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Abstract

In this paper a homogenised constitutive relation for the global behaviour of periodic composite structures is derived

in the case of elasto-plastic material components. In principle, the representative volume element could be a�ected by

any kind of non-linear material behaviour respecting the complementarity rule, therefore special emphasis is put on the

description of the generality of the algorithm. The method is currently restricted to small strains, plane problems and

monotonic proportional loading conditions. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Modern technical applications require more
and more the use of arti®cial heterogeneous ma-
terials which may be characterised by good me-
chanical properties (for example high sti�ness and
low weight) or may be designed to satisfy special
technological purposes [1]. Often these composite
materials are periodic, i.e. if a mechanical or geo-
metric property a (for example the constitutive
tensor) of a periodic body X (see Fig. 1) is taken
into consideration it is possible to write

if x 2 X and �x� Y� 2 X) a�x� Y� � a�x�:
�1�

In Eq. (1) Y is the (geometric) period of the
structure.

The characteristic size of the single cell of pe-
riodicity is assumed much smaller than the geo-
metrical dimensions of the structure: a classical
example of periodic structure is given by masonry

walls but many other modern applications utilise
periodic composite structures. To reduce the
enormous computational cost required by a ®nite
element discretization of such kind of structures,
some homogenisation techniques were introduced,
with acceptable results, to solve linear problems
[2±6]. Those methods are based on the possibility
of writing an asymptotic expansion of the me-
chanical quantities in two variables linked with
two di�erent length scales [7]: the macroscopic
scale (called X in Fig. 1), relative to the whole
structure, in which the dimensions of the hetero-
geneities are very small, and the microscopic scale
(called Y in Fig. 1), relative to the single cell of
periodicity, which is the scale of the heterogene-
ities.

The asymptotic expansions of the displacement,
strain and stress ®elds in the two scale variables,
are introduced in the governing equations. In this
way a set of independent di�erential problems can
be de®ned and each of them can be solved. The
solution of the original linear problem can be
found by superposing the solutions of the inde-
pendent problems. In the simplest case, when only
the ®rst order terms are retained, displacement,
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strain and stress distributions, in heterogeneous
media, can be treated as the sum of two contri-
butions: an averaged term function of X, regarding
the global structure, and a periodic ¯uctuating
contribution function of Y and with zero mean
value in the cell of periodicity, regarding the local
heterogeneity. In more advanced numerical appli-
cations the ®rst two or three terms of the expan-
sion are taken into account [8]. This approach,
based on the principle of superposition, is not
applicable in the case of non-linear problems.

This paper aims at de®ning a homogenised
constitutive relation for the global non-linear be-
haviour of periodic composite bodies. The pro-
posed method allows for the description of a large
class of di�erent constitutive behaviours, all those
which obey the complementarity rule.

The method is applicable with the following
restrictions:

plane situations;
monotonic proportional loading;
small strains;

but we believe that it can be extended to more
generic situations. The approach presented in this
paper is clearly di�erent from those presented in
literature [9±13].

2. Basic concepts

Local quantities are indicated with lower case
letters while global quantities are indicated with

capital letters. In particular: rij is the local (or
microscopic) stress tensor, eij the local (or micro-
scopic) strain tensor, Rij the global (or macro-
scopic) stress tensor, Eij the global (or
macroscopic) strain tensor.

The asymptotic analysis shows that global
stresses and global strains are equal to the mean
values of the corresponding local quantities [7]

Rij � 1

V

Z
V

rij dV ; �2a�

Eij � 1

V

Z
V

eij dV ; �2b�

where V is the volume of the cell of periodicity.
Eqs. (2a) and (2b) de®ne macroscopic stresses

and strains which are assumed to be linked by a
macroscopic constitutive law. Such a law can be
constructed starting from the constitutive relations
of the single components and the geometry of the
unit cell.

We assume that for each constituent of the
composite body the stress ®eld is constrained by
the usual relation

r�y� 2 P�y�; �3�
where P(y) is the set of stress states that the ma-
terial can admit in the six-dimensional space of
stresses (or in the three-dimensional space of
principal stresses). P(y) depends on the single
material and hence on the position y in the cell of
periodicity.

In many cases P(y) is de®ned by means of a
yield function f �y; r�
P�y� � frjf �y; r�6 0g �4�
In the case of metals P(y) assumes the von Mises
form

P�y� � r

������������
3

2
sijsij

r����� 6 r0�y�
( )

�5�

where sij denotes the deviatoric part of the stress
tensor and r0(y) the yield stress at point y.

Since microscopic stress states r must lie within
the set given in Eq. (3), it seems reasonable that all
physical macroscopic stress states R are contained
in a macroscopic (or e�ective) domain Peff whose

Fig. 1. Periodic structure (macroscopic reference (X1, X2)) and

single cell of periodicity (microscopic reference (Y1, Y2)) and

periodic boundary conditions.
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frontier is called macroscopic (or e�ective) extremal
yield surface [7]:

R 2 Peff : �6�
The constitutive behaviour of the composite ma-
terial presents an initial range in which there exists
a linear relation between global strains and global
stresses followed by a non-linear range. In any case
the global stresses have to be contained in the ef-
fective extremal yield surface. The object of this
paper is to ®nd an algorithm to describe the non-
linear range of the behaviour.

The constitutive relation between the global
stress R and the global strain E is determined
taking into account the geometry of the cell of
periodicity and the non-linearities due to the
elasto-plastic properties of the single constituents.
Moreover it is clear that the global behaviour of
the cell can present some kind of hardening even
if the single components are perfectly plastic be-
cause the unit cell is a statically undetermined
structure.

3. Method

3.1. Boundary conditions

The basic idea of the method presented in this
paper is to assume the unit cell as mechanical el-
ement which determines the global constitutive law
of the material. Therefore if the relation which
links R to E in the unit cell is known the global
constitutive behaviour of the composite material is
known and given by the relation R�R(E). If we
want to de®ne the constitutive behaviour of the
material in the case of monotonic proportional
loading we may decide to simulate a large number
of di�erent loading paths on the unit cell in such a
way that any loading case of the same class can be
approximated reasonably well by an interpolation
between some paths previously simulated. There
are several approximations involved: ®rst of all the
unit cell on which the di�erent cases are simulated
is constrained in a way which cannot represent all
the possible `in situ' conditions. There are three
classical boundary conditions applied to the RVE
in the composite material literature:

(1) uniform strains on oV :

ui � Eijyj; �7�
(2) uniform stresses on oV :

rijnj � Rijnj; �8�
(3) periodic boundary conditions on oV :

ui � Eijyj � u�i u�i periodic on oV ; �9�

rijnj anti-periodic on oV : �10�
In this last case the surface of the unit cell is de-
composed in two parts

oV � oV1 � oV2 �11�
and each point P1:�P1 2 oV1 has a correspond-
ing point P2:�P2 2 oV2 (see Fig. 1). Boundary
conditions (1) and (2) are justi®ed when the RVE
is large with respect to the heterogeneity size in
such a way that the ¯uctuations of the stress tensor
rij or of the displacement vector ui occur with a
wavelength small compared with the dimensions of
the RVE. This is not the case for periodic com-
posite materials, for which the boundary condi-
tions (3) are generally preferable [7]. However it is
apparent that these boundary conditions can ad-
equately represent the in situ con®guration only in
a region of the structure far from the real boun-
dary of the structure where arbitrary restraint
conditions are in general applied.

If we consider now two corresponding points
P1, P2 of the unit cell, Eq. (9) implies the following
relation between their total displacements:

ui�P2� ÿ ui�P1� � Eij�yj�P2� ÿ yj�P1��: �12�
Eq. (12) expresses a restraint condition which can
be easily imposed in a ®nite element code to take
into account the periodic boundary conditions.

3.2. Numerical experiments

Given a unit cell on which the periodic boun-
dary conditions (12) are imposed, the problem to
be solved is to ®nd the relation

R � R�E� �13�
which will be assumed as constitutive law of the
homogenised material. The unknown relation (13)
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is numerically obtained by solving a `large' number
of `local problems' given on the unit cell [14,15]

microscopic constitutive laws

div r � 0 micro-equilibrium

Eij � 1

V

Z
V

eij dV � �a0 � a1t�E0
ij given:

8>>>><>>>>: �14�

A global strain tensor E0
ij is imposed to the cell and

it is monotonically increased to generate a kine-
matic loading path: this means that, numerically, a
large number of equal kinematic steps is applied to
the unit cell. The homogenised stress tensor Rij is
then computed, by means of Eq. (2a) for each step
of the load history. The sequence of steps char-
acterised by a ®xed E0

ij , generates a sequence of
points in the stress space. Therefore we have one
point, in the stress space, for each load step. These
points are called interpolation points: here the be-
haviour of the homogenised material (and pre-
cisely the value of the homogenised strains Eij and
stresses Rij is known.

Repeating the procedure for several di�erent
given tensors E0

ij we know the behaviour of the
homogenised material in a discrete number of
points and for a discrete variety of load situations.

At this point we introduce a simplifying hy-
pothesis: we assume that all the interpolation
points, on di�erent loading paths, characterised by
the same number of steps, are on the same `plastic
surface', i.e. they are labelled by the same value of
an internal variable k. In this manner by con-
necting points relative to the corresponding steps
of di�erent loading paths it is possible to construct
a series of `plastic surfaces' generated by the nu-
merical experiments (see Fig. 2).

Remark 3.1. It is possible to show that in the case
of symmetric unit cells the periodic displacement
u� is zero on the corners of the cell. Therefore the
global strain tensor Eij can be imposed by apply-
ing, to the corners, the displacements ui �Eijyj

and, to the other points, of the borders the
periodic boundary conditions.

Remark 3.2. The de®nition of `plastic surfaces'
given in this paragraph might be misleading. These

surfaces are simply the geometrical locus of points
which are in some sense `equivalent' along di�erent
loading paths [14,15]. They do not limit a region of
the stress space in which the behaviour of the
material is linear: in fact, in the case of more
general loading conditions, starting from a point C
on the mth plastic surface along the nth loading
path and reversing the kinematic loading, the
material behaves linearly in an interval smaller
than the `diameter' of the mth plastic surface in the
direction of the nth loading path. In Fig. 3 we
show a generic load case: starting from an
unloaded cell (point A in the stress space) a
displacement which brings the cell to the ®rst
yielding (point B) and to a generic level of yielding

Fig. 2. Load paths and global yield surfaces.

Fig. 3. A generic load case ± isotropic and kinematic hardening.
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(point C) is applied, then a reverse load is applied
up to the point D where a new yielding occurs.

Starting from point D a number of load paths is
applied again to the cell so that a new surface is
built. It is apparent that the new elastic domain
has changed shape, size and position in the stress
space, therefore a very complex hardening mech-
anism can be inferred.

This indicates that there exists a kinematic
component of the global hardening which is ne-
glected by our method. The plastic surfaces pre-
viously described could be interpreted as e�ective
yield surfaces in the case of isotropic hardening
with no kinematic hardening, but this hypothesis
does not re¯ect the behaviour of the material, this
is also the reason why our method cannot be ap-
plied to more general loading conditions.

Remark 3.3. If the number of loading paths is
su�ciently large it is reasonable to assume that the
®nal point of the loading path lies in a position
very close to the extremal yield surface [7]. Since, if
the material components are characterised by an
associative ¯ow rule, it is possible to show that the
plastic strain increment is normal to the extremal
yield surface, the method presented in this paper
may also be used to ®nd such a surface. In fact it
gives position and orientation of the surface in a
discrete number of points. The method may fail in
the case of surfaces with corners because in such a
case the corner would attract a set of loading
paths, all those characterised by a strain increment
oriented along a direction internal to the cone of
the surface corner [16].

Remark 3.4. The associative plasticity of the
components implies the normality rule for the
extremal yield surface but, to the best of our
knowledge, it does not give any information on the
global elasto-plastic behaviour which precedes that
surface. Therefore the elasto-plastic algorithm
should not rely on any kind of normality but it
should be able to cope with both associative and
non-associative ¯ow rules. This is also true be-
cause the shape of any intermediate yield surface is
not known and therefore the de®nition of the ¯ow
rule has to be independent of it.

3.3. Elasto-plastic constitutive law

The behaviour of the material is linear up to the
most interior curve of Fig. 2, ¯ow rule and hard-
ening law have to be de®ned for the homogenised
material beyond it. Each point in the space R11±
R22±R12 in the elasto-plastic range, can be indi-
cated by the values of three variables: a value of k
and the values of the ratios E11/E22 and E11/E12. By
means of such values we de®ne a ¯ow rule and a
hardening law for the e�ective material. Since the
stress in the material components is limited also
the global stress has to be contained in a region of
the space R11±R22±R12. For the homogenised elas-
to-plastic material this consistency condition is as-
sumed as

R�x� 2 Seff�x�; �15�
where Seff is the e�ective elastic domain. As dis-
cussed in Remark 3.2, the size, shape and position
of Seff in the stress space continuously varies in an
unknown manner. In a way similar to the homo-
geneous case we assume that Seff is contained in a
yield surface

Seff�x� � fRjf �R�6R0�x�g �16�
R0(x) is the global yield stress. Once the function
f(R) has been de®ned, the yield stress R0(x) is
known at the interpolation points and its value, in
a generic point of the stress space, is obtained by
linear interpolation among the eight points in the
stress space at the corners of the region (patch)
where the current stress state lies (see Fig. 4). For
the sake of simplicity Fig. 4 and the following
Fig. 5 are drawn in the plane R11±R22 but the
procedure has been developed for the full plane
stress case and therefore a three-dimensional in-
terpolation is carried out. In principle it would
seem possible to compute a six-dimensional inter-
polation for a completely generic stress case.

The ¯ow rule is written in the usual form:

R :� ÿRtr � Ri � _k Dm � 0; _k P 0; �17�
where D is the elastic constitutive tensor obtained
with the elastic homogenisation [2,3], _k the incre-
ment of the plastic ¯ow, m the `¯ow direction', Rtr,
Ri the global stresses.
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It is clearly possible to evaluate the ¯ow di-
rection at each interpolation point in the follow-
ing way (see Fig. 4): starting from any
interpolation point at the level (i ) 1) one multi-
plies the ®xed strain increment DE by the elastic
e�ective tensor D, in this way the trial stress Rtr is
computed. Since there are some plastic deforma-
tions in some part of the unit cell, the strain DE

generates the new stress Ri. The ¯ow direction at
the interpolation point at the level (i ) 1) can be
computed as

_kDm � Rtr ÿ Ri

) m � 1

_k
Dÿ1�Rtr ÿ Ri� � 1

_k
�DEÿDÿ1Ri�: �18�

The value of _k has been arbitrarily chosen to be
0.1, hence the quantity m does not give only an

information about the ¯ow direction but also
about the entity of the plastic ¯ow.

Remark 3.5. For m the interpolated value is taken
and not the derivative of the consistency condi-
tion, so that, with this method, both associative
and non-associative plasticity can be indi�erently
taken into account. Once consistency condition
and ¯ow rule have been determined, the global
constitutive law is fully de®ned and can be
assumed as constitutive law of the homogenised
material.

3.4. Global solution

With the global constitutive law determined, a
global problem can be solved: given a macroscopic
structure composed of a large number of unit cells
and subjected to a given system of external loads F

and boundary conditions the relevant displace-
ments can be found solving the problem

macroscopic constitutive law

div R � F macro-equilibrium

global boundary conditions:

8><>: �19�

The unknown of the problem (19) is the global
displacement ®eld on which the global stresses R
depend.

3.5. Stress recovery

Finally the global solution is used to evaluate
the local distribution of micro-stresses by solving a
local problem (14) in which the imposed global
strains are the ones computed in the solution of the
problem (19): the macro-strains computed at the
Gauss points of the homogenised structure are
imposed to the unit cell and the micro-stresses are
obtained by the solution of the corresponding lo-
cal problem.

4. Validation

In this paragraph we carry out a computation
adopting the same discretization for both the
heterogeneous and the homogeneous case. In this

Fig. 4. Interpolation of the stresses and of the ¯ow direction.

Fig. 5. Geometrical data of the cell of periodicity.
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way we evaluate the error caused by all the ap-
proximations involved in the method. We apply
the procedure described in the preceding para-
graphs to the cell of periodicity of Fig. 5. The
quadrangular cell is composed of two di�erent
materials: a weak matrix and a strong inclusion.
The two materials are, in this case, isotropic and
elastic perfectly-plastic with von Mises associate
plasticity.

In Fig. 6(a±c) we show three numerical experi-
ments which corresponds to the following cases:

In Fig. 7 the load paths and the ®rst ®ve sur-
faces are represented in the plane R11,R22.

Fig. 8 shows a periodic structure with 15 cells.
The single cell is equal to that of Fig. 5. The ver-

tical displacements of the bottom edge and the
horizontal displacement of the bottom left corner
are restrained to zero. A constant distribution of

Geometric data:
L1� 20 mm, L2� 20 mm, dweak� 8 mm.
Mechanical characteristics
Inclusion (strong): Matrix (weak):
E� 2.1 ´ 105 MPa E� 2.1 ´ 104 MPa
v� 0.18 v� 0.18
rY � 220 MPa rY � 100 MPa

Case 1
(Fig. 6(a))

Case 2
(Fig. 6(b))

Case 3
(Fig. 6(c))

E11 ¹ 0 E11� 0 E12� 0
E22� 0 E22 ¹ 0 E22� 0
E12� 0 E12� 0 E12 ¹ 0

Fig. 6. (a) Numerical experiment with E11 ¹ 0, E22 � 0, E12� 0;

(b) Numerical experiment with E11� 0, E22 ¹ 0, E12� 0; (c)

Numerical experiment with E11� 0, E22� 0, E12 ¹ 0.

Fig. 7. Load paths and global yield surfaces.

Fig. 8. Geometry and boundary conditions of the periodic

structure.
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monotonically growing vertical displacements is
applied to the top edge. The problem is solved
using a discretization with 160 nodes and 135 el-
ements with the numerical constitutive law, de-
scribed in the previous sections, which takes into
account the non-linearities due to the elasto-plastic
behaviour of the single materials.

The sum of the vertical reactions at the bottom
edge is compared to that of an equivalent model
with a ®nite element discretization, with the same
number of nodes and elements, which describes the
real material distribution and the real mechanical
characteristics of the single components. The
comparison between the vertical reactions is
shown in Fig. 9 where we can note that the error
induced by the homogenisation procedure never
overcomes the value of 5%.

5. Numerical example

Fig. 10 shows a periodic structure with 48 cells.
The single cell is rectangular. It is described in
Fig. 11 and has the following characteristics.

The vertical displacements of the bottom edge and
the horizontal displacement of the bottom right
corner of the periodic structure are restrained to
zero. A linear distribution of vertical displace-
ments is applied to the top edge: the absolute value
of ratio between the left and the right displacement
is equal to 4. The problem is solved using a rough
discretization (63 nodes and 48 elements) with the
numerical constitutive law previously de®ned.

The vertical reactions at the bottom edge are
compared to those of an equivalent model with a
®nite element discretization which describes the
real material distribution and the real mechanical
characteristics of the single components. This

Geometric data:
l1� 30 mm, tsteel� 3 mm
l2� 21.3 mm, tepoxy� 0.9 mm
Mechanical characteristics:
Steel: Epoxy:
E� 2.1 ´ 105 MPa E� 2.1 ´ 104 MPa
v� 0.18 v� 0.18
rY � 220 MPa rY � 100 MPa

Fig. 9. Comparison between vertical reactions of homogeneous and heterogeneous model.
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discretization consists of 13,122 nodes and 9492
elements. In Fig. 12(a) and (b) we show the dis-
cretization of the heterogeneous and of the ho-
mogenised model. The comparison between the
vertical reactions in the two models is shown in
Fig. 13 (the reactions of the heterogeneous model
are integrated along the restrained boundary in
order to have quantities comparable with those
obtained with the homogeneous model).

6. Conclusions

A homogenised constitutive relation for peri-
odic composite media with non-linear material
components has been de®ned. The method is valid
for small strains and for plane problems with
monotonic proportional loading. Such a proce-
dure allows for considerable reduction of the
computational e�ort needed for ®nite element an-
alyses of real composite structures and it is appli-
cable both to associative and non-associative
plasticity. Moreover it does not assume any a
priori form of yield surface or hardening mecha-
nism but it closely follows the behaviour of the
material. The main drawbacks is the large number

Fig. 10. Geometry and boundary conditions of the periodic

structure.

Fig. 12. (a) Heterogeneous model; (b) Homogeneous model.Fig. 11. Geometrical data of the cell of periodicity.
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of numerical experiments required to obtain a
su�ciently dense grid of interpolation points and
the hypothesis of monotonic proportional loading
which restricts the possibility of application of the
proposed algorithm.
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