract if and
only if it is contractible and locally contractible.

Definition 3. Let (X, d) be a compact metric space and r be a nonnegative real number.
The space X is said to have Hausdorff r-measure zero if for each ¢ > 0 there exists a finite
decomposition of X
X=A4,U---UA,
such that
: (diam A4,)" + --- + (diam A,) < ¢

where diam A = sup{d(a, b):a, b € A}.

The connection between the topological concept of dimension and the metrical concept of
Hausdorff r-measure, given by the following theorem, will be used later.

THEOREM 2 [12, theorem VIIL.3]. Let n € N and X be a compact space of (n + 1)-measure zero.
Then dim X < n.

In what follows, we consider a measure space (I, MM, u) where M is a o-algebra of subsets of
I (measurable sets), u is a complete positive nonatomic measure such that u(J) < + oo, & D
is a Banach space, 17 = LP(I), ] < p < +o, is the space of Bochner integrable functions with
values in E, endowed with the norm [|4], = (f; |#]|? du)"’?. The characteristic function of 4 is
denoted by y,.

Definition 4. A nonempty subset S of L7 is said to be decomposable if whenever fand g are in
S and A is in M then fx, + gxp4 isin S.
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Decomposable sets have many properties in common with convex sets: see, for instance
[5, 7, 13]. In particular, Smart [14] pointed out that the decomposable subsets of L”[0, 1] are
contractible and locally contractible. We prove here a more general statement.

ProrosiTiON 1. Each decomposable subset S of L”(J) is contractible and locally contractible.

Proof. Liapunov’s theorem on the range of a vector measure [9, proposition 1.1] provides the
existence of a family (A,), . o, ;; of measurable subsets of I such that

s<t= A,CA,, Ay, = O, A, =1, u(A,) = tul) (t e [0, 1]). ¢))
I claim that for any fixed f in S the map

D:(2,8) = fxa, + 8Xna,

describes a contraction of S to f and of any e-neighbourhood of S to f. Clearly, the claim is
proved if we show that the previous map is continuous.
For this purpose, fix a positive ¢, and et ¢, € [0, 1], g, € S. Let J be such that

p 14
vAemz:u(A)<5=>S | FIP du < (g) and S |g0|pdu<<§>. @)
A A
Let ¢ and g be such that ||g — goll, < ¢/3 and |7 — 4| < 6/u(I). Since we have:
O(t, &) — P(to, 80) = S, — Xa,) + 8Xra, — &oXnua,
) = f(Xa, — XA,O) + (8Xra, — &oXna,) + GoXna, — gOXI\A,O)
then it turns out that
1/p 1/p
o, - 0ol = (| rvan) s le— el (| leoba)

where A AB = (A\B) U (B\A). Hence, by (1) and (2)

A,AA,O A,AA,O

E € ¢
”q)(t’ g) - q)(tO’ gO)”p < "3‘ + § + § = €.
The claim is proved.

Definition 5. A family (4,);c0,1) of measurable sets is called increasing if the following
properties hold:
Ay = I A, =1; s<t= A, CA,.

Let us consider a family of positive vector-valued measures u, = (4, ..., u7) which are
absolutely continuous with respect to u. The space M” of such vector measures is endowed with
the topology induced by the norm | u,|, the total variation of u,. The proposition formulated
below is [9, proposition 1.2] where y, is replaced by (u, v).

ProrosiTION 2. Let X be a compact topological space and v be an absolutely continuous
positive measure with respect to u. Assume that the map x » u, € M" is continuous. Then, for
every ¢ > 0 there exists an increasing family (4,), o 1y of measurable sets with the following
properties:

lu(A4) — Dl <e  (el0,1], x € X); (3)
u(A,) = tud), v(4,) = tv(l) (t € [0, 1]). 4)
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MAIN RESULTS

THEOREM 3. Let S be a decomposable subset of I7(I), T be an LP-continuous mapping into an
LP-compact subset K of S. Then T has a fixed point.

The proof is modelled on a standard proof of Schauder’s second theorem, given for instance
in [1] and in Smart’s proof of theorem 3 in the case where K is an L”-compact subset of S [8].
A replacement for the convex combinations used in Schauder’s projection is studied: let
Jis .o fn be fixed in I” and @ = (A)rep,1y be an increasing family of measurable sets.
Analogous to what is described in [14], if ¢; = 0 and ¢, + --- + ¢, = 1 we use the notation

Cl.fl @Q @& Cnfn

for the function
fIXACl + o +f2X(ACl+c2\ACl) + o +an(I\Acl+,,,+C"_l)

which equals f;on A, ;..\, 1+ +¢;_,- We regard this as a ‘‘nonlinear convex combination”’
(with respect to @) of f;, ..., f,, with weights c,, ..., c,.

These combinations make up the ‘‘nonlinear convex hull’’ of fis ... f, With respect to the
increasing family @; it will be denoted by

nocog (f1, ..., fo)-

As is evident, if f}, ..., f, belong to a decomposable set S then nocog (f;, ..., f,) 1s contained
in S. The rest of the proof follows after theorems 4 and 5 and lemma 1 below.

Definition 6. Let ¢ € L'. A family @ = (4 e 0,1; Of measurable sets is called refining ¢ (with
respect to (1, M, u)) if and only if the following equalities hold:

j ¢ du = tj ¢du (¢ €0, 1]).
A, I

THEOREM 4. Let f}, ..., f, € [P and @ = (4,), . (0,17 b€ an increasing family of measurable sets.
Then nocog(f, ..., f,) is (i) compact, (ii) contractible and (iii) locally contractible. Further-
more, if @ is refining (| f;| + -+ + | £,])? then (iv) nocog(f;, ..., f,) is finite dimensional.

Proof. Let C be the convex compact subset of R”! defined by

C={c;,...,cp.)eR" 0=, < <c¢,_, <1}
and let '¥: C = nocog(f;, ..., f,) be the function defined by
Ve, -ooscpmt) = fixa, + SeXagpay + 0+ FaXana,, -
Since the integral operator is absolutely continuous with respect to the measure u, then ¥ is
continuous hence nocog (f;, ..., f,,) = ¥(C) is compact. Furthermore nocog (f;, ..., f,) can be

contracted to f; by the process described in the proof of proposition 1. The proof of local
contractibility is essentially the proof of [14, theorem 2(iii)] taking into account that we have
W(c) instead of f°.

In (iv) let @ = (A,); 10,17 be an increasing family refining ([ f;| + --- + | f,])”. I claim that ¥
satisfies a Holder condition. With a view to prove the above assumption, set for any x =
(x15 .., X,1) € R"™! the norm of x to be ||x|| = |x;| + -+ + |x,_4]. Since ¥(c) and ¥(d)
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agree on U; (A.\A.._) N (A;\A, ) then we have:

1B - ¥@Z < T S B - PP da
Ag,Adg,

i

IA

) S 27 Al + o+ | fDP du.
A AAy,

i

Furthermore, @ is refining (| f;| + -+ + | f,|)?, hence the following equalities hold:

S dAl+ - + 1 fDPdu = |d; - c,-IS AL+ -+ | f)Pde G=1,...,n—1).
Ae; A4y, I

As a consequence, if we set Q = ([;(|.f;] + -+ + | f,])" du)'’?, we have

I®(©) — (@), < 2Qc - all'””. (5)
Now, we prove that nocog(f;, ..., f,) has np-measure zero.
Let ¢ > 0 and B,, ..., B, be such that
(diam B,)" + --- + (diam B,)" < QEQ— 6)

Such a decomposition exists since the (n — 1) dimensional polytope C has n-measure zero.
Then
nocog (fy, ---»f) = W(C) = ¥(B) U --- UY(By).

Since, by (5),
diam W(B,) < 2Q(diam B;)""? i=1,...,k @)

then (6) and (7) imply
diam W(B,)"” + --- + diam W(B,)"” < ¢

and this proves the claim. Theorem 2 yields the conclusion.
The fixed point property for nocag(f;, .., f,,) now follows immediately from theorem 1.

