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SUMMARY

In the present paper, we analyse the computatlonal performance of the Lanczos method and a recent
optimization techmque for the calculation of the p (p < 40) leftmost eigenpairs of generalized symmetric
eigenproblems arlsmg from the finite element integration of elliptic PDEs. The accelerated conjugate
gradient method is used to minimize successive Rayleigh quotlents defined in-deflated subspaces of
decreasing size. The pointwise Lanczos scheme is employed in combination with both the Cholesky
factorization of the stiffness matrix and the preconditioned conjugate gradient method for evaluating the
recursive Lanczos vectors. The three algorithms are applied to five sample problems.-of varying size up to
almost 5000, The numerical results show that the Lanczos approach with Cholesky triangularization 1s
generally faster (up to a factor of 5) for small to moderately large matrices, while the optimization method is
superior for large problems in terms of both storage requirement and CPU time. In the large case, the
Lanczos—Cholesky scheme may be very expensive to run even on modern quite powerful computers.

L. INTRODUCTION

The Lanczos method'™> is attractmg much. attention for solvmg Iarge sparse generalued
eigenproblems that occur in structural mechanics or hydrodynamlcs

Av=2Bv W

The matrix pencil 4, B is symmetric and positive-definite with a high degree of sparsity; 4 is the
stiffness matrix, B is the capacity (or mass) matrix and )L, v indicates an eigenpair. The character-
istic values 4 are ordered sequentially so that Ay < AN (KA ,' N being the dimension of the
eigenproblem. : :

Recently, the accelerated Conjugate Gradient (CQG) method has aiso proved to be an-attractive
tool for the partial solution®~# of equation (1). Its latest version® is simple and interesting at the
same time in that it combines a sequential deflation procedure with the CG minimization of
several Rayleigh quotients defined in subspaces of decreasing size N —j,j=0,1, 2, ..., and,
unlike other commonly used techniques, does not require the assessment of any acceleration
parameter, which is usually difficult to estimate in engineering applications.

The objective of the present paper is to analyse and compare the numerical performance of the
pointwise Lanczos method and the Deflation- Accelerated Con]ugate Gradient (DACG) tech-
nique for the evaluation of the p (p < 40) leftmost eigenpairs of equation (1) in a number of
practical eigenproblems of increasing size N of up to almost 5000. The examples arise from the
Finite Element (FE) integration of a diffusion-type partial differential equation in 2-D or 3-D
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spaces, and are irregularly structured with a high degree of sparsity. The pointwise Lanczos
scheme, which may be viewed as a block Lanczos technique with unit block size, with partial
B-reorthogonalization has been selected since the block Lanczos version with small block size
(1, 2 or 3) is simpler and more convenient.!® For block generahzatzon versions, the reader is
referred to References 11-13. For the Lanczos spectral transformation which involves the
triangular factorization of several shifted matrices A — oB for various shift parameters o, see
Reference 14. | | | |

We have implemented the Lanczos approach in two different computer algorithms. One, called
LANCZOS]I, relies on the direct triangular factorization of the matrix A. Efficiency is improved
by a preliminary reordering of rows and columns of 4 meant to achieve a reduction of the fill-in of
the triangular factor L. The other, called LANCZOS2, constructs the Lanczos vectors using the
preconditioned CG method with the same preconditioning scheme as for the solution of large
sparse systems of linear equations.’®~2? The preconditioning matrix used in LANCZOS?2 is the
same as the one adopted in the DACG scheme. LANCZOS? should be particularly effective for
large problems where LANCZOS1 may become -inefficient, or even fail tc work because of
insufficient available core storage for the factorization of 4.

The comparison of the DACG and the two Lanczos techmques is made basmaily in terms of
CPU times required to converge with a prescribed accuracy level on a modern medium-size
mainframe such as the IBM 9370/30 computer available in our department. However, storage
requirements, when turning into a critical factor (large problems), will also be considered. The
number of smallest eigenpairs to be determined is 1, 5, 10, 20 and 40. The matrix pencil will be
taken with an 1rregu1ar (unstructured) pattern of non- zero coefficients. 1t will be shown that both
approaches have a range of advantageous applicability that depends on the size of the desired
partial eigenspace as well as the size of the eigenproblem to be solved.

