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We introduce the notion of an oriented measure. For sugh 8 measure g, given v
in LY{a b1), O<v<l, there exist two sets Eo{a ] whose characteriztic
functions huve less than r discomtinuity points and such that | v du=p{E). Given

w{ty x4 mp{ty xe{d, ¢, ] there exist two bang-bang solutions y, # having & con-
tact of order n with x at ¢ and b such that y € x € 2. Reachable sets of bang-bang
constrained solutions are convex: an apphication to the caleulus of variations yields
a density result, 0 1994 Academic Press, Ine.

INTRODUCTION

A classical theorem of Liapunov [8] states that given g finite dimen-
stonal vector measure x on an interval [a, o] which admits a density func-

values in [0, 1], there exists a measurable subset £ of [, b7 such that

b

&
Vie {l,..,n}, f firg=1 fv (*)
q -

#

However, the proofs of this theorem are not constructive and thus do not
give any information about the set E.
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BANG-BANG PRINCIVLE 477

Halkin {97 showed that if for each vector pe R” the set
{rela, bl p-fl1)>0}

{where - is the usual scalar product) is a finite {resp. countable) union of
intervals then there exists a set & satisfving (*) which i3 a finite {resp.
countable) union of intervals. As far a3 we know this condition has not
been applied apart from the case of plecewise analvtical functions
{9, 10, 12]. The results we present here are based on the following which
s new.

Orientation Condition 4. We say that » real functions f,, .., /, verily
condition 4 on an interval [¢, b il for each &k in {1, ., n}, the determinant

Silxy) file) o filxg)
Falxy) Llx) 0 fulx)

folx) filxa) o fulx)

is not equal to zero whenever the x,e{a b are distinct and its sign is
constant on the k-tuples (x,, .., ;) such that o< x, < x, < o < x, < b,

A measure u whose components gy, ., 4, admit continuous density
functions fi, .., /, which satisfy the orientation condition 4 is said 1o be
oriented. Although this condition implies Halkin’s, it possesses various
advantages:

« it allows us to build a set £ satisfying (*) whose characteristic funce-
tion has at most » points of discontinuity;

» in the case where 0 < v <1 there exist exactly two such sets £, and
E, and in addition the associated characteristic functions 7., and z,, have
exactly » discontinuity points; moreover, one set is a neighbourhood of g,
whereas the other is not.

We give two prools of this result, neither of which uses the traditional
convexity-extremal points arguments. Both use algebraic tricks directly
related to condition 4; the first one 18 based on the implicit function
theorem and the second one on the Caccioppoli global inversion theorem.

A consequence of our theorem is that if the interval [, 5] can be
partitioned as a finite {resp. countable) union of intervals on which the
orientation condition 4 holds then we can build a set £ satisfying (*)
which is a finite (resp. countable) union of intervals. We also point out an
operational criterion which ensures the validity of the orientation condition

W), v WSy v fy) do not vanish on {4 b] for 4 to hold.
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This allows us to formulate a8 new result concerning bang-bang solutions
to linear control systems described by & generic linear differential equation

L{x)=x"+a, () x" V4 o da () x'+ag(t) xe [$y, 6,1,

where ¢ and ¢, belong to L', More precisely we show that given a solu-
tion x to the above problem there exist two bang-bang solutions y and z
tie, L{y), L{z)e {$,, #,}) such that

Viela, b],  ylO)<x{t)<z(1)
Vee {0, ..n—1},  y¥a)=xa)=2%a),  yW(b)=xP(b)=zM(b),

and L{y) and L(z) are of the form y.¢,+ (1~ xx) ¢,, where the set K is
a finite union of intervals; i.e, y and 7 are solutions associated to relay con-
trols. The relay principle was studied by Andreini and Bacciotti in [4]
under the strong assumption that ¢,, ¢,, 4y, ..., 4, ., be analytical. In order
to apply our Liapunov's type theorem we make the solutions to

Lix)=vel[0,1],  xla)= .- =x""(a)=0

explicit through the integral representation formulas
. 1R
Vke {0, ., n—1) xf*?(:)mj S (4 9) s ds,
]

where R(1, s} is the resolvent of the operator L. Our Wronskian criterion
then applies directly to

(3R aﬂ*{R
R{b,*),“‘é‘}“(b,*),, _W(ba')

i I ST R
b T 3

and thus our main theorem yvields a bang-bang solution,
f
y(t)= | R(t, 5) xsls) ds,

satisfying the required tangency conditions; moreover, the set £ is a finite
union of intervals which does not contain the point &,

Surprisingly the same Wronskian conditions allow us to apply an
extended version of Polya’s generalized Rolle theorem for linear differential
operators of order n and functions whose nth derivative are only piecewise
continuous. We obtain that if 0 <v < { then the graphs of x and y do not
intersect. Since y"{a) < x¥{a) then y < x on the whole interval g, 5[
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We give two applications of this result:

» The reachable set of solutions which are constrained by a given
obstacle and subject to preseribed initial conditions coincides with the
reachabie set of bang-bang solutions submitted to the same conditions, so
that this last one is convex.

= We consider the problem of minimizing the integral functionals

w iy

Kx,uy=1 f{t, x{1), ul1)) ds,

&

where x: [a b~ R is such that x®a), x™(b) (0gk<n 1} are fixed
and u 18 a control belonging to Ulx, ) R The classical approach to
obtain existence of a minimum 1§ o impose conditions in order 1o have the
lower semicontinuity of F with respect to w {for instance convexity of
w-s flE x, Ul

Recently in an effort to provide existence criteria other than convexity in
u some sufficient conditions have heen given: for problems of the calculus
of vanations {¥ =u in the above setting) and for maps of the form
S, x, %"y == gle, x) A{1, 1), existence of solutions has been obtained by
requiring that the real map xv» gz, x) be monotonic {117 or, for x in R,
that the same function be concave {57, Optimal control problems escaping
to convexity conditions have been handled in (147

It has been proved Turther in {67 that there exists a dense subset @ of
%R} such that, for g in it, the problem

bt s
minimize | g(x(1)) dr+ | Bx{0) di: x{a) = xq, x(b) = x,

admits a solution for every lower semicontinuous 4 satisfying growth con-
ditions. Our theorem gives g straightforward generalization of the above
resuit.