THEOREM 5. Let f),...,f, €’ and A = (A)cpp,; be an increasing family refining
(Al + - + | £,]). Then nocog(f;, --..,f,) has the fixed point property.

The proof of theorem 3 is based on the following lemma.
LemMA 1 (a nonconvex ‘‘Schauder’s projection’’). Let K be a compact subset of I”. Then
for every ¢ > 0 there exist f,...,f, € K, an increasing family & = (4,),¢ (o 1 refining
(Af) + -+ |f,)? and a continuous mapping P, of K into nocog(f;,...,f,) such that
IP.f - fl, < ¢ forall fin K.

Proof. Letf,, ..., f,in K be such that their £/2'/7 neighbourhoods cover K. Let, for 1 <i<n
and fe K, ur, v be the absolutely continuous measures (with respect to u) defined by

u}(A)=S |lf=filPdue  G=1,...,n)
A

v(A4) = L (Al + -+ [fu])? du.
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Clearly the map fe K - (u}, ..., M7) is continuous, hence by proposition 2 there exists an
increasing family @ = (4,), . (0,17 With the properties:

p

|,u}(A,)-—l‘u}(I)| <:-_I’l (tel0,1], fekK,i= 1,..., n); (8)

X WAl + -+ 1)) du = rj Al 4+ 1APd ceo1):  ©
A, I

u(A,) = tu) (t € [0, 1]). (10)

Forl<i<nand feK set
) = max(0.5%5 ~ 17 =, )

thus for each f € K some r;(f) is nonzero. Then set

Zj "j(f)
so that for each f, ¥, ¢;(f) = 1 and the map f ~ (¢,(f), ..., ¢,(f)) is continuous. I claim that
the map

ci(f) =

P,: K = nocog(fy, ..., fn)
defined by

P(f) = ci(N)fi @a -+ De (NS

has the required properties. In fact, set for any fe K and i = 1, ..., n — 1 the function d; to
be d;(f) = ¢,(f) + --- + ¢;(f). Then we have:

TAGEIITED) |f = fil? du. (11

i j"4d’i(/)\"4¢1’i-1(7')

By (8), for each i = 1, ..., n — 1 the following inequality holds:

P
j s e | 1=l aus g
AdinNAdi_ I n
Since ¢;(f) # 0 if and only if || f — fill, < &/2'7 then
P
T, [ o=t

The continuity of P, follows from the fact that the family @ refines (| f,] + --- + |.£,])?: in this
situation, the proof of theorem 4 (iv) shows that the map Y is continuous.

Since, for any f in K, we have P.(f) = W(d(f)), then the conclusion follows from the
continuity of the function d = (d,, ..., d,).

Proof of theorem 3. Fix k € N. Then, by lemma 1, there exist Jis ..., fn € K, an increasing
family @ = (4,),c o,y refining (|| + --- + |£,])? and a continuous function P, , of K into
nocog(f;, ..., f,) such that ||P,,.(f) —f”p < 1/k for all f in K. Let i be the inclusion of
nocog(f;, ..., f,) into S. Let us consider the composed map PioTol
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S T, K

L .

P, oTei
noco@(.fl:"'sfn) = nOCOG(_fl,...,fn)

This function maps the set nocog(f;, ..., f,) into itself, hence, by theorem 5, it has a fixed
point x;. Thus

1
Ixe — Txkllp = | Py i (TCx)) — T(xk)“p = P

By the compactness of K, T has a fixed point.

The following consequence of the nonconvex ‘‘Schauder’s projection’’ of lemma 1 provides
a further property of decomposable sets which is in common with convex sets.

THEOREM 6. Let X be a topological space, S be a decomposable subset of I’(I) and T: X — S
be a continuous compact mapping. Then for each ¢ > 0 there exists a continuous map
T,: X — § whose range has a finite dimension and such that

17,00 — T, < & VxeX.

Proof. Let K be a compact subset of S such that 7(X) C K and fix ¢ > 0. Let
P,: K = nocog(fi, .--r[n)

be the nonconvex ‘‘Schauder’s projection’’ of lemma 1. Then, by theorem 4 (iv), the map
T, = P, - T fulfils the requirements of the claim.
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