An analysis of the convergence of the DACG and Lanczos procedures will also be performed.
Typically, Lanczos provides more accurate results than the DACG method. The final accuracy in
Lanczos is, however, beyond our control, and may indeed be higher than is prescribed in practical
applications. For problems with closely clustered eigenvalues, results show that the DACG
iteration may be conveniently stopped when a stationary mode shape has been approached with
a sufficient accuracy although it is not the theoretically leftmost one at the current search level.
This may imply the need for a local reordering of the eigenpairs at the end of the calculation. On
the other hand, a similar outcome exists for the Lanczos method where convergence for
eigenpairs does not ensure the completeness of the leftmost part of the eigenspectrum. We will
also indicate the increase in computational load per DACG iteration as the deflation level
increases and the cost for solving the tridiagonal eigenproblem in the Lanczos approach. Finally,
a set of concluding remarks emphasizing the most salient features and most convement range of
application of the DACG and Lanczos methods are mcluded : :

2 DACG AND LANCZOS METHODS

The DACG method, used in the | present Work is described by Gambolati et al.? whﬂe a theoret-
ical analys1s of its asymptotlc convergence prcpertles may be found in a recent contribution.?

A few remarks should be mentioned. First, the traditional CG procedure is accelerated by the
inexpensive preconditioner supphed by the mcomplete Cholesky factcnzatlcn of A 17:1% Second,
the Rayleigh quotients S

xTAx
x!Bx

R(x) =
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are minimized by the preconditioned CG in subspaces of decreasing size N — j,7=10, 1,2,
B-orthogonal to the j leftmost elgenvectors prev1ously found Thlrd convergence is controHed by
the relative res1dual o SETT : :

o 'r.-'.-;_-" '-lek .'—.'L'R'(xk)Bxu |

(2)

where x; is the kth 1terate approx1mat1ng the (N — j)th elgenvector at the current j deﬂatlon step
and || is the Euclidean norm. Fourth, convergence of the DACG algonthm toa smgle eigenpair
is usually non-monotonic and the initial non-asymptofxc behav10ur may. per51st for several
iterations. It may happen that the method 1mt1a11y converges toa statlonary ‘mode shape that is
not the smallest one at that specific deflation level. If at this point the test on the tolerance
prescribed for quantity (2) is satisfied, the iteration may complete without the asymptotic
behaviour being achieved. In this case, an eigenpair close to the leftmost one is found. The
probability to converge during the initial stage is very much related to the exit value TOL
prescribed for r;. By properly reducing TOL; we can always drive the DACG procedure to
terminate the iteration durmg the asymptotic stage, thuslocating the correct minimal stationary
point. Selection of a proper (not too small) TOL may, however, accelerate the overall calculation
and yield a significant savmg of CPU t1me although a ﬁnal reordermg of the elgenpazrs may
prove necessary in this case: S - :

Concerning the Lanczos method we use the: followmg recurswe equation to buﬂd the Lanczos
vector sequence q j- : - - - - - -

ﬁJ+1qJ+1_r —A_'quj-—ochj—ﬁjqj_l, j=1, 2,;.. . (3)
where o
f1=0

r, = arbitrary,

Q= .ro/{/m,f

o; —qJBA 1qu,,

ﬁj+1 =(lj+1Bl'j—— I'JTBI'}.
If the starting vector ry is B-orthogonal to s eigenvectors of (1), in exact arithmetic the sequence (3)
leads to q;+; = 0 with j = N — 5. The same result holds for: arbitrary ro if the matrix pencil 4,
B has only N — s distinct eigenvalues. If we find q;.4 = 0, the Lanczos process breaks down and
therefore it cannot be used in exact arithmetic to detect repeated eigenvalues. In practical
calculations, however, the effects of round-off ensure that no difficulties arise in correctly
determining eigenvalues that are equal in the first significant decimal digits. The same result
may hold for numerically multiple eigenvalues, if any, due- s1multaneously to round- off and
B- reorthogonahzatlon performed on vectors q; and described below: :
The most expenswe operatlon of the Lanczos process is the matrix- vector product

o o y=ATBe, o
One way (LANCZOSI) to perform thlS product is to factorlze A as A LLT L bemg lower
triangular and to compute y; as y; = (LLT) ' Bq;. Once we possess L, the product between

