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Abstract

In this paper the ®nite element method is used to ®nd the regions of dynamic stability of beams and frames.

A suitable numerical procedure allows diagrams to be obtained where these regions are located as functions of the
dynamic force applied and vibration frequency of the structures analyzed, taking into account the di�erent
characteristics of constraints, inertia and sti�ness. A set of numerical applications concerning beams and framed
structures is presented. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic stability of mechanical systems,

according to V.V. Bolotin's de®nition [1], represents a
speci®c aspect of the stability of motion.

Several works have been presented along the lines of

Bolotin's early studies [1]. The object of these works

has been to give a quantitative description of the
phenomenon, but if one tries to solve the problem with

continuum models, it becomes particularly di�cult

even for quite simple mechanical systems.

If one considers Euler's beam subjected to a com-
pressive dynamic force, starting with the equations of

motion, after some algebra and appropriate hypoth-

eses, the so-called Mathieu±Hill equation [1, 2], which

governs the dynamic stability problems, is obtained.

The exact integration of the above di�erential equation

is possible only in particular cases [3], since it is gener-
ally very complex. Thus, to analyse the behaviour of

structures of any shape, it is more useful to employ a

numerical procedure, such as the ®nite element

method. The approach for the numerical solution of

the Mathieu±Hill equation has been proposed in [4] in

the case of shallow shells.

The fundamental aspects of dynamic stability and
the numerical procedures suitable for solving practical
problems will be discussed in the following pages. In

particular the ®nite element method in problems of
stability of beams and frames is considered. Some nu-
merical applications that lead to determination of the
regions of dynamic stability, taking into account the

various characteristics of constraints, inertia and sti�-
ness of the examined systems are shown. The following
analysis uses a dynamic approach with beam elements

without axial deformability, but takes into account the
load bending contribution by means of a second order
approach.

2. System of equations of motion in the analysis of frames

The theory of systems of Mathieu±Hill di�erential
equations with periodic coe�cients is useful to dis-
tinguish the regions of dynamic stability from those

where instability occurs. This theory consists in the
extension of the treatment of the single beam (conti-
nuum model) [1] to a system with several degrees of

freedom. In this case, it becomes necessary to analyze
what the conditions are which the analyzed structural
system must be subjected to, so that the equations of
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motion can be included in the class of Mathieu±Hill
di�erential equations with periodic coe�cients.

The conditions of periodicity of coe�cients and
homogeneity of the equations may be satis®ed by a
periodicity of the forces and an indirect application of

the forces to the degrees of freedom of the ®nite
element discretization.
The system of equations of motion may be written

in the ®nite element form:

M�q� C�q� Kqÿ P�t�Sq � 0 �1�
where:

M =mass matrix;
C =damping matrix;
K =sti�ness matrix;

S =stability or geometric sti�ness matrix;
q =vector of the d.o.f.;
P(t)=periodic force.

3. Calculation of M, K, S matrices

In the ®nite element analysis a beam element with-
out axial deformability is considered (Fig. 1).
To describe the displacement of intermediate nodal

points as functions of the base ones, assumed here as
degrees of freedom of the problem (transverse dis-
placement and rotation), 3rd degree polynomial shape

functions with C1 geometric continuity are used. The
degree of the interpolating functions (Hermite's poly-
nomial) allows the exact form of the sti�ness matrices
to be obtained.

Referring to the beam element we can write:

u � NTq; �2�

e � Lu � LNTq � BTq; �3�

s � De � DBTq �4�
with

u:R4 R displacement function:

N:R4 R4 vector of the shape functions;
q $ R4 vector of the d.o.f.;

L curvature di�erential operator;
D bending sti�ness modulus.

To obtain the system of equations of motion two

di�erent paths may be followed using:

1. the virtual work principle

dle � dli �5�
with

dle=external virtual work;

dli=internal virtual work;

2. Lagrange equations:

d

dt

@T

@qi
ÿ @T
@qi
� @�UF ÿUi�

@qi
�6�

with

T = kinetic energy;

UF=external force potential;

U1=internal force potential.