Let us remark that the clementary case n=1 of our »-dimensional
Liapunov's type theorem appeared ay a technical tool in [1, Lemuma 347,
the case n=2 was handled in our previous paper [ 7] with very different
techniques which are not applicable to higher dimensions. This work deals
only with measores having continuous densities; the general case will be
treated in a forthcoming paper.

Pourrvinary Besunrs

One of the two proofs of Theorem 1 relies on the following powerful, but
not enough appreciated, theorem.
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Cacarorrort GrLosal INVERSION THROREM. Let E be an arcwise con-
nected metric space, let F be a simply connected metric space, let f be a
proper map from E with values in F. If { is a local homeomorphism at each
point of E then f is a global homeomorphism between E and F.

Proof. The proof and several applications of this theorem can be found
in{2,3] #§

Let us introduce some notations. Let 4 be an n x # matrix with real coef-
ficients. By det 4 or |4] we denote its determinant. For each {, je {1,.sn},
by 4, we mean the {n— 1} x{(#-1) matrix obtained by removing the ith
row and the jth column form A. Surprisingly, the following simple
algebraic trick will play an essential role in the existence part of the proof
of Theorem 1 which does not involve the Caccioppoli theorem.

LemMa S, Let A={ay), ¢, u, be an ax n matrix with real coefficients.
Let x,, .., x, be such that

1 Xy S ARREEE al‘,,)...ix,,_wk b ty Xy 2 )
Gy Xy S S O o1 Xy g —+ .{Iz‘ﬂxn me Y

*

IR T SR o - MRS VR ¢ S L%y =

Ifdet 4,, #0 then
iAl

H

Ay Xy 4 o A L g Koy B e
|4

X,

Proof. The Cramer rule applied to the above system yields

(10" 4]
Al

Vie{l,.,n—1}, X,

s0 that

P (1Y A Al
PHETE ST e A S L
e e [ ] Y
since |4l =37 a, (1) 14, is the development of the determinant of
1A} along the first row. §

The main tool in the inductive proof of Theorem 1 is the existence and
uniqueness of maximal implicit functions passing through a prescribed
point.
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Lemva M. Let £ be un open subset of R 'x{o,b] and F a con-
tinuously differentigble map from §3 into R such 8F/8{x .., x, ) s
invertible everywhere. Let (%, ., X,) verify that F{(X,, .., X,)= 0. Then there
exists a unigue couple (1 @) verifying Property P below such that 1 iy maxi-
mal for the set inclusion with respect to this property.

Property P, Iis an interval containing Xips ¥ is a continuous map from
Hinto B0, WX, = (X, wn X, 00 FI¥(x,) x,) =0 for every x, in L

Proof of lemma.  Suppose Birst that (L ¥,) and (J, %)) both satisly
Property P. Put

Z=dx,elnd  Wix,) = ¥,0x,) ]

This set is not empty (since X, 82 and s closed because ¥, and ¥, are
continuous, Let x¥e 2 and

{*x ?2 =% *‘i; i1 } = ﬁlj}i Ye: i g}‘j{’x‘f §%

50 that Flx¥, ., x¥)=0. We have

lx g EI "’“X;s} 3
FELX ey Ay :}

and we can thus apply the implicit function theorem at the point
{xF, .., x¥) There exist an open interval JxF-g x* 4 pg a neigh-
bourhood @ of (x¥, .., x¥* ), and a function ¢ from x* —g x* +¢f into
¢ such that ¢{x*)={xF, ., x* jand

Vx, e lx g xd el Vi, o x, )80,
Flxy, oo X, =0 (X, 00 X, e dlx, )
Thus for every x, in InJn Jxf —a x4l
$lx,) = Wilx, )= ¥, (x,},
whenee Z is also open. Since I J 18 connected then Z=InJ. Put
== {1, W) satisfying property P}

and let

(Ea G35 4

The previous uniqueness property allows us to define g function ¥, on I,
such that ¥, = ¥, on I The couple (1, ¥, solves our problem.
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Tir OriEnTATION CONDITION 4 AND SoMe RunaTten Faors

Orientation Condition 4, We say that » real functions fy, ..., f, verily
condition 4 on an interval [g, b] if for each k in {1, ., n}, the determinant

Silxd filxs) 0 filxe)
f?(x;} fz(xz} oo falxy)

xz fk(xz} fk{;{k.},

1s not equal to zero whenever the x, & [a, b7 are distinct and its sign is con-
stant on the k-tuples {x,, .., x;) such that a < x, < x, < -+ < x, € b,

Examere 1. For n==1, condition 4 states that the function £, does not
vanish. For n=12, the functions f, f, satisly 4 if and only if f, # 0 and £,/f,
is strictly monotonic.

Exampre 2. The functions f,(1) =11 (i2 1) satisfy condition 4 on R
{the corresponding determinants are Vandermonde determinants),
Our interest in condition 4 relies on the following nice facts.

LemMa L. Let fi, ... [, be n measurable bounded functions satisfying 4
on [a, bl Let vy, .., v, be n positive fu?zczmm in LY[a, b]). Then for each

x%
{n~1)-tuple (1, o Voo 1) SuCh that g <y, < -+ <y, <b the determinant

#¥y | Fy p’f}

§ Jivs J Sive o i fiva
Ya F e

#¥ b _

I favy j LT SaVa
“a “ s

el #¥5 ol

% fnvi % ﬁ;% e § fng}ﬁ
Ye ¥ O

is not equal to zerp.