(LLT)~ ' and a vector is a relatively cheap operation (its actual cost depends on the fill-in of L). It
is known that factorization may produce a large amount of new non-zero. coefficients in L,
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especially for matrices with a large bandwidth and an irregular sparsity structure. Depending on
the size of the original eigenproblem, the fillin of L can be so pronounced as to make the
triangularization infeasible on the computer in use. Moreover, if the number of L-coefficients is
much larger than that of 4 (say one order of magnitude or more), the cost to perform (LL") ' Bq;
becomes significant, and hence it pays to plan a reduction of the fill-in of L by preliminary
reordering the rows and columns of A. This operation, termed Optimal Preliminary Reordering
(OPR), is actually accomplished in the LANCZOS1 procedure with a suitable routine taken from
the IBM LS Math Scientific Library.2* The OPR algorithm is mtended to reduce the fill-in of
L and to preserve the symmetry of the reordered matrix.

In view of the difficulty connected with the generation of mevxtably large tnangular factors
{(despite OPR), an alternative way (LANCZOS2) to perform product (4) is to solve the imea.r
system o

Ay -qu

by the CG method precondrtloned with the same precondltloner used in the DACG technlque
LANCZOS?2 allows for the in-core treatment and solution of very large eigenproblems without
any restriction on the bandwidth and pattern of the matrix pencil 4, B.

Another difficulty with the Lanczos method in actual computations is a progressive loss of
B-orthogonality of the currently generated vector g, with respect to earlier vectors due to
round-off errors and cancellations. To monitor the loss of B-orthogonality and remediate it, we
follow the approach suggested by Simon® and adopted by other authors as well.2> 28 When the
loss of B-orthogonality has occurred for vector ;4 against vector q; (i < j), i.e. when

q;+1B8q; > \ﬁ

where ¢ is the unit round-off error of the computer in use, q ;. ; is B-reorthogonalized against all
previous vectors and the same is done for q; ».

As is well known, with Lanczos coefficients o; and §,:5,j= 1,2, .. ., m, we form a symmetric
tridiagonal matrix 7, of dimension m. The eigenpair 4™ and 2™ of T,, is computed by available
standard routines and those of (1) are evaluated by the relationships

, 1 ' - o
AN—:‘+1=W:. vN—i+1=sz§m)a i=1,2,... (5)

Where Qm = [‘hs q23 R qm] .
It has been recognized by several .':m'chors26 29 that (5) converges to the extreme (smallest)

eigenpair of (1) already for values of m< N. In this respect, two observations are worth mention-
ing. First, as .m increases, r, becomes small for the eigenpairs correctly found with its final
magnitude essentially related to machine accuracy. Second, r, decreases with m in a much more
irregular manner than it does in the DACG procedure with the iteration number k. For some
higher eigenvectors, the test on the tolerance TOL may be prematurely satisfied in the subspace
Qm, and hence these eigenvectors may have an incorrect position within the Lanczos partial
eigenspectrum, where lower eigenpairs may still be missing. It should be stressed that with the
native Lanczos method it is difficult to control the magnitude of r, against m, as can be done in
a classical iterative scheme. Hence, depending on machine accuracy, as m increases, ., for some
elgenpairs, may become much smaller than is actually required. In the light of the above remarks,
and to make a meaningful comparison with the deflation-CG approach, any eigenpair satisfying
the acceptability criterion (i.e. a prescribed TOL) should be accepted even if the corresponding
Lanczos result is much more accurate. : -
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3. SAMPLE PROBLEMS AND NUMERICAL RESULTS