It is possible to obtain

Me=element mass matrix

mij �
�l
0

Ni mNj dx;

Me � ml

630

234 33l 81 ÿ19:5l
33l 6l 2 19:5l ÿ4:5l 2
81 19:5l 234 ÿ33l
ÿ19:5l ÿ4:5l 2 ÿ33l 6l 2

8>><>>:
9>>=>>;; �7�

Ke=element sti�ness matrix

kij �
�l
0

Bi Dij Bj dx;

Ke � EJ

l 3

12 6l ÿ12 6l

6l 4l 2 ÿ6l 2l 2

ÿ12 ÿ6l 12 ÿ6l
6l 2l 2 ÿ6l 4l 2

8>>>><>>>>:
9>>>>=>>>>;; �8�

Se=element stability matrix 
sij �

�l
0

dNi

dx

dNj

dx
dx

!
;

Se �

6

5l

1

10
ÿ 6

5l

1

10

1

10

2

15
l ÿ 1

10
ÿ 1

30
l

ÿ 6

5l
ÿ 1

10

6

5l
ÿ 1

10

1

10
ÿ 1

30
l ÿ 1

10

2

15
l

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
: �9�

Se takes into account, within a 2nd order approach,Fig. 1. Beam element (without axial deformability).
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the work done by the force acting indirectly on the

degrees of freedom. By assembling the matrices we

obtain Eq. (1).

It is possible to improve the procedure by consider-

ing the inertial forces caused by rotatory inertia. For

this purpose it is su�cient to add the following matrix

to the mass matrix:

Mrot,e=element rotatory inertia matrix 
mrot i;j �

�l
0

mr2
@Ni

@x

@Nj

@x
dx

!

Mrot,e � mr2

6

5l

1

10
ÿ 6

5l

1

10

1

10

2

15
l ÿ 1

10
ÿ 1

30
l

ÿ 6

5l
ÿ 1

10

6

5l
ÿ 1

10

1

10
ÿ 1

30
l ÿ 1

10

2

15
l

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�10�

r= inertia radius of the cross-section [5].

If the beam is resting on an elastic foundation, elas-

tic soil is responsible for a sti�ening e�ect which can

be expressed by:

Kw � p

s
; g � Kw b �11�

with

Kw =Winkler's constant;
p =soil contact pressure;
s =displacement of the point under pressure p;

b =width of the support.

In this case, in Eq. (1) the following must be added

to the sti�ness matrix [6]:

Kle=Winkler elastic soil matrix 
kij �

�l
0

Ni gNj dx

!

Kge � gl
630

234 33l 81 ÿ19:5l
33l 6l 2 19:5l ÿ4:5l 2
81 19:5l 234 ÿ33l
ÿ19:5l ÿ4:5l 2 ÿ33l 6l 2

8>>>><>>>>:
9>>>>=>>>>;: �12�

It is also possible to take into account the distributed

axial loads acting on the elements. In this category mass

forces, such as the weight of the structure, which may

have an important in¯uence on stability are included.

Let us consider a distributed axial load equal to qs,

on the element (Fig. 2). In the equation of motion

Eq. (1) the following must be added to the sti�ness

matrix [7]:

Sqe � SeQ0 � qsS
0
qe �13�

where

S'qe=distributed axial load matrix 
s 0q �

�l
0

dNi

dx

dNj

dx
x dx

!

S 0qe �

6

10

1

10
l ÿ 6

10
0

1

10
l

1

30
l 2 ÿ 1

10
l ÿ 1

60
l 2

ÿ 6

10
ÿ 1

10
l

6

10
0

0 ÿ 1

60
l 2 0

1

10
l 2

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�14�

4. Systems of Mathieu±Hill di�erential equations

The following linear homogeneous system with
periodic coe�cients:

M�q� Kqÿ �Ps � Pdfff�t��S q � 0 �15�
f�t� T� � f�t� �16�
represents the system of equations of motion without
damping (damping e�ects are included in Section 5).
If the mass matrix is inverted, the system can be

solved:

d2q

dt 2
� f�t� q � 0 �17�

where

f�t� �Mÿ1 Kÿ Ps � Pd f�t�
� �

S
� 	

; �18�
transforming a 2nd order system with n equations into
a ®rst order system with 2n equations. If:

xi � qi i � 1; 2; . . . n

xi � dqi
dt

i � n� 1; n� 2; . . . 2n

8<: �19�

Eq. (17) becomes

dx

dt
� f 0�t� x�t� � 0 �20�

Fig. 2. Distributed axial load acting on the element.
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where

f 0 �t��2n�2n� � 0 ÿI
f 0

� �
: �21�

Calling the 2nx2n solution matrix X(t), obtained after

substituting 2n linearly independent solutions in the

rows, one can write:

dX

dt
� X�t�f 0 T�t� � 0: �22�

Because of the periodicity of the coe�cients, X(t + T)

is also a solution

X�t� T� � RX�t�: �23�
Calling:

X�t� � TX��t� �24�
(T contains the eigenvectors of R) and obviously

X�t� T� � TX��t� T� �25�
we obtain

X��t� T� � Tÿ1RTX��t� � rrrX��t� �26�
where rr is the diagonal matrix which has the eigenvec-

tors of R on the diagonal. The kth solution becomes:

x�k �t� T� � rk x
�
k �t�: �27�

With some simple considerations [1], we obtain:

vriv >1 unlimited solution;
vriv = 1 periodic solution;
vriv < 1 limited solution.

Thus the periodic solutions characterize the bound-

ary conditions between the dynamic stability and

instability zones.

To obtain the boundary frequency equations [1] it is

possible to use the Fourier series.

A solution with a period 2 T is represented by:

q�t� �
X1
k�1;3;

ak sin
kyt
2
� bk cos

kyt
2

�28�

inserting Eq. (28) in Eq. (15), two linear homogeneous

systems with in®nite equations and in®nite unknowns

ak and bk are obtained. Solutions di�erent from zero

exist if:

det

Iÿ Ps2
Pd

2

� �
Kÿ1Sÿ y2

4
Kÿ1M ÿPd

2
Kÿ1S 0 � � �

ÿPd

2
Kÿ1S Iÿ PsK

ÿ1Sÿ 9y2

4
Kÿ1M ÿPd

2
Kÿ1S � � �

0 ÿPd

2
Kÿ1S Iÿ PsK

ÿ1Sÿ 25y2

4
Kÿ1M . . .

. . . . . . . . . . . .

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
� 0: �29�

Similar considerations hold for solutions with period T:

q�t� � 1

2
b0 �

X1
k�2;4;

ak sin
kyt
2
� bk cos

kyt
2

�28a�

inserting Eq. (28a) in Eq. (15), two linear homogeneous systems with in®nite equations are obtained. Solutions

di�erent from zero exist if

det

Iÿ Ps K
ÿ1Sÿ y2 Kÿ1M ÿPd

2
Kÿ1S 0 � � �

ÿPd

2
Kÿ1S Iÿ PsK

ÿ1Sÿ 4y2 Kÿ1M ÿPd

2
Kÿ1S � � �

0 ÿPd

2
Kÿ1S Iÿ PsK

ÿ1Sÿ 16y2 Kÿ1M � � �
. . . . . . . . . . . .

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� 0: �29a�

det

Iÿ Ps K
ÿ1S ÿPdK

ÿ1S 0 0 � � �
ÿPd K

ÿ1S Iÿ Ps K
ÿ1Sÿ y2 Kÿ1M ÿPd

2
Kÿ1S 0 � � �

0 ÿPd

2
Kÿ1S Iÿ Ps K

ÿ1Sÿ 4y2 Kÿ1M ÿPd

2
Kÿ1S � � �

0 0 ÿPd

2
Kÿ1S Iÿ Ps K

ÿ1Sÿ 16y2 Kÿ1M � � �
� � � � � � � � � � � � � � �

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
� 0:

�29b�

L. Briseghella et al. / Computers and Structures 69 (1998) 11±2514



5. Damping e�ects

It is possible to include the e�ects of dissipation

forces (damping e�ects) [1, 2] by introducing the damp-

ing matrix in the form C= aM in Eq. (15).

The equations of motion can be written as:

Kÿ1M�q� aKÿ1M�q� Iÿ Ps � Pdf�t�� �Kÿ1S� 	
q � 0: �30�

In order to treat the matrices in the same way as nor-

mal numbers, it is useful to write the equation in a

compact form. This can be done by using a function-

matrix technique.