Progf. Since the determinant is a multilinear continuous form, we can
write




BANG-BANG PRINCIPLE 483
3 41 3 .
J Sivy oo fiv,
3 ks TS
£51 ah
E fﬁ ¥y T f& ¥
E vy # W §
o b ;fi{“‘;{}?i{*gi} s Sl %{?»J
= dsoe| s, : o :
¥ Yook .
’ §fﬁ{’51} ¥§§*¥i} .ffxr, Xirs ‘;z;{gt;}
o .
= ” s [ ¥y gé’;} ‘*?2{523 LWy {‘X;z} Q}{gi§ Ty ey ‘3&}
i el e Tyrivado oo Do B}

X dsy e, oo dls,,

where

j;{ﬁz fzg%}

»»»»»»

g
T
g2ad

o
St

=

T
H

ﬂ;ggi} T jax{i

However, the function
(810w S v {8 v (8,0 ols g, 5,0
ig either positive a.e. or negative a.e. on the open now-empty domain
oy UxyoyDxo x ]y, 8]

so that its integral over {a 9.0y, v.0x %[y, ., 6] cannot
vanish. §

Lemva 2. Let fi, o, [ be m measwrable bounded functions satisfying
condition 4 on [, b. Let v, ..., v,, be m positive functions in L*({a, b1). Let
(Vis o Vomm 1) e an (m1-tuple such that (yoem ) a<y, < o €Y, <
bl=y, ) If X1y oy X, are m real numbers not all equal 1o zero then there
exists k in {1, .., m} such that

”
2 ]

fow

i

Felayvilside 0.

i

‘.\m
} ?t

P
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Proof.  Assume that

“ ¥

Vke {1,..,m}, ’ xié Fo () vi(s) ds =

Fow § Fiow §

Then the determinant whose elements are the coefficients of x,, ..., x,, in the
above system,

rh #Y2 b
J fivy j Sive o 2 J1Vm
4 ¥ ¥ Pai §

v PY2 b
jfz’*’i Jf:zvz l SV

Fe ¥ e 1

&

g g'“z’z )
é fmvﬁ ! ./m*’iz e fm%’?m
g d}:g Piggo §

is necessarily equal to zero, thus contradicting Lemma 1. §

Lemma 3. Let [y, .. f, be n measurable bounded functions satisfying
condition 4 on the interval [a, b Let o, .,q, be such that {gy=)
a<u, < <o, <b {=uw,.,) Then, given a positive &, there exist n+1
positive real numbers Ay, .. 4,y SUCh that

Vie {0, .., n}, 0< i, <s,
. " . [
Vke{1,.,n}, 3 (1) ,g,gj“ fo=
£ £3 27

Proogf. Consider the nx »n linear system

Ay E fz Ay E fz“?‘“ ok ()AL G ] fim (1A { Iy
@y
B B ) e e A I

§ % e g ("
fﬁu%“ o »%,=.(m'§}””"§ﬁ%m1j Jf;,:,:z wl}ﬁ 1 }L»»} fn§
% e

By}
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where 4, 15 g parameter. The determinant of the system is

Ry . {*”Xﬁ

B AURNEELEEN R §

o W
(o, = gmw E»}"E"} """ 142 E

L . F ] 3

§ f o T § f ”

<y # i

By condition 4, its sign does not depend on {2, ... 2, ). Moreover, for each
Pin {0, .. n—1}

* X i IS Ty e

I !i [ i}} 3 j lz [l )™ Z f {roi z £ { o1 }1;-._. H ; ,f}

£1; o ek ST Z”ﬁ Fing # ‘ﬁvs |

LA ol RV S Vel I A ) R R D R
(ke § vy it * ¥ g ¥ Hg s i #

g ] £y i RN Fil o
J f; { i 3 }x el E j { e} }z\z = }{& [ i i j: . e i ...... i} ek % }rr
% bl # gy L
Le.,
%] 3 Fak SO xS ki
i i i i | fi | Sy
g P ok Y
e E’%s i PR 5}
@, == { ______ 1)@;&, ..... 1y jg f? jx;f? Eaé j? ”m}. }!%
i Pty fecis s b
§ f x; e % f # % .f;i o g f;r
& kT ¥ i ¥ e

Thus 4, which by the Cramer formuls equals 4,0, /o, has, by condition 4
and Lemma 1, the sign of 4, choosing 4, such that

3, i,
{} e f;;; < mzn e 5.« \\\\\\\\\\\\\\\\\\\\\\\\ . 2% £,
By Oy

we obtain an {n-+ 1 )-tuple which solves the problem. [

We give now a criterion for the fullilment of the onientation condition 4.
If f1s o fi sy are of class €* on [a, b7] we will denote their Wronskian by

Sty - f;mzﬂ

|
fi)?&fic%i(r} é ‘
W) fﬁfizsr)

%
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ProrosimioN 1. Let by, .., h, e € Y{a, b]) be such that
Viela, b], Wih (1) #0, .., Wihy, .., h,)(t)#0.

Then ki, .., h, satisfy the orientation condition 4.

Proof. By [13, Theorem V], for each k-tuple (¢y, .. %), such that
agt; < - <1, £h, there exists L& J1y, 1] such that Wk, (&), .., B ()
has the same sign as the determinant

Rt b)) o ()
ha(ty) hy(ty) - Bylty)

e(t) () o helty)

It follows that the above determinant does not vanish and, by continuity,
it keeps a constant sign on the connected set of the k-tuples (¢, ..., 1,) such
that a1, < - <1, b §

Remark 1. 1t is easy to prove that if A, .., h, satisfy the orientation
condition 4 on [a,b] and are of class €” ' then W(h,), .., W(hy, .., b,)
are either non-negative or non-positive on the whole interval [g, b7

Remark 2. Yor n=12, the Wronskian conditions on f,, f, state exactly
that f1#0 and f,f,—f1/f2#0, whence f,/f, is strictly monotonic.
However, these conditions are not necessary for property 4 to hold (a func-
tion may be strictly increasing without having a positive derivative),

Tue Ranae o A Finrre Divensional OriNTeD MEASURE

In this section we study the range of a finite dimensional measure u
whose components y, .., 4, admit continuous density functions fy, .. /.
which satisfy the orientation condition 4: such a4 measure is said to be
oriented.