The problems used to experiment with the DACG and the Lanczos methods are typical
engineering problems with an irregular sparsity structure and arise from the FE integration of
2-D or 3-D diffusion-type PDEs. The pattern of the non-zero coefficients of the matrix pencil 4,
B is shown in Figures 1-5 for the various examples. The dimensions are N = 222, 441, 812, 1952
and 4560 with degrees of sparsity 969, 98-5, 992, 99-6 and 99-7 per cent respectively. The example
with N = 4560 1s related to a three-dimensional finite element problem with tetrahedral
elements.3°

The distributions of the 40 leftmost eigenvalues are shown in Figure 6. Note that for N = 222
and N = 1952, the characteristic values occur in well-separated small clusters, while in the other
examples the eigenspectrum is more uniform with its density increasing to the right. The lengths

Figure 1. Sparsity pattern for matrix pencil (4, B}, ,,: before (left) and after (right) OPR

. Figure 2. Sparsity pattern for matrix pencil (4, B),,, : before (left) and after (right) OPR - "
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Figure 4. Sparsity pattern for matrix pencil (4, B}, .5, before (ieft) and after (right) OPR

of the partial eigenintervals are quite different for the five sample problems: Ay_40/4y = 2409
(N = 222), 205-8 (N == 441), 206364 (N = 812), 40-1 (N = 1952) and 14.8 (N = 4560). The iarge
(partial) condition number occurring for N = 812 is a probable mdlcatzon that matrix Agy, is
ill-condittoned, as will be discussed in Section 3.4, :

3.1 DACG results

We start by giving some results concerning the DACG convergence. Table 1 provides the
number of iterations at each deflation step needed to meet the exit criteria TOL = 6 x 1073 and
TOL = 1073 (columns a and b, respectively) up to the 40th leftmost eigenpair. Note that meeting
the more restrictive criterion requires a much larger number of CG iterations. One reason for this
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Figure 5. Sparsity paftern for matrix pencil (4, B}, ;.,: before (left) and after (right} OPR
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Figare 6. Distribution of the 40 leftfnost eigenﬁalues for the samplé matrices

behaviour may be the fact that, in the latter case, the DACG scheme achieves the asymptotic
convergence (thus locating the theoretically correct minimal eigenpair), while with the less severe
tolerance the iteration is sometimes completed at a characteristic value that is not the optimal-
one, although very close to it. If, for our practical purposes, a not too strict acceptability test may
be employed, the aforementioned behaviour can lead to a significant saving of the overall CPU
time. This is indeed the case for TOL = 6 x 10~ 3 in the examples with N = 222 and N = 1952 as
is also revealed by Table I1, which yields the deflation levels at which the DACG procedure has
converged to a higher eigenpair than the minimal one. Note that for TOL = 10~ 3 instead, almost
all the eigenpairs are evaluated in the correct progressive sequence. Also note (Figure 6) that these
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Table 1. Number of iterations k required by the DACG scheme to meet two acceptability criteria
(TOL = 6x 107>, 2 or TOL = 1073, b) in the evaluation of the 40 leftmost eigenpairs for the various sample
problems. Initial vectors are the same as used by Sartoretto et al.’ '

N
222 441 812 1952 4560

j a° b a b a b a - b a b

i 12 14 21 21 49 55 39 57 24 30
2 11 13 34 42 23 31 39 47 24 36
3 12 14 6 19 25 30 45 54 17 25
4 28 33 25 30 17 22 49 70 15 24 .
5 8 49 21 24 16 21 72 90 17 26
6 7 10 13 77 15 19 28 36 23 27
7 11 16 33 32 15 20 22 36 39 81
8 22 27 25 29 14 20 27 45 20 26
9 13 23 - 29 37 13 18 34 46 24 34
10 i8 22 35 45 12 16 42 58 39 44
11 13 14 51 63 11 £5 118 192 20 41
12 20 . 22 9 19 9 18 30 45 19 25
13 63 103 24 28 23 33 90 106 116 188
14 79 226 35 49 15 167 26 29 16 36
15 71 98 99 161 122 57 19 30 23 29
16 75 129 23 31 42 150 16 26 18 33
17 13 15 - 3t 40 83 34 25 35 25 31
18 10 14 32 46 64 110 31 49 83 103
19 25 25 28 330 47 23 69 83 51 79
20 12 27 66 44 40 76 59 80 40 59
21 30 35 31 41 33 20 65 83 50 64
22 14 22 33 63 99 293 21 31 43 52
23 22 21 34 41 24 26 35 49 . 31 39
24 16 17 39 53 16 20 42 60 - 30 35
25 23 24 97. . 9% 14 20 59 84 44 49
26 70 93 87 170 29 39 136 205 125 142
27 12 122 12 25 72 50 23 32 . 45 68
28 68 218 108 158 136 500 66 200 23 43
29 10 14 24 32 108 . 41 i3 21 45 71
30 9 19 - 61 71 .23 117 21 27 71 115
31 10 15 105 199 111 92 67 101 39 109
32 16 25 17 23 36 66 85 147 87 127
33 30 21 25 237 47 118 31 45 25 37
34 28 33 37 43 70 41 81 141 83 149
35 20 21 41 57 44 78 151 249 39 53
36 - 17 25 -5 - 95 115 63 112 15t 45 67
37 13 15 - 32 . 154 86 i1 21 153 27 39
38 20 23 - 34 48 20 25 - 31 29 49 489
9. 67 95 3% . 58 34 37 . 58 75 .89 77
40 50 149 26 42 111 28 95 135 25 103
T 1068 1901 1588 2873 1883 2720 2093 3232 1668 2905

Total time (s) 171 . 204 489 877 1537 2137 2953 4562 7831 13584
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Table 1. Deflation levels at which the DACG scheme converges to the
theoretically smallest cigenpair of another level (shown in parentheses)

N .. TOL TR Deﬂation levels.'--'

222 6x1077 5(6)- _6(5); 14(15)-15(14); 18(19)- 19(18
| 26(28)-27(26)-28(29)-29(31)-30(27)- 3160)
1073 29(30)-30(29)

441 . 6x107%  19(20-20(19)
' 1073 Correct sequence
812 6x1073 ‘Correct sequenee
L . 107*  Correct sequence _' o
1952 6x10-7  4(5)-5(d) 14(15)_15(14), 16(17)-17(16)

27(28)-28(27); 37(38)-38(37)
1073 _ 14(15)—15(14) 2?(28)—28 27)

4560 6x10°3  38(39)-39(38)
1073 Correct sequence

Table III. CPU times (s) per CG iteration vs. the
eigenpair level j required by the DACG scheme for the
vario_us sample problems

.
i 22 44l 812 1952 4560
1~ 010 019 - 034 087. 33
5 013 0 023 044 10 37
0 - 014 024 - 058 11 41
0 . 016 031 073 14 . 45
0 02 043 11 18 62

two problems practlcally (at elght significant deamal digits) have muitlple eigenvalues. It should
be mentioned that the number of CG iterations, which is highly variable from one mode shape to
the next (Table I), is controlled by the initial as well as the asymptotic convergence As was
emphasized earlier, the initial convergence to a higher eigenpair may lead to the termination of
the DACG process. On the other hand, asymptotic convergence is controlled by the spectral
condition number of the Hessian of the preconditioned Rayleigh quotients, and is a function of the
relative separation between the theoretically smallest eigenvalue and the subsequent one.”* As
can be inferred from Figure 6, relative separation, (Ay-; — Ax=;+1)/An—, behaves quite irregu-
larly with j and so does the asymptotic rate of convergence.

It is worth observing that convergence is not the exclusive guide for assessing the computa-
tional efficiency of the DACG procedure since the cost per iteration grows with the deflation level,
as is shown in Table III. This is due to the increasing expenditure for preserving B-orthogonaliz-
ation between the current eigenvector and the earlier ones. Roughly, the cost per iteration
doubles after 40 deflation steps (Table I1I). The only exception is the N = 812 problem where the
cost increases by a factor 3. In this case additional operations for B-orthogonality had to be
performed because of ill-conditioning of 4.
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3.2. Lanczos results

Now let us cons1der the Lanczos method which is Implemented in the LANCZOS1 and
LANCZOS2 algorithms. The CPU times needed in LANCZOS! to reorder and triangularize
matrices 4 are supplied in Table IV, which also gives the number of non-zero coeflicients of the
lower part of A (including the main diagonal) and that of L with and without OPR. Inspection of
Table IV reveals the following: {1) OPR is usually guite effective in reducing the fill-in of L, and
hence the cost of the matrix-vector product (LLT)™! Bq ;; (2) the extra cost to reorder and
factorize 4 is low compared to the cost of the compléte Lanczos process (see Table IX), except in
the case of the large example (N = 4560) for which the construction of L is expensive. This is in
agreement with the three-dimensional nature of the N = 4560 problem. The average number of
CG iterations required in LANCZOSZ to perform the product between A~ and Bq; is provided-
in Table V. -

When using the Lanczos technique, F fe_w_ considerations must be kept in mind. First, the
Lanczos approach is not iterative in the classical sense. Second, convergence to the leftmost
eigenpairs may occur in a very irregular manner, Third, the magnitude of r, foreach eigenpair is
actually beyond our control and may become much smaller than is practically required {e.g. much
smaller than 1073),

Figure 7 shows the convergence of the first 6 or 7 eigenpairs for the Lanczos method vs. the
number of Lanczos vectors m, for the problem with N = 222 (Figure 7(a)), 1952 (F1gure 7(b}) and
4560 (Figure 7(c)). In all the examples the initial vector q, is set equal to A7[1,...,1]7 and
is B-normalized. Figures 7(a) and 7(b) reveal that r, may display non-monotonic convergence
and, more importantly, that the number m, of eigenpairs that satisfy the prescribed tolerance

Table IV. CPU . times (s} required- to perform the optimel preliminary reordering
{OPR) and the triangular factorization (TF) of the reordered matrix A. The number of
non-zero coefficients of A and L is also given

CPU times (s) N Number of eoeﬂicients
N OPR -~ TF  Lower part of A L (without OPR) L (with OPR)
22 075 065 872 2994 2849
41 - 17 . 24 1681 . 9246 .. ..5628
812 .. 46 33 - 3135 . 27988 .. 12087 .. .
1952 263 154 744 75234 38984

4560~ 32983 22229 34295 1860646 834529

Table V. Average number of preconditioned
CG iterations required to perform the product
A7 By; of equations (3) and (4)

N Ttenatoms
222 R A5 L
441. - . S

- 1952 S 90
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Figure 7. Relative residuals vs. Lanczos subspace dimension in the computation of the leftmost eigenpairs by the Lanczos
method for three sample problems . Lo

for a given size m of the Lanczos subspace are not necessarily the m; -smallest eigenpairs of
equation (1). As may be seen from Figure 7(a), vy_s and vy ;¢ are determined before vy 1, Yy —»,
vy_s and vy_4, while vy _ is determined before vy_,. Hence, we may experience some difficulties
in recognizing whether the eigenpairs that satisfy the test are actually the leftmost ones. Also note
in Figure 7(a) and 7(b) that an eigenpair determined with good accuracy is not. necessarily stable,
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and the same eigenpair may be affected by a much larger error in a higher subspace Q,, (in Figure
7(a), r{vy-1)is 3x 10”2 at m = 15and 2 x 10~ % at m = 18). A majot practical consequence of the
previous result is that there may be the need for repeating the Lanczos eigenvalue calculation for
increasingly higher values of m for as long as r, and the leftmost part of the estimated eigenspec-
trum have stabilized with no additions of intermediate eigenpairs. This may require, for the
Lanczos method, an extra cost, which is problem-dependent and is not considered in the
comparison of the CPU times shown later. Figure 7 emphasizes the high accuracy attained by the
Lanczos method, which is actually comparable to that of a dlrect techmque and may be higher
than is required in practical applications.

Let us denote by m, the number of eigenpairs that satlsfy the acceptability test, and by m,
(m; < my) the number of eigenpairs that overlap without discontinuity the leftmost part of the
eigenspectrum of (1). Experience shows that m, can be significantly smaller than m; (and indeed is
inthe N = 222 and N = 1952 sample problems). As a rule of thumb, we can say that to assess the
40 leftmost eigenpairs twice as many Lanczos vectors are required. In other words, 2m, Lanczos
vectors should suffice for the calculation of the my smallest exgenpalrs We may need more,
however, if m, is less than 20.

3.3 Lanczos with partial B-orthogonalization -

Partial B-orthogonalization in the Lanczos process is effective for all our problems, except in
LANCZOS2 for the N = 812 example, and leads to a saving in CPU time of up to almost 50 and
15 per cent in LANCZOS1 and LANCZOS2, respectively, compared to the full B-reorthogonal-
ization. B-reorthogonalization occurs every three to six Lanczos steps, depending on the
problem, with the ¢ value set equal to

¢ = |q] Bq,| | (6)

where, following a suggestion by van Kats and van der Vorst,*! q, is always B-reorthogonalized
against q,. Table VI gives the £ values obtained from (6} on our IBM computer in double-
precision arithmetic with and without B-reorthogonalization of q,. Note that in the latter case
the values of |qi Bq,| usually grow, in particular for the N = 4560 example. The loss of
B-orthogonality tends to propagate quickly from the very beginning of the Lanczos process as is
emphasized in Table VII, which gives lal BqJ| j= 2 3 , in the absence of B-reorthogonaliz-
ation (N = 222)

3.4. Comparisén of DACG and Lanczos ﬁiéthﬁds |

Finally, let us compare the CPU times required by the DACG, LANCZOS! and LANCZO0S?2
methods to meet the acceptability criterion (TOL = 6x107%). A few considerations should be

Table VI. Values of |q} Bg;| with (a) and without (b) B-reorthogonalization of q, against
q; in double-precision arithmetic on the IBM machine 9370/30

N

¢'Bg, = 222 44 812 1952 . . 4560

A 021x107'6  _030x10°15  —012x1071*  004x107'5 - 0-14x 10722
b 015x107'* 0-58 x 10713 077x 10715 - 029x1071%  —043x107°
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Table VII. Loss of B-orthogonality in the Lan-

czos method without B-orthogonalization in

double-precision arithmetic on the IBM
9370/30 computer (problem with N = 222)

J (1'5 By;

015 x 10714
011 x10~ %3
0S8 x 10~ 12-
0-88 x 10~ 1¢
040 x 1077
0-10 x 103
011 x1073 -
047 x 1071
062 x 1Q°

foae Rt s R B SR I - L VR o

—

Table VIII. CPU times (s) vs. dimension m of

matnx 7T, required to execute the routine

IMTQL?2 in double-precision arithmetic on the
IBM computer 9370/30

m : Time (s) |
5 001

10 : 003

20 017

40 1-2

80 - 180

mentioned first. For the sample problem with N = 812, partial B-reorthogonalization fails to
work in the LANCZOS2 algorithm for m > 40 (i.e. it is effective only up to m = 40) and full
B-reorthogonalization proves necessary to calculate correctly 40 eigenpairs. A similar difficulty is
experienced with the DACG method as well, where we obtain good estimates up to the 20th
smallest eigenpair, the subsequent ones being increasingly incorrect. To preserve the prescribed
accuracy up to the end of the calculation, not only the search directions p; but also the current
iterate X, (see Reference 8) have to be B-orthogonalized against previous eigenvectors with an
extra cost for the DACG procedure. 1t is likely that the anomalous behaviour of the DACG and
LANCZOS2 algorithms in the N = 812 example is accounted for by the relative ill-conditioning
of 4 (in fact, the spectral condition number £ of 4 is & (Agy,) = 4 x 107 while 10° < £ (4) < 10° for
the remaining problems). :

The CPU times, which will be shown below, are to be Vlewed primarily as an indication of the
basic computational cost requlrc_d by each algorithm on a scalar machine. No programming
attempt has been made to optimize the corresponding codes. The times are comprehensive of the
input-output time, time for the eigensolution of the tridiagonal matrix 7, by the routine
IMTQL?2 from the Argonne National Laboratory (in the LANCZOS1 and LANCZOS2 codes)
and the time for reordering and factorizing matrix 4 (in the LANCZOSI1 code). The time to
execute IMTQL2 against m (Table VIII) is a small fraction of the overall time required by the
Lanczos method.
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- The LANCZOS1 code could not be run on our IBM 9370/30 computer for the N = 4560
problem since the number of L non-zero elements exceéeded the available core memory (16 MB).
This example had to be run on the IBM RISC/6000 and the corresponding time was scaled up by
one order of magnitude (actually by a factor 12) to make it consistent with the other IBM 9370/30
times. Even with the much larger core provision offered by the RISC/6000 (32 MB), only the
version of LANCZOS1 with OPR could be kept in memory for the N = 4560 sample test.

Table IX shows the CPU times required to compute 1, 5,10, 20 and 40 leftmost eigenpairs of (1)
with TOL = 6 x 10~ by the DACG, LANCZOS1 and LANCZOS2 methods. Careful inspection
of this table points out that no algorithm is definitely superior to the others. With the significant
exception of the large example, LANCZOS] is bétter and sometimes much better than DACG
(up to a factor 5 for the N = 222, 441 and 1952 cases and a factor 10 for N = 812 problem..
However, we should not forget that in the N = 812 case DACG has to perform extra operations).
Observe that, if only the smallest eigenpair" or very few ones, are needed, DACG is superior to
LANCZOSI1. The latter is generally less: expensive than LANCZOS2, except for the N = 4560
example, in which case DACG is faster than both LANCZOS1 and. LANCZOS2.

It may therefore be concluded that LANCZOS]I is the most efﬁCIent method in the calculation
of the p (1 < p < 40) leftmost elgenpans for small-to-medium- suze problems whenever the tri-
angular factorization does not generate a too large L-factor and can be done in core. For large
matrices the DACG procedure exhibits attractive advantages as it is. both faster and less
demanding than LANCZOSI and LANCZOS2 in terms of computer storage. LANCZOS2 may
also be superior to LANCZOS] for large probIems Finally, the DACG method is also to be
recommended when only the minimal or very.few eigenpairs are sought ' :

4. CONCLUSIONS

The deflation- accelerated CG and the pomtw1se Lanczos methods have been trled for the
computation of the 40 leftmost cigenpairs of generahzed sparse symmetrlc eigenproblems. For
a not too severe relative residual tolerance (TOL = 5x 1073), the DACG procedure may
converge quite fast. Asymptotic convergence is influgnced by the relative separation between
adjacent eigenvalues and may behave quite zrregularly with the deflation level. The iteration may
be completed, however, during the initial convergence phase, thus Iocatmg a shape mode, which is
not the minimal one at the current deflation step. Hence a ﬁnal reordermg of the elgenpaxrs may
be required at the end of the DACG process. . = S o :

The Lanczos method with partial B-reorthogonahzauon requlres a subspace of m Lanczos
vectors, which is roughly twice the number of wanted eigenpairs (for m = 40), at least in the
sample tests analysed in the present paper. If some eigenvalues are very close to each other (i.e.
they are multiple up to several significant decimal digits), the eigenpairs satisfying the acceptabil-
ity test for a given Lanczos vector subspace are not necessarily the leftmost-ones and the Lanczos
calculation is to be continued for increasing m until the smallest part of the elgenspectrum has
stabilized, with no new addition of intermediate characteristic values. S

The DACG and the LANCZOS2 schemes ‘proved the least demandmg in terms of storage
requirement and appear to be well su1ted to treat large and very large elgenproblems espec1a11y
those with an irregular sparsity structure. However, if sufficient computer storage is available, the
LANCZOS1 algonthm which performs the in-core factorization- of the stiffness matrix A4, is the
least expensive in terms of CPU times up to a factor 5 with respect to the DACG approach. For
large matrices, however, the last method is significantly superior to. both-LANCZOS! and
LANCZOS2, as is also for the computation of only the smallést eigenpair (or very few ones). In
summary, LANCZOS1 is recommended for small- to-medzum—sme eigenproblems, whxle DACG
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(and subordinately LANCZOS2) should be used in connection with very large matrices. Finally,
if a high accuracy is required (TOL < 1077), the Lanczos approach {either LANCZOS! or
LANCZOS?2 version) should always be used. - ' -
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