The correctness of the following equations can be

veri®ed. If

e � a=2 �e � damping coefficient� �31�
it will be:

eÿe t � I�
X1
k�1

ek�ÿt�k
k!

: �32�

Seeking solutions in the form:

q � eÿe tu�t� �33�
Eq. (30) becomes:

Kÿ1M eÿe t�u

� IÿKÿ1Me2ÿ Ps�Pdf�t�
� �

Kÿ1S
n o

eÿe tu�0: �34�
Thus:

Kÿ1M �u� Iÿ Kÿ1M e2 ÿ Ps � Pdf�t�
� �

Kÿ1S
n o

u � 0

�35�
eÿe t being not singular.

Looking at Eq. (35) and extending the consider-

ations of Mathieu±Hill's equations theory [1], it can be

seen that the boundary between the damped and

unlimited solutions is represented by the periodic sol-

utions with period T and 2 T.

In this case too it is possible to obtain the boundary

frequency equations by seeking periodic solutions such

as the Fourier series in the form of Eqs. (28) and (28a)

which, inserted in Eq. (30), give two linear homo-

geneous systems, the solutions of which exist as a ®rst

approximation, if:

Fig. 3. (a) Geometric and mechanical characteristics of the

beam. (b) Discretization of the beam.

det

Iÿ Ps � Pd

2

� �
Kÿ1Sÿ y2

4
Kÿ1M ÿyKÿ1M e

ÿyKÿ1M e Iÿ Ps � Pd

2

� �
Kÿ1Sÿ y2

4
Kÿ1M

8>>>><>>>>:

9>>>>=>>>>; � 0 �36�

for solutions with a period 2 T.
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det

Iÿ Ps K
ÿ1Sÿ y2 Kÿ1M 0 ÿ2yKÿ1M e

0 Iÿ P2 K
ÿ1S ÿPd

2
Kÿ1S

ÿ2yKÿ1M e ÿPd K
ÿ1S Iÿ Ps K

ÿ1Sÿ y2 Kÿ1M

8>>><>>>:
9>>>=>>>; � 0 �36a�

for solutions with a period T [1, 2].

Fig. 4. Comparison between theoretical solution and FEM

solution in (a) a (y, Pd) diagram and (b) a (y/O,m) diagram. Fig. 5. Location of direct integration points.

Table 1

Direct integration points in Fig. 5 diagram

y (sÿ1) Pd (N) y/O m

A 105.52 100000 2.000 5.9 10ÿ2

B 100.00 400000 1.895 0.236

C 100.85 160000 1.911 9.4 10ÿ2

D 117.70 400000 2.231 0.236

E 85.00 200000 1.611 0.118

F 140.00 600000 2.653 0.354
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Fig. 6. Displacement vs time diagram for integration (a) point A; (b) point B; (c) point C; (d) point D; (e) point E; and (f) point F

in Fig. 5.
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6. Numerical applications

To evaluate the accuracy of the proposed approach

in terms of dynamic stability of engineering structures,

the case of the simple beam shown in Fig. 3 should be

examined. The theoretical solution of this case is

known and can therefore be used for comparison.

Let us consider a HEB 200 beam with geometric

and mechanical characteristics as reported in Fig. 3.

We use a ®nite element discretization with 4 beam

elements without axial deformability [Fig. 3(b)]. If a

static component of the force equal to zero (Ps=0) is

considered, we can write:

P�t� � Pd cos yt ;

PT
cr1 �

p2EJ
l 2
� 847235N

Euler buckling load ;

PF
cr1 � 847795N

FEM buckling load ;

EPc
� � 0:65 10ÿ3

error ;

o1 � p2

l 2

������
EJ

m

r ���������������
1ÿ Ps

Pcr

r
� 52:762 sÿ1

fundamental frequency of vibration:

In Fig. 4(a) and 4(b) the principal regions of instabil-

ity, taking frames (y,Pd) and (y/O,m) as reference (with

O and m de®ned in Ref. [1]), are shown. The regions

are contained within the lines representing the pair of

values Pd and y, which characterize a force responsible

for beam vibration with period equal to 2 T(T = y/
2p).

The exact solution using a continuum model is also

shown. In Fig. 4(a) it can be noted that the FEM sol-

ution is very slightly shifted from the exact solution.

This e�ect can lead to an overestimation of buckling

load by the FEM solution. In the diagram of Fig. 4(b)

the FEM and exact solutions are nearly coincidental.

Re®nement of the discretization brings the FEM sol-

ution even closer to the exact solution, but in the

Fig. 7. Comparison between two di�erent approximations in

a (y,Pd) diagram.

Fig. 8. Comparison between two di�erent approximations in

a (y/O,m) diagram.

Fig. 9. The ®rst three regions of instability (corresponding to

the ®rst three modes of vibration) of the considered beam

with an 8 ®nite element discretization.
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example examined the use of 4 beam elements can be

considered quite good.

To verify the reliability of the procedure a direct in-

tegration using a Newmark' method was carried out.

The load cases examined are listed in Table 1 and are

represented in Fig. 5. The following parameters are

employed for direct integration:

b � 0; g � 1

2
; Dt � 5 10ÿ4 s:

Moreover, an initial displacement along the transverse

direction is imposed corresponding to the translation

degree of freedom equal to 3 cm (0.4% of the length).

The results are shown in Fig. 6(a±f). From Fig. 6(a)

parametric resonance (see Ref. [1]) can be noted, while

in Fig. 6(b) the increasing amplitude of motion expo-

nentially in time is clearly shown. The latter case dif-

fers from the former where the amplitude increases

more slowly. In Fig. 6(c) the boundary between stab-

ility and instability regions for a periodic solution with

2 T period can be observed, with

2T � 2
2p
y
� 0:125 s:

In this case, the amplitude of motion is evidently con-

stant. Then, in Fig. 6(d) the displacement function is
composed of the product of a periodic function with T
period and the di�erence of two harmonic functions

with very limited di�erent frequencies of vibration.
This discrepancy between the frequencies of vibration
involves a time variable phase di�erence between the

components of the motion, thus the oscillation ampli-
tudes add or subtract themselves and the resulting os-

Fig. 10. The principal region of instability of the beam of

Fig. 3 in the presence of dampingÐcomparison between the

theoretical and FEM solution in a (y,Pd) diagram.

Fig. 11. The principal region of instability of the beam of

Fig. 3 in the presence of dampingÐcomparison between the

theoretical and FEM solution in a (y/O,m) diagram.

Table 2

Integration points in Fig. 12

y (sÿ1) Pd (N) y/O m

A 100.00 200000 1.895 0.118

B 105.52 100000 2.000 5.902 10ÿ2

C 96.73 320000 1.833 0.189

D 105.52 200000 2.000 0.118

E 100.00 600000 1.895 0.354
Fig. 12. Location of direct integration points.
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Fig. 13. (a)±(e) Displacement vs time diagrams for integration points A±E in Fig. 12.
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cillation amplitude assumes values between the sum

and the di�erence between the corresponding ampli-

tudes (beat-frequency oscillation). In Fig. 6(e) and 6(f)

two cases of stability in which the displacement is lim-

ited are shown. It is possible to express it with a

``quasi-harmonic'' function, or by a product of a peri-

odic function and a harmonic function with a di�erent

period.

To obtain a better evaluation of the boundaries of

the principal regions of instability, it is possible to

improve the approximation of the calculation of

Eq. (29) imposing the 2nd order principal minor of the

considered matrix as equal to zero.

The two di�erent approximations are compared in

Figs. 7 and 8. It can be clearly seen that for rather

high values of Pd (up to 50±60% of the buckling load)

the reliability of the ®rst order approximation is good.

It is well known that the fundamental region of

instability corresponds to the fundamental mode of vi-

bration and is characterized by the lower frequency.

But in®nite regions of instability (although a ®nite

number may be detected by ®nite element formulation)

corresponding to the in®nite modes of vibration exist.

In Fig. 9 the ®rst three regions are shown with a dis-

cretization obtained using 8 elements.

If damping is accounted for in the calculations, gen-

erally the possibility of stability of the system increases

with some exceptions.

Taking the same beam as in Fig. 3 as reference, the

principal regions of instability are shown in Figs. 10

and 11 for this case. The damping coe�cient is taken

as

a � 5 sÿ1 and

D � pa

o
�������������
1ÿ Ps

Pcr

q � 0:298 ;

mc1 �
D
p
� 9:48 10ÿ2 excitation parameter ;

Pdc1 � 160731 N buckling excitation amplitude:

Also in the above cases, a discretization using 4 beam

elements only is capable of simulating the real beha-

viour of the beam satisfactorily. Indeed the di�erence

between the FEM and theoretical solutions can be con-

sidered practically negligible.

It is interesting to check the reliability of the stab-

ility diagrams found, using a direct integration tech-

nique in some selected points (see Table 2 and Fig. 12).

The results are as follows. In Fig. 13(a) and 13(b),

the damped stability cases are characterized by a dis-

placement function whose amplitude decreases expo-

nentially with time ®nally reaching a zero value. In

Fig. 13(c) the solution is periodic on the boundary

between stability and instability, as estimated from the

theory. In Fig. 13(d) and 13(e) instability situations, in

which the amplitude of the vibration increases expo-

nentially with time, are shown.

The instability regions examined (the fundamental

one and those corresponding to the super-harmonic

frequencies of vibration, i.e. to the vibration modes

di�erent from the fundamental) do not describe all

regions of instability, but only the most important and

greatest ones. There are also instability regions which

Fig. 14. The ®rst three regions of instability of the beam of

Fig. 3 corresponding to the lowest frequency of vibration in a

(y,Pd) diagram.

Fig. 15. The ®rst three regions of instability of the beam of

Fig. 3 corresponding to the lowest frequency of vibration in a

(y/O,m) diagram.
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correspond to the sub-harmonic frequencies of vibration

i.e. those which are lower (sub-multiple) than the princi-

pal frequencies of vibration. In Figs. 14 and 15 the ®rst

three regions of instability, corresponding to the lowest

frequency of vibration of the beam of Fig. 3, are shown.

As the order of the sub-harmonic frequencies of vi-

bration increases, the regions of instability become

smaller and smaller until the amplitude is practically

zero and hence it looses any practical signi®cance.

Besides, it must be considered that in the presence of

damping, these regions of instability may assume very

high buckling excitation values i.e. with very little

probability of being reached.

In Fig. 16(a) and (b) the ®rst two regions of instability

in the case of damping e�ects included with a = 5 sÿ1

are shown. The buckling excitation values are

mc1 � 9:48 10ÿ2

Pdc1 � 160731 N

�
mc2 � 0:308
Pdc2 � 521720 N

�
In Fig. 17(a)±(c) the results of some numerical inte-

grations at the points reported in Fig. 17 and Table 3

are shown. Previous results are again con®rmed.

Fig. 16. The ®rst two regions of instability of the beam of Fig. 3 in the presence of damping in (a) a (y,Pd) diagram; (b) a (y/O,m)
diagram.
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Another application of the ®nite element method in

dynamic stability problems is discussed, with reference

to a framed structure. This example is shown to

emphasize the usefulness of the method when a generic

structure must be analyzed and when the theoretical

solution is di�cult to ®nd or is unknown. The struc-

ture examined is a concrete frame with a horizontal

beam in®nitely rigid in bending. In Figs. 18(a) and (b)

the geometric and mechanical characteristics of the

structure and the adopted ®nite element discretization

are shown.

Table 3

Integration points, see Fig. 17

y (sÿ1) Pd (N) y/O m

A 50.00 500000 0.947 0.295

B 43.00 400000 0.815 0.236

C 33.00 600000 0.625 0.354

Fig. 18. (a) Geometric and mechanical characteristics of a

concrete structure. (b) Discretization of the structure.

Fig. 17. Location of direct integration points. (a)±(c)

Displacement vs time diagrams for integration points A±C in

Fig. 17.
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We have:

number of rods = 2 number of d.o.f with

mass = 1;
number of nodes per
rod = 5

number of restrained
d.o.f = 6;

number of loaded
rods = 2

number of rods in elastic
soil = 0;

number of d.o.f with

springs = 0

number of rods with axial

distributed load = 2;
concentrated
mass = 20,000 Kg;

axial distributed
load = 1000 N/m.

With the above ®nite element approach, it was poss-

ible to take into account the inertia forces represented

by the mass of the vertical rods and horizontal beam.

We were also able to consider the static gravitational

forces acting on the columns because of the e�ect of

selfweight and the structure mass (P = 200,000 N).

Dynamic forces such as P(t) = Ps+Pd cos yt in which

the static part is constant and exerted by the horizon-

tal beam (Ps=100,000 N) have been considered.

Taking into account some concrete strength character-

istics, the amplitude of the dynamic component of the

force to Pd=100,000 N was also limited. In Fig. 19(a)

and (b), the principal and the ®rst three regions of

instability, are shown.

It should be noted that in the case of not very slen-

der structures with signi®cant mass and very high

buckling load, as in the case of concrete structures, the

dynamic force becomes a parameter of minor in¯uence

in the motion equations. Thus, the amplitude of the

regions of instability is very small with respect to the

characteristic resonance frequencies of vibration.

A ®nal example of dynamic instability is shown. A

steel framed structure with the geometric and mechan-

ical characteristics described in Fig. 20 is analyzed. In

Fig. 21(a) and (b) the principal region of dynamic

instability and the ®rst three regions of instability are

shown. The regions are more open according to the

greater slenderness of the examined structure. In this

case, as in the one above, very little CPU time on a

PC was necessary to carry on the analysis.

Fig. 19. The principal region (a) and (b) the ®rst three regions

of instability of the structure of Fig. 18.

Fig. 20. Geometric and mechanical characteristics of a steel

structure.
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7. Conclusion

The numerical approach proposed here to study the
dynamic stability of beams and framed structures,

based on a ®nite element technique, was extremely re-
liable in ®nding solutions very close to the exact ones,
also when using rough discretizations.

There is a clear advantage in the ®nite element
method in dynamic stability analysis when analyzing

generic structures with any load and restraints for
which the theoretical solution may be very complex or
impossible to ®nd.

With the numerical procedure shown it was possible
to determine the principal regions of instability, the
regions referred to as the super-harmonic frequencies

of vibration and also the regions, less extended than
the previous, referred to as the sub-harmonic frequen-
cies of vibration.

Finally it was observed that the e�ects of shear de-
formation, rotatory inertia, distributed axial loads,
elastic soil, and damping were simply taken into
account in the model presented. In the examples dis-

cussed, modi®cations of the instability regions with
respect to changes in some of the above parameters
have been checked. Improvements and updating of the

model, such as viscosity of the beam and soil, can be
easily introduced in the formulation and implemented
in the software.

Acknowledgements

The authors gratefully acknowledge Mr Bortoluzzi

for his support during preparation of this paper.

References

[1] Bolotin VV. The Dynamic stability of elastic systems.

San Francisco: Holden Day, 1964.

[2] Lachlan Mc NW. Theory and application of mathieu

functions. New York: Oxford University Press, 1957.

[3] Majorana CE, Pellegrino C. Dynamic stability of elasti-

cally constrained beams: an exact approach. Engineering

Computations, 1997, 14: 792±805.

[4] Basar Y, Eller C, Kratzig WB. Finite element procedures

for parametric resonance phenomena of arbitrary elastic

shell structures. Computational Mechanics 1987;2:89±98.

[5] Shastry BP, Venkateswara Rao G. Dynamic stability of

bars considering shear deformation and rotatory inertia.

Computers and Structures 1984;19:823±7.

[6] Brown JE, Hutt JM, Salama AE. Finite element solution

to dynamic stability of bars. AIAA Journal 1968;6:1423±

5.

[7] Shastry BP, Venkateswara Rao G. Dynamic stability of

a short cantilever column subjected to distributed axial

loads. Computers and Structures 1986;22:1063±4.

Fig. 21. The principal region (a) and (b) the ®rst three regions

of instability of the structure of Fig. 20.

L. Briseghella et al. / Computers and Structures 69 (1998) 11±25 25