TeporeM 1. Let ve L'([a, b1) be such that 0Sv< 1. Let f, ... [, be n
real valued continuous functions on [a, b} satisfying condition 4 on [a, b].
Then there exist a n-tuple a={ay, .., 0,) ond a n-tuple B=(8,, ... B,), such
that

ﬁi%@}%”“%aﬂ%bs a'ﬁﬁ;\@@ﬁg%&
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and if we define

E = U EON. Ty § ;;””“ KJ (BuBisi]

HE SR 4 R
fould feven

(where Bo=a, u,, = f,. =b), then we have

Vke{l, ., 0}, b Gds) zp-(s)ds = fu(s) v(s) ds

PiEr

H
g

b
‘mj Jils) LE; (5) ds. (*)

If, in addition, O<v <1, then {x;, .. 2} and (B, .., .} are unigue and
verify

At e <o, <D, a<fii< - <f,<bh

Remark. This theorem has already been proved for n=2 in [7], but
the orientation condition 4 was not formulated in such a precise way (see
Remark 1 after Proposition 1).

Exampre, There exists a non-oriented measure g on an interval, a
measurable subset 4 which I8 not a finite union of intervals, such that for
gvery measurable subset £

WA= l{E Y s» A= E a.e.

Consider, for instance, the measure u={g,, 4;) whose density functions
are

Jilt)==1, Jalt) =1+ ¢sin{1/t)

and the set A= {re[0, 1] :¢sin{l/1)>0} (in this case the measurg y is
positive but condition 4 is not fulfilled).

We will deal only with the situation where O< v < 1; the fact that the
number of intervals corresponding to v does not depend on v, together with
a classical approximation argument, vields the general case (this is done
explicitly in the proof of Theorem 5). We will give two proofs of the
theorem, The first one relies on an induction, whereas the second one is
based on Caccioppoli global inversion theorem. The following lemma will
be used in both proofs.

Lemma.  Assume that O<v <1 and let 1 be un integer smaller than n.
Then if the l-tuple a=={x,, ., o) (resp. B = (B, .. B;)) and its corresponding
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set  E;  (resp. Ej) satisfy (*) with a<a < - <a;€b  (resp.
as < - €BLh) then Il=n and a<o,<---<u,<b (resp.
a”‘:ﬁi< o %ﬁﬁqb),

Proof of the lemma. We first show that under the above assumption
there exists an m-tuple y=(y;, -, Ymh m& L such that a<y, < -+ <y, <b
and either £ or L satisfy (*). Assume, for instance, that there exists
ie {0, .. 1}, such that a;=u,,, (where possibly aq=a and «,,, =b). We
have the following cases:

o i=0 so that a=ga;. Put m=l—1, y=(a,,.,%); then E}
satisfies (*).

» O<i<l Put mssl—2, y={og, o @y, %z, s ®,); then EJ
satisfies (*).

o i=] Put mesl1, y=(aty, ., 2, ); then £ satisfies (*).

It two components of the m-tuple y are equal we iterate the above opera-
tion on y until after a finite number of steps we obtain a tuple having
distinct components and one of whose associated sets satisfies (*).

We are thus led to prove the result for an /tuple o such that
a<u, < - <o,<b; similar arguments hold for an Juple of type B
Suppose that /< Then by (*) we have

Vke{l,.., n},

A O M I AG (B EIPE

Bmigt”® Gugiags %
{ pven §odd

We restrict our attention on the first /-+ 1 equations of the above system;
ie., k belongs to {1, ., 7+1}. Application of Lemma 2 with m= [+ 1 and
Vi Ry ey Py 0y

, v fodd )
I~y [even
shows that these equations cannot hold simultaneously, thus yielding a
contradiction. §

First Proof of Theorem 1. Consider the casc ns=1. Let f,e%¥{[a, b]})
satisfy 4; L.e., f, does not vanish on [ g, . Since f, has a constant sign on
[a, b there exist unique reals o, B in [4, &7 such that

b

b o8
Jils)ds=| fi(s)vs)ds=] fi(s) ds.

%
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satisfy (*). Assume the theorem is true at rank n— 1,

Let /1, ... [y v be functions satisfving the hypothesis of the theorem. By
the induction assumption there exist {(n—1) tuples {(&,,..4, ;) and
(Bis s By ) satislying (*). Define for each k in {1, ., #n} and n-tuple

{oy, ., o, suchthatoga, € - €5, <5,

j 0, a Ry § R i {t f}
gf;a,:{ai & ey 55;;} i Z“ % f& (5} ds» § vfk {J&‘} "t}{ﬁ} Jx
Dxiga - gy

foxded
and put
L=y, ) e R a0, <ty < -0 <, €,
The set & is not empty; (&, ... %, ., b) and (a, f,, .., f, ;) belong to &

(1} Existence of (&, .., 2,). Let D be the open subset of B" 'x [a, 4]
defined by

De={{2y, ,0,)JeR" 1a<o, < o <a,<b)
and define ¥: D - R" ! by
ingﬁ;; sy a:);} = {f?; {%2 3wy &n)s srng gx;*z ) {ﬁa 5 waRg Q»}}
The map Fis €' on D and its jacobian matrix is
~filoy) i) e (1) ()
= falay) i) e (1) fule,)

Jac gx{’}g» oy ﬁp?} s ;
\ "’j;z o} {%2} ”*!J& e ég{"} c { o % )ﬁj{n e} {Kﬁé
We see that

Cfile) e filey)

! : !
| v ., e g ) " €
E _ ‘ (8 s &&}f e (e LY 12 ; . : g
|
£

which, by the orientation condition 4, does not vanish and keeps a con-
stant sign when o, <#, < --- <2, . Consider the equation

Fl{tys s 2y ) 20,) = {0, 0, 0} (1)
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Let (&, .., &)e D verify (1), ie
(E1s e &t €@, By o B 1))

Such a point exists: for instance, (&, .., &,.., b). We apply the implicit
function theorem at (&4, .., £,). There exists an open interval I containing
£, an open neighbourhood U of (£,, .., &, ), a continuous function

I U

o, b {Q{; ('xﬁ), s Hopy ;(fxn}}z

1/
such that
v((’?iv woy By 2}% ??n} € z}ﬁ {L’Fx I)%
'F(?fi § ey }?n) e ({)2 e {}}’m’ (??.i s s W i} = i}"’(?gn)

Moreover, ¥ is €' and we have
Sile) o fi(:x _____ 1) f}(%,i) e fi{o)
for@) o) fasCapa) o s
Al o fileay)

ai{e,) =

Jocale) o o, y)

so that «j(«,) >0 on 7 and the functions a, are increasing. Lemma M yiclds
a maximal interval 7, on which ¢ can be extended. Let ¥ s=infJ,,. The
functions a,, .., &, .., being increasing on [, admit the limits

Fa lim oy(n,)

Wy e i,g
By o> {

We remark that £ < b since £, < 5. By continuity,

FEE, .. E¥)=1(0, .., 0).

We claim that &Fssa. Suppose £¥>a By the maximality of I,
(E*, .., £¥) belongs to D\D so that tham eXists z;ss {I , n—2} such that
EX = £¥ . The (n—1)tuple (&F, .., EF X 5, o £ D) and its associated
set £ . satzsfy

Vke (Lwn—1} [ i) 2sp () ds=[ /i) s) ds
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so that the induction hypothesis implies that
a<iF< o < < L o<t abad,

which is absurd.

Since £F=a, the {n—1)-tuple (&F .., ¢* ) is the one g}w{m by the
theorem at rank n-—1 so that &% == ;? ; for {3&@%} fin { 2 7 ; %‘hus f{}r
each pmm (&1, s &) Of P\ { (g, ﬁ“

31’2 y 30§ﬁiﬂg {éh fas ‘:m} to {Qs ﬁ}s sy ﬁ
connected.

At this stage we prove that F,(a,f, .., 5. and F,(8,, .. &, , b)
have opposite signs. Since Fl&,, .. %, .1, 6)=0 then for each k in
{1, ..,n—1},

}} 'ET‘%zgs ;}wvm %hcx{ ff 1S Brewise

- T . o f" b TR . o ,
Z % fk{?} ?{5‘) dy + z} § fﬁa {5}{§ e 3;(:3)} dews )
Ostsn.i % DEigpe TR
aven i add

(where Gy =@, &,=b).
For k,jin {1,..,n} put

Eel '-“X}‘

X; = { ~1 }}" azi = s | f}‘ ‘;ﬁ;} A% = {"?Z‘j}i LS BE 4
k4 'X“ s
where
{y if jisodd

/ 3;2 ~y o if jiseven,

so that the above equations become
»?i
Yke{l, ., n~1} ¥ agxy =0

Since F, (%, v &, , b)=2]., 4} %% s application of Lemma S gives

}‘;; {ﬁ;\; sy Q” i b j}} R E"“"gf‘:{ i E}”,

Similarly if we define for k,jin {1, ... n} (fo=q, f,=5),

xf = (1), Ay = j f**ﬁ A" = (a1 <iyzm

L R
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where

g (v if jiseven
Vs » 2
4 é 1oy If Ji8 (}(ida

then we have

. o 5 og A% o
f*,z{ax !ji‘f ¥ ,8,; ,,,,, ;}ww 2:‘ Hﬂf}f} :::z;m (Wi)

By condition 4 on fy, .., [, and Lemma 1, 4% and |4” have the same
sign, as do |4%*| and |47 It follows that F,(a fB,, .. B, ,) and
F (%, .. 4, ,, b) bave opposite signs. Moreover, the set & is connected:
the map F, 15 continuous on & and thus must vanish at a point {a,, .., &,)
of . By the very definition of % we have also that

VKe {1,on—1)  Felay, . a,)=0,

80 that (a,, .., o) solves the problem.

(1} Uniqueness of (o, .. 2,). Let (z,,..2,) be in & with
a<a; < - <u,<b and bulld (Jy,¥) as in the existence part. The
maximal interval 7, is in fact [f, ,, b] so that (ay, .., a,) belongs to a

continuous path in % joining (4, B¢, ., fa..i) and (&, .., &, ,, b). By local
(recall that we apply the implicit function theorem on the space

R 'x[a b] and that b is an interior point of the topological space
[a b]). For each a,e 15, ., b[, we have

# AJY
33

d ; ‘ . £ "o, .

LAt o filaly) fileny) o file) |

f,;,..“;(fxg} e f”@{f?ﬁgw} fﬁi{asbi) e f?xw}(s{x}

= 3 (~1)f, (@)
P 1

z L) o filtey) |
: g : E
& > % §
%f”;{fXg} » s ﬁ,w;{{xnwgﬁ
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Lilad oo filey)

fwi{xi} T fﬁ{aﬁ}

: g Y )
fi{a§} e ]3{:}» i)

f;z§{ai) Yo fﬁg{gﬁﬂg}f
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Thus i',g is strictly monotonic along the arc joining {4, §,. ... 5, ) and
(&), o &, (» b} so that F, vanishes only for one ‘vaim «,. Since this path

15 ﬁmqaﬁ then the »n- m;)kz (..., a,) 18 unique,

Second Proof of Theorem 1. Let

ey, o jeR o<, < - <a, <h
St " i 5

and

Fm{{j f;;g,,,gg fnv}:wz,{;}{{a,c‘?}}»{}%v«cz’.i}a

For each (o, .., 2, £ put

gy b
(;{513 § neny S(a:x} i (J fﬁ;{ix g ey f ftza;fz"*},
@ * g

where

U Egia mz’?v..»é} {&nm}m?}}

Qminn
§ ooeled

We first show that § takes its values in F

Let (o, ..,%,) in £; applying Lemma 3 to (f, ..f,), (2, .. a,) and

¢=%, we obtain an (n + 1)-tuple (4, .., 4,) such that

vie {0, .., n}, D<A, <,

’%?kg{}’“yq ?‘1}% Z (1) 4, % &m{}
P

Put

L Z: ;‘;ix{&f‘zﬁs‘s»%} + },,, {} w"%;‘} X{m,mw;y

G dmn Gwign
Foven f o



4594 CRRF AND MARICONDA

By construction we have 0 <v <1 and

ob pb
Vie{l,.,n}, j fk'vmj fk}fg;

14
so that #{x,, .., a,) belongs to F. |
The purpose of what follows is to show that the map 6: Q — F satisfies
the hypotheses of the Caccioppoli theorem.
(1) Obviously £ is arcwise connected.
{2) The set F, being convex, is simply connected.

(3} The map 0 is a local homeomorphism at each point of £2. In fact,
§ is differentiable at each point (v, .., «,) of £ and its jacobian

i) o file)
detJac O(ay, v, a,) = (1) 0020 :

fila) o fule)

does not vanish on £ by the condition 4.

(4) Finally @ is proper. Let K be a compact subset of F and let
af = (¥, ., «¥) be a sequence of points in §7'(K). Since the sequence
(B(e*)) .« is contained in K< F then by compacteness we may assume
that there exists v*e LY([a, 57), 0 <v* < 1, such that

. [ rb .
kiim {}(a"}m<§ Siv® e | f,,v*) (C)

The closure Q= {{ay, ., a,)eR" a<n, € - <a,<b} of £ is compact
and therefore (a*),.. admits a subsequence which converges to
a* = (g¥, ., aXYe . By (O) we have

‘ P/ &
Vke {1, .,n}, J Jixen=1 fiv®

&

and the initial lemma implies that a<af < .-« <a¥ «<b. Thus o* belongs
to Q and 6 '(K) is compact. By the Caccioppoli theorem, 8 is a global
homeomorphism. §

As a consequence of Theorem 1, we deduce the following.
Taeorem 2. Let v be a measurable function on [a, bl such that

Oy L. Let [, ., [y be n continuous functions on [a, b. Assume that the
interval [a, b is a finite (resp. countable) union of intervals on which the
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orientation condition 4 for f,, .., 1, holds. Then there exists o set E which is
Jinite {resp. countable) union of intervals such that

_ b nb
Yke{l, .., n}, ; f;{;{gmu{ e,

Progf. Under the hypothesis of the theorem, there exists a finite (resp.
countable) family of disjoint open intervals (7,),,, included in [a, b] such
that [a, 6]\U,., 1, is a negligible set (with respect to Lebesgue measure)
and the functions f, ... f, satisfy condition 4 on each interval /,, jeJ. We
apply Theorem 1 to fi, .., f, and v on the interval I; there exists a set E;
included in I, whose characteristic function has less than # discontinuity
points such that

y , ro [
Vke{l,..n}, }ffk;{i‘»}mjifw'
5 ;

The set E= ], , K, solves the problem.

Proposition 1 shows that the hypotheses of the theorem are fulfilled as
soon as

o fiswuf, are of class "' on [a, b1,

o the set Z={re[a,b]:3ke {1, ., n}, W/ .. fe)(1)=0) is finite
(resp. is negligible).

This result weakens Halkin’s condition [9] that the interval is a countable
union of intervals on which the functions f, .., /, are analytical.

Some REsurTs on LiNear DmrereNTIAL FOQUATIONS
We consider a linear differential operator,
LDy=D"+a, (03D 4 o ba,{t) DA+ ayglh),

where D is the derivative operator D=d/dr and a,,..,a, ., are n real-
valued continuous functions on an interval [g, b1

A GENERALIZED ROLLE THEOREM. If f|, .., fr . are of class €% on [a, b’
we will denote their Wronskian by

FACEESEANG!
WS Fes)t)= 1 o1
FE e L)

s



T
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DeriNITION (see [137). The operator L possesses property Won [a, b]
if there exist n— 1 functions Ay, .., 4,.., satisfying
Vie{l,.,n~1}, L{DYA)=0  on [ab]
Yiela, b, Wb 1) >0, .., Wihy, «, b, J{1) >0

We will use the fact that property W always holds locally: for each fixed
iy in [a 67, the n—1 solutions Ay, .., 4, ; to the n—1 Cauchy problems
(Igign~1)

LIDYhY =0, B¥g)=80~1k), O<gk<n~1
(where 6(j, k)= 0 if j# k and 8{j, k)= 1 if j==k) are such that
Vie {1, .,n~1}, Wihy, .., h){tg)= 1
Therefore, the inequalities
Wih Wty >0, ., Wihy, b, J1)>0

hold in a neighbourhood of 1.

The interest in property W is that it allows us to decompose the linear
differential operator L into a “product” of differential expressions of first
order.

TueoreM 3 (See [131).  Let the linear differential operator L{D) possess
property Won [a, b]. Then there exist n+ 1 functions ug, ..., 4, such that for
each i in {0, .., n}, u; is of class €" " on [a, b) and

BET oy fd _ d d _ d d _
Vye@([a, b]), L(.J}?wandsuwidtuﬂ .... v D Ly,

As a consequence of this decomposition, we derive & generalized Rolle
theorem. We say that the function f has N zeroes on [g, b] if there exist
! distinct points 7,,.. %, and [ positive integers my, .., m, such that
m, 4 - +mys= N, fis at least my — 1 times differentiable at ¢, (1<k</),
and

Vee{l, ., 1}, Yie{0, . .m—1},  fOlt)=0.

TuEOREM 4. Let the differential operator L{(D) possess property W on
[a,b). Let f be a piecewise €" function of class €" ' defined on [a, b] and
let k be the number of discontinuity points of % in la, b[. If f vanishes at
(n+ 1)+ k points in the interval [ o, b7 then there exists £ in la, b[ such that

L(D) f(§)=0.
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Proof. Let 1, < .- <1, be the distinct zeroes of fin [a, b7 with multi-
plicities m1,, .., m,. By applying the Rolle theorem successively on the
intervals [#;, 5], ., [ ., 4], we obtain k—1 points ¢!,.., ¢} ., such
that £ <ti<ty< - <t <ti |, <1* and

Vie {1, . k—1}, }‘f: (uaf)(t}) =0,

Taking into account the multiple zeroes of f we see that D(uyf) admits
n+k zeroes on [a, b At step n— 1, this process yields the existence of
k +2 zeroes for the function

d d o

HFemy, P Y s Yy Wy U ]
b4 E id? ek Edi H it {}.f

Either one of these zeroes is double or g possesses k -+ 2 distinet roots; in
this situation, at least two of them must lie in one of the k + | intervals on
which g is ¢’ and the Rolle theorem yields a zero of Dg. In both cases, we
obtain the existence of a zero of the function w, D(g) = LID)(f).

We will use the following straightforward corollary of this theorem.

COROLLARY. Let the differential operator L{D) possess property W oon
L4 6] Let f be a piecewise €" function of class 4"~ defined on [a, b1, £
having at most n discontinuity points. Moreover, assume that

Vie{0,.,n~1},  fa)=FOh)=0,
If L{DY(f) does not vanish then f has no roots in Ja, b[.
Let us remark that property W is essential for Theorem 4 to hold.

Example. Let f{t)s=sinf-ut where o is chosen so that J admits
three zeroes on the interval [#/2, 3n]. If we set L{D)= D?4+1 we have
L{DY f )t} = —at which does not vanish on [#/2, 3n]. However, it is easy
to check that the operator L possesses property W on the interval [a, b
fandonlyif b~a<n

DEFINITION OF THE RESOLVENT,  We say that R:{a, b]x [a, b]r> R is
the resolvent of the operator L if for each fixed s in [a, »7 the function
t+-+ R(t, 5} solves the Cauchy problem

LD)y=0,  yls)= - =3""Ds}=0, y" s)=1

As it is well known, R is of class €"** on [g,b]x {a, b7 whenever the
functions ay, .., a, ., are of class ¥*

AT R
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Prorosrrion 2. Let R(1,s) be a function in €% *({a, b]x[a b])
satisfying

" *R

o OR
Vsela, b, R, s)m%; (8, 8) = oo = e (5, 8) =0,

et (8 s)=1.

Then, for each ty in [a, b)), there exists 6 >0 such that for every t in
[to 8,15+ 3] [a, b), the functions

3y e f

h:{’»)mw(h 8)s I<ign,

satisfy condition 4 on the interval [1,— 3, tg-+81[a b

Proof. For ecach tye[a, b] and for each ke{l,.,n}, we have
WK (ty), oo B%(1o)) = 1; in fact,

FT (1o, tg) - SE (tg, 1p)
W{;Z?}(if})a nxoy k?{fa)) = . %
{»}yg Vg...]{.\\.. QR 8” .... {R

SATET (fo: tg) - ST {ty, )

0 .- ... 0
* 10 0

- o 1
t 4 * Z
% E l

By continuity, there exists 0 > 0 such that
Vi selty—0,t+8 1 [a b, Ve {l, ., n}, W(hi(s), .., Bp(5))>0.

Proposition 1 yields the conclusion. §
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BanG-Baxng CONSTRAINED S0LUTIONS

We consider the n-dimensional linear control system

f;(}:})x x{ﬁ} o {f) x{’;‘m H "f“ R = ;{2} {If} .X}

tag(t)xe[g, 4,] aeon [ab], (P)

where the n functions ay, .., a,., belong to 4" *[a,b]) and ¢,, 4, in
L'([a, b]) verily ¢, < ¢,. The ﬁsmzi(m y s said to be a bang-bang solution
to (P} if it solves (P) and, moreover,

LD)ye{g: ¢}

ing
Yk e {{}3 oy H }s 3“"%’@} %éf}{&} y{k}(b) i x%}{f))

has been proven, for instance, by Cesari [8] and Olech [12].

TueoreM 5. Let x in W™ [{a, b1) be a solution to the control
problem (P). Then there exist two bang-bang solutions y and z satisfying the
tangency conditions

Ve {0,.,n~1},  y®(a)=x®(g) =20 (q),
yHUb) = xFb) = 25 (p),

and the inegualities
Viela, b], s x(ngAn.

Moreover, L{D)}y and L(D)z are of the form ypé,+ (1~ 1.) ¢, where the
set E is a finite union of intervals; ie., y, » are solutions associated to relay
controls (see [47]).

Proof. We will only prove the existence of the function y; similar
arguments hold for z. Let R{t, s)e 9™ *[u, b]x [a, b]) be the resolvent
of the operator L. By Proposition 2, there exists 6> 0 such that the func-
tions

3,@ ,{g v b
hi(s) = ST {t,5), 1<ign,
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satisfy condition 4 on [a, a-+ 07 for each ¢ in [a, a+ 8. Choosing ¢ small
enough, we may assume that the operator L possesses property W on
La,a+d].

Suppose first that conditions W and A hold in the whole interval [a, b]. It

is not restrictive to assume that ¢, =0, ¢,=¢20, x{a)=x"(g)= - =
7 WNa)=0. In fact, let x satisfy L(D)xe[¢,, ¢, ] Then, il we set
x:(a) x{” e § }(ﬁ}
x, (1) == x{@) b e (P @) e cn s o net
() =x(a) i1 ( ) (n—1)! ( )

the function ¥ defined by X = x - x, verifies
LiDyxely,, ¥y ) Yk e {0, ., n 1}, ¥*{a)=0,

where ¢, = ¢, — L{D) x,,, i==1, 2. Clearly the function X defined by

X(1)=%(1)~ | R(t,8)(5)ds
satisfies
L{DYs = L{DYF i, e [0, ¥, — Y], Vke{0,.,n—1} 3% (a)=0.

