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Abstract. Picard iteration is a widely used procedure for solving the nonlinear 
equation governing flow in variably saturated porous media. The method is simple to 
code and computationally cheap, but has been known to fail or converge slowly. The 
Newton method is more complex and expensive (on a per-iteration basis) than Picard, 
and as such has not received very much attention. Its robustness and higher rate of 
convergence, however, make it an attractive alternative to the Picard method, 
particularly for strongly nonlinear problems. In this paper the Picard and Newton 
schemes are implemented and compared in one-, two-, and three-dimensional finite 
element simulations involving both steady state and transient flow. The eight test cases 
presented highlight different aspects of the performance of the two iterative methods 
and the different factors that can affect their convergence and efficiency, including 
problem size, spatial and temporal discretization, initial solution estimates, 
convergence error norm, mass lureping, time weighting, conductivity and moisture 
content characteristics, boundary conditions, seepage faces, and the extent of fully 
satarated zones in the soft. Previous strategies for enhancing the performance of the 
heard and Newton schemes are revisited, and new ones are suggested. The strategies 
include chord slope approximations for the derivatives of the characteristic equations, 
relaxing convergence requirements along seepage faces, dynamic time step control, 
nonlinear relaxation, and a mixed Picard-Newton approach. The tests show that the 
Picard or relaxed Picard schemes are often adequate for solving Richards' equation, 
but that in cases where these fail to converge or converge slowly, the Newton method 
should be used. The mixed Picard-Newton approach can effectively overcome the 
Newton scheme's sensitivity to initial solution estimates, while comparatively poor 
performance is reported for the various chord slope approximations. Finally, given the 
reliability and efficiency of current conjugate gradient-like methods for solving linear 
nonsymmetric systems, the only real drawback of using Newton rather than Picard 
iteration is the algebraic complexity and computational cost of assembling the 
derivative terms of the JacobJan matrix, and it is suggested that both methods can be 
effectively implemented and used in numerical models of Richards' equation. 

1. Introduction 

The governing equation for flow in partially saturated 
porous media, Richards' equation, contains nonlinearities 
arising from pressure head dependencies in soil moisture and 
hydraulic conductivity. For stability reasons an implicit time 
discretization, requiring evaluation of the nonlinear coeffi- 
cients at the current time level, is normally used to solve the 
equation numerically. To linearize the resulting discrete 
system of equations, Newton or Picard iteration is com- 
monly used, with the Picard scheme being the more popular 
of the two [Frind and Verge, 1978; Hills et al., 1989; 
Huyakorn et al., 1986; Kuiper, 1987; Neuman, 1973; Ross, 
1990; Stauffer, 1982]. The Picard method, also known as 
successive'approximation or "simple" iteration, enjoys 
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great popularity because it is the most intuitive linearization 
of Richards' equation, is computationally inexpensive on a 
per-iteration basis, and preserves symmetry of the discrete 
system of equations. However, the method may diverge 
under certain conditions, as has been observed empirically 
[e.g., Huyakorn et al., 1984; Celia et al., 1990] and verified 
theoretically [Aldama and Paniconi, 1992]. The Newton 
scheme, also known as Newton-Raphson iteration, yields 
nonsymmetric system matrices and is more complex and 
expensive than Picard linearization, though it achieves a 
higher rate of convergence and can be more robust than 
Picard for certain types of problems. Use of the Newton 
scheme has been limited to one- and two-dimensional unsat- 

urated flow models [Brutsaert, !971; Cooley, 1983; Faust, 
1985; Huyakorn et al., !984]. A detailed comparison of the 
Picard and Newton methods has been conducted for the 

transient one-dimensional Richards equation [Paniconi et 
al., 1991], where it was shown that, in terms of CPU needed 
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to attain a given level of solution accuracy, Newton iteration 
can be as or more efficient than Picard. 