If we assume that the theorem holds in this situation, there exisis a
function 7 such that L(D)y has the desired form and

Vke {0,.,n—1}  5%a)=0, j¥(b) = x“b),
Viela, b]l,  J1)<X(t)

It is now easy to check that the function y, defined by

Pt = 50 + [ R, ) ¥ (5) ds+ x, (1),

-
solves our problem.
‘We assurme now that

0<p<d, LDx=p,  Vke{0, ..,n~1}x*(a)=0,

so that, with the notations of Proposition 2, we have

et GXR . .
Vke {0, .,n—-1},  x®(1)=| T3 (t,5) p(s) ds

L IR

M'j" k. (s) pls) ds.
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Let { podmen 204 (@), n DE two sequences of continuous functions such
that

VZ' E Ea” ;3}? {} < pm{{} < Qsm {1)5 g)m Ij”} £y *;ém w' “!m* ’?5

and set
X {1) e j: Rit,5)p,, (s} ds.
Clearly,
Ve [0,,n—1},  xB()= g ZR (1, 3) p,(s) ds

= | k(5 pyu(s) ds.

Since each ¢, is positive then the functions

ke ¥ B i’

fils)=ht wmmwf’; o

F(b,5) 05},  I<gign,

satisfy condition 4 on [a, 5]. Then by Theorem 1 i applied to £, .., f, and
V= P /@, corresponding to cach m there exists a unique n- tuple
{af, .2} such that

(@f =)a<af < - <ol <b(=a"

32«”1

and if we set

‘E:m = ik,} {‘x?f% aiﬁ i :35 ym{f} = i R{L 5} (ﬁm(x} ;’fz’,mgi} Q{t"
Fondel Y
(};;);é&“r}

then we have

pb b .
Vie{l, ..n}, LX) g sy ds = fils) v(s) ds;

1.6,
Yke {0, .,n—1}
b 5k N
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so that
Vke {Q’ cony B 1 }3 Dk(};m m}{a Dk(.};m m){b) == 0

and L{DYyp~ Xm) = GmXr;— P does not vanish on [g, b7; since L pos-
sesses property Woon [a, b1, the corollary to Theorem 4 then implies that

Vie Ja, b,y (0% x,{1) (**)
Since by construction,
y(a) = L(D) yp(@) = (8, (@) D"  yla)+ - +a;(a) Dynla)
+dg(a) ym(a)) =0

and, analogously, x"(a)=p(a)>0, then by continuity y,<x, in a
neighbourhood Ja, a+¢[ of a, which together with (**), yields the global
inequality

VieJa, o[,  yn(t)<x,(1) (***)

By compactness we may assume that

s f ¥ e 4
Vie{l, ., n}, lim af =ua,
P 7 e &
Clearly,
(o= Jaga, € - S, <b(=0a,,)
Put

U {:aw ai~§~i:§7 y(f}“’:’”mJ: R(t, 5} (}6{5}}(5 (S} ds.

i odd
Ogign

Obviously, for all k¥ in {0,..,n—1}, y*{(a)=0. Moreover, by passing
through the limit in (*) and (***), we obtain

rb GER & ak

o* |
x(’”(ﬁ)wwj HE R (b, 5) pls) ds= f gfé(& 5) $(s) 1z~ (5) ds = y(b)

174

forall k in {0, ..,n—1} and
Viela, b, y(t) < x(t).

The function y solves our problem.
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The General Case. Since the functions
40 §

ﬁ?{»&‘) e W {1, 8, 1<ign,

satisfy locally condition 4 and the operator L(D) possesses property W
locally then by compactness there exists a subdivision

Co=maA< < L <b=ge,,,

of [a,b] such that properties W and 4 hold on each interval 1=
Loy ], 0/l Let x solve L(D)x=p, ¢, £ p< ¢y, by the first case,
for each jin {0, .., I} there exists a function y, in W™*(I) such that (D) ¥
has the desired form,

Vke [0,.,n—1},  yP(e)=x%(c), 78es ) = xB e, ),

and

Viel,,  yi(1)<x(1)

The function ye W™'([q, b]) obtained by glueing together the functions
Yos - ¥; 18 & solution to our problem. §

Remark. The proof of the theorem shows that if there exist # solutions
hiyouh,to LDYy=0o0n [ab] satisfying

W) #0, o Whiy s h)#0  on [4,6]

then the resolvent of the operator L satisfies condition 4 on [a,b] and
therefore the bang-bang solutions y and z can be built in such a way that
L(D)y and L{D}z are of the form y,.¢, + (1 ~¥r) $2, Where the charac-
teristic function of the set £ has less than » discontinuity points on [a, b].
For instance, this is the case when L{(D)= D" (see Example 2 following the
definition of condition 4) or when

has n distinet resal roots.
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Consider the control problem (2,)
LDYyx=xMaqa, ()x" D4 o dag()x
+ag(tixe ¢, ¢, ae.on [a b]
with the initial conditions
Vke {0, ., n—1}, x¥®a)=x,,

where xg, ., X,..; are »n fixed real numbers. Let ¢ be an arbitrary function
defined on I==[a, b] and consider the reachable sets 2% and % associated
to {P,) defined by

F e {Ux{b), X' (b)) ooy X &)
Vrel x{1)< (1), x solution to (P,)},
Y= {(y(b), y'(B), ., " HU(b))
:Wﬁf (1)< e(1), y bang-bang solution to (P,)}.

Then Theorern 5 yields the following result,

Turorem 6. The sets 5 and % coincide; in particular, the reachable set
associated to the bang-bang constrained solutions % is convex.

AN APPLICATION TO THE CALCULUS OF VARIATIONS

that ¢, < ¢, and let L be the linear differential operator of order n defined by
L{D)Y=D"+a, (D" 4 - +aq, (6)D+a(1).

Let x}, .. x! | and x2, .., x> be 2n fixed real numbers. Then there exists
a dense subset @ of €(R) for the uniform convergence such that for g in @
the problem

rb rb -~

min { glx(t))yde+ | AL(D)Yx(r))dt:xe W™ {[a, b]),

s |

Vke {0, ..., n—1}, xF(a) = x}, x*(b) mxﬁ}
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admits at least one solution for every lower semicontinuous function h
satisfying the growth condition h{u)= cy(lul), ¥ being ls.c. and convex,
m, | . ¥lr)r=+ 0.

Proof. With our Theorem 5 and the preceding application, the proof is
a direct adaplation of the proof given in [6] for the case L(D)=D. §
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