In this paper the previous evaluation of the Picard and 
Newton methods for the transient one-dimensional case is 
extended to steady state and transient simulations of one-, 
two-, and three-dimensional subsurface flow processes. 
Two- and three-dimensional simulations give rise to larger 
problems (of size O(N 2) or O(N 3) where N represents the 
number of unknowns across one dimension) and more com- 
plex dynamics (free surfaces, variable flow paths) and 
boundary conditions (seepage faces, multiple sources and 
sinks, spatially variable rainfall and evaporation inputs). 
These factors, along with the nature of the moisture content- 
pressure head and hydraulic conductivity-pressure head 
relationships, will have important effects on the performance 
of iterative schemes. Multidimensional simulations also in- 
troduce considerations which are negligible in the one- 
dimensional case, such as the efficiency of linear solvers for 
large, sparse, symmetric and nonsymmetric systems. In 
steady state simulations the corrective mechanism of dy- 
namic time step adjustment is lost, which in the transient 
case can be used to improve an initial solution estimate, via 
a reduction in time step size, whenever convergence of a 
nonlinear iterative scheme is too slow or fails. 

Several techniques have been proposed to enhance the 
performance of the Picard and Newton methods for cases 
where convergence troubles are encountered. These tech- 
niques, which include relaxation and chord slope differenti- 
ation, are implemented, along with a new mixed approach 
involving the use of Picard iteration to improve the initial 
solution estimate for the Newton scheme. The Newton and 
Picard schemes are compared under a variety of conditions 
via finite element simulation of eight test problems. The test 
problems illustrate the circumstances under which the two 
iterative schemes can be expected to perform poorly, and 
the results suggest avenues for more detailed analysis and 
for investigation of other approaches to solving the nonlinear 
flow equation. 

2. Numerical Procedures 

2.1. Governing Equation and Finite Element Models 

The partial differential equation describing fluid flow in 
partially saturated porous media, Richards' equation, is 
obtained by combining Darcy's law with the continuity 
equation [Philip, 1969]. Expressing this equation with pres- 
sure head ½ as the dependent variable, t as time, and z as the 
vertical coordinate (positive upward) yields 

•= V. (KsKr(O)V(½ + z)) (1) v(½) or 

where r/(½) is the general storage term or overall storage 
coefficient and the hydraulic conductivity tensor is ex- 
pressed as a product of the conductivity at saturation, K,, 
and the relative conductivity, Kr(•). Equation (1) is highly 
nonlinear due to pressure head dependencies in the storage 
and conductivity terms. 

To solve (1) numerically, a finite element Galerkin discret- 
ization in space with linear basis functions is used. Triangu- 
lar elements are used in the two-dimensional code, and 
either tetrahedral or hexahedral elements in three dimen- 
sions. With tetrahedra the nonlinear coefficients in the 

system integrals are evaluated at the element centroids, 
whereas with hexahedral elements order 2 Gaussian quadra- 
ture is used to evaluate the integrals. A X-weighted finite 
difference scheme is used for time discretization (A = 0.5, 
Crank-Nicolson; A = 1, backward Euler). Details of the 
numerical procedures can be found in standard texts [e.g., 
Ames, 1977; Huyakorn and Pinder, 1983]. Discretization 
yields the system of nonlinear equations 

f(•k+l) ___ A(•k+X)•k+X + F(•k+x) xlr•:+• -- 
At k+• 

+ b(• •:+x) - q(t •+x) = 0 (2) 

where xpk+x = •,•i/k+l _1_ (1 - A)•, xp is the vector of 
nodal pressure heads, superscript k denotes time step, A is 
the stiffness matrix, F is the storage or mass matrix, b 
contains the gravitational gradient component of (1), and q 
contains the specified Darcy flux boundary conditions. 

The numerical models have the option of using either 
distributed or lumped mass matrices. The models can handle 
a variety of boundary conditions, including atmospheric 
inputs, seepage faces, and source/sink terms such as pump- 
ing wells. The handling of atmospheric (rainfall and evapo- 
ration) inputs is described by Paniconi and Wood [1993], 
while seepage faces are treated by a variant of the method 
described by Cooley [1983] and Huyakorn et al. [1986], 
where we have introduced two options controlled by the 
zero-one flags sfl and Sfcvg. If sf• = 0, updating of the 
seepage face exit point is performed by checking all nodes on 
a seepage face, while if sfl = 1, only the nodes directly 
above and below the exit point are checked. If Sfcvg = O, 
convergence of the exit point is not a condition for conver- 

gence of the nonlinear iterative scheme, while if Sfcvg = 1, 
the exit point must converge in order to obtain overall 
solution convergence. Thus sfl and Sfcvg allow us to relax 
the convergence requirements along seepage faces, with 
sfi = 0, Sfcvg = 1 being the most stringent of the four 
possible combinations. 

2.2. Linearization Techniques 

2.2.1. Newton and Picard iteration. Applied to (2), the 
Newton scheme can be written as 

f, (• k + 1,(m)) h = -f(• • + 1 ,(m)) (3) 

where h m •k'+•,(m+•) _ •+ 1,(m), superscript (m) is an 
iteration index, and 

I OAis 

$ 

1 OFis 
(4) 

is the ijth component of the Jacobian matrix f' (gk+ 2). 
The Picard scheme may be written as 

AA(9k+x'(m)) + •-•'•'y F(xI/k+x'(m)) h = -f(•I r•+•'(m}) 
(5) 
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Comparing (3) and (5), it is apparent that the Picard scheme 
can be viewed as an approximate Newton method. It can be 
shown that under suitable conditions the Newton scheme is 
quadratically convergent [Stoer and Bulirsch, 1980], while 
Picard converges only linearly. Another important difference 
between the two schemes is that Newton linearization gen- 
erates a nonsymmetric system matrix, whereas Picard pre- 
serves the symmetry of the original discretization. This 
factor is important in assessing the relative efficiency of the 
two schemes, since different storage and linear solver algo- 
rithms can be used to exploit these structural differences. A 
final observation to make is that calculation of the three 
derivative terms in the Jacobian makes the Newton scheme 
more costly and algebraically complex than Picard. In our 
numerical tests the per-iteration CPU cost of the Newton 
method was found to be approximately twice that of the 
Picard method, independent of the dimensionality of the 
problem. A more detailed discussion of the Newton and 
Picard schemes applied to the unsaturated flow equation can 
be found in the work by Paniconi et al. [1991]. 

Time step sizes during a transient simulation are dynami- 
cally adjusted according to the convergence behavior of the 
nonlinear iteration scheme. A convergence tolerance tol is 
specified, along with a maximum number of iterations, 
maxit, permitted during any time step. The simulation begins 
with a time step size of •xt 0 and proceeds until time Tmax. 
The current time step size is increased by a factor of &trnag 
(to a maximum size of Atmax) if convergence is achieved in 
fewer than maxit• iterations, it is left unchanged if conver- 
gence required between maxit• and maxit2 iterations, and it 
is decreased by a factor of •tre d (to a minimum of ZXtmin) if 
convergence required more than maxit2 iterations. If con- 
vergence is not achieved (maxit exceeded), the solution at 
the current time level is recomputed ("back stepping") using 
a reduced time step size (factor •tred, to a minimum of 
/Mrnin). For the first time step of a transient simulation, or for 
steady state problems, the initial conditions are used as the 
first solution estimate for the iterative procedure. For sub- 
sequent time steps of a transient simulation the pressure 
head solution from the previous step is used as the first 
estimate. Thus time step size has a direct effect on conver- 
gence behavior, via its influence on the quality of the initial 
solution estimate. 

The infinity norm (l•) of the convergence error is used in 
the termination criterion for the nonlinear iterative methods; 
that is, convergence is achieved when [I •k+•'(m+x) - 
9k+•'(rn)ll• <_ tol is satisfied. This represents a measure of 
absolute error, but it can also be used to measure relative 
(normalized) error by selecting tol to be a suitable multiple of 
some reference pressure head value [Matthies and Strang, 
1979]. In test case 2S the behavior of the convergence error 
using the I2 norm (the square root of the sum of squares 
of pressure head differences over all nodes) is examined in 
addition to the l• norm, and the residual error 
([lf(• k+ •'(m))l[) is also computed using the I• and 12 norms. 

2.2.2. Relaxation and mixed Picard-Newton methods. Re- 

laxation (or damping) has been suggested as a way of enhanc- 
ing congergence of nonlinear iterative schemes, in particular 
when oscillations in h occur from one iteration to the next 

[Cooley, 1983]. Two different methods of calculating the relax- 
ation parameter were implemented in our codes. The first is 
Huyakorn et al.'s [1986] adaptation of Cooley's [!983] empiri- 
cal scheme, where the relaxation parameter D, is calculated at 

the end of each iteration as a function of the solution at the 

current and previous iterations. The current solution 
•k+ •,{m+ •) is then updated (relaxed) to •* by the relationship 
xlr* = f•k+x,(,,z+•) + (1 - Ft)• k+•'0'•). In the second option, D• 
is constant, and the relaxation step can be equivalently ex- 
pressed by multiplying the right-hand sides of the Newton 
equation (3) or the Picard equation (5) by D, [Ababou et al., 
1988]. 

In many of our test simulations we observed the Newton 
scheme to be quite sensitive to the initial solution estimate. 
With a poor initial estimate the Newton scheme can diverge, 
whereas when the estimate is good Newton converges very 
rapidly. Our observations also suggest that the Picard 
method does not generally diverge; poor Picard performance 
is more often manifested by low or zero average conver- 
gence rate. In order to exploit the best features of both 
methods, a mixed Picard-Newton approach was tested, 
based on the idea of using Picard iteration to improve the 
"initial" solution estimate for the Newton method. In this 

approach the Picard scheme is used for the first few itera- 
tions, until it has begun to converge steadily, and then the 
Newton scheme is used for the remaining iterations. In our 
implementation, once Picard iteration begins to converge, 
the switch to Newton is done after a specified reduction in 
convergence error has been achieved. 

2.3. Linear Solvers 

One of the main drawbacks of the Newton scheme used to 

be the inefficiency of linear solvers for large, sparse nonsym- 
metric systems. This is no longer the case, as currently 
available conjugate gradient-type algorithms for solving 
nonsymmetric systems have become increasingly reliable 
and efficient. In our tests we obtained best results using a 
biconjugate gradient stabilized algorithm, BICGSTAB, al- 
though we also tried a minimum residual algorithm, 
GRAMRB, a generalized conjugate residual method, 
GCRK, and the transpose-free quasi-minimal residual algo- 
rithm, TFQMR. All these schemes were used with incom- 
plete Croute lower-upper (LU) decomposition as a precon- 
ditioner. Descriptions of the various algorithms can be found 
in the works by Axelsson [1980], Pini et al. [1989], van der 
Vorst [1992], and Freund [1993]. For the symmetric systems 
generated by Picard linearization we used the incomplete 
Cholesky conjugate gradient method, ICCG [Kershaw, 1978; 
Gambolati and Perdon, 1984]. In one of the smaller test 
cases, 1Ta, a tridiagonal direct solver was used for both the 
symmetric and nonsymmetric systems. For all the other test 
cases, where ICCG, BICGSTAB, or some other iterative 
solver was used, Table 1 gives the values used for the linear 
solver parameters tolcg (convergence tolerance) and maxitcg 
(maximum number of iterations allowed). 

2.4. Characteristic Equations and Chord 
Slope Approximations 

The nonlinear storage and conductivity terms in (1) can be 
modeled using various constitutive or characteristic rela- 
tions describing the soil hydraulic properties. One of the 
simplest of these, useful for steady state simulations, is the 
exponential Kr(•) relationship [Pullan, 1990] 

Kr(tP) = exp (a ½) (6) 

where a is a constant. 
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The characteristic equations introduced by van Genuchten 
and Nielsen [1985] are commonly used. These can be written 
as 

0 (½)-- O r + (O s -- 0r)[1 + •]-m O < 0 
(7) 

0(½) = q, ->0 

rr(•t ) - (1 q- •)-5m/2[(1 q- •)rn _ •m]2 I/.t < 0 
(8) 

Kr(•) = 1 ½ > 0 

where 0 is the volumetric moisture content, Or is the residual 
moisture content, 0s is the saturated moisture content, fl -= 
(½/½s) n, ½$ is the capillary or air entry pressure head value, 
n is a constant, and rn = 1 - 1/n for n approximately in the 
range 1.25 < n < 6. The corresponding general storage term 
is 

dS• 
= SwS + (9) 

where $w -- O/qb is the water saturation, qb (= Os) is the 
porosity, and S s is the specific storage. 

A modified version of the van Genuchten and Nielsen 

[198:5] 0(½) relationship was introduced by Paniconi et al. 
[1991], who write 

O ( tp ) -- O r q- (O s - 0r)[1 q- •]-m 

0 (•)- O r q- (O s - Or)J1 q- •0] -m q- Ss( •- tpO ) 

(lO) 
½>-½o 

where q•o is a continuity parameter and /3 o -- /3(½o) - 
(gto/gts) n. The general storage term corresponding to (10) is 
,1 = dO/de. 

The characteristic equations used by Huyakorn et al. 
[1984] express the water saturation S w in terms of effective 
saturation S e, in the form S w (½) = (1 - S wr) S e (•) q- S wr, 
where S,•r (= Or/•) is the residual water saturation. The 
characteristic relations are then written as 

(11) 
S,(½)= 1 ½>½a 

Kr(½) = Kr(Se(½) ) = Se n (12) 

where Ca is the air entry pressure and a, /•, % and n are 
constants. The general storage term is given by (9). 

The characteristic equations given above were used in our 
test simulations. In Table 2 the particular curves used for 
each test case are indicated, along with the corresponding 
parameter values. 

The method used to evaluate the derivative term in r/, and 
the derivatives of Kr and rt needed in the Newton scheme 
Jacobian, may affect the convergence behavior of the itera- 
tive schemes, due to possible discontinuities, steep gradi- 
ents, and points of inflection in these curves and their 
derivatives. Numerical differentiation is often used to pre- 
vent floating point overflow near singularities or to avoid 
oscillations around points of inflection. Analytical and vari- 
ous numerical techniques for differentiation of the charac- 
teristic equations were investigated in the test simulations. 
Four different numerical "chord slope" methods were im- 

plemented. Method 1 uses the tangent approximation sug- 
gested by Huyakorn et al. [1984], wherein derivatives are 
approximated using pressure heads at the current and pre- 
vious nonlinear iterations. This approximation is used at 
every iteration and at all nodes, except at nodes where the 
absolute pressure head difference between iterations is 
smaller than a specified tolerance, in which case analytical 
differentiation is used. Chord slope method 2 is the same as 
method 1, except that when the pressure difference is 
smaller than the tolerance a centered difference approxima- 
tion is used. In method 3 the chord slope approximation of 
method 1 is applied only "locally," at those nodes whose 
pressure head falls within a specified range. The idea behind 
this localization approach is that the user, with prior knowl- 
edge of the characteristic equations, will know where the 
troublesome regions of discontinuity, inflection, or sharp 
gradients are, that is, those regions where it may be most 
advantageous to use numerical differentiation. Outside these 
regions analytical differentiation is used. Method 4 follows 
the same localization idea as method 3, except that rather 
than use a chord slope formula to differentiate the charac- 
teristic equations, a proper tangent slope formula is used, 
wherein derivatives are approximated using pressure heads 
at the endpoints of the specified range. 

3. Numerical Tests 

The physical characteristics and parameter values, with 
units, for the eight test cases are given in Tables 1 and 2. 
Table 3 provides a checklist for the various factors and 
strategies affecting Picard and Newton performance that are 
examined in the eight test cases. All numerical simulations 
were run on either an IBM RISC System/6000 model 560 
workstation or a Cray Y-MP/864. Where CPU times are 
reported, they are for the IBM 560. 

3.1. Test Case 1S 

3.1.1. Description. In test case 1S the effect of an 
increasing gravity drainage component on Picard and New- 
ton convergence is examined. The gravity drainage zone is 
defined as the region in a soil column which has zero 

Table 3. Factors Affecting Picard and Newton 
Performance That Are Examined in the Test Cases 

Factor/Strategy 1S 1Ta 2S 2T 3S 3Ta 3Tb 1Tb 

Problem size 
Grid discretization x 

Time discretization; dynamic time 
stepping 

Boundary conditions; source/sink 
terms 

Initial conditions; initial solution x 
estimates 

Characteristic equations 
Chord slope approximations 
Extent of saturated zones 
Convergence tolerance (tol) x 
Convergence error norm 
Seepage face convergence criteria 
Linear solver 
Nonlinear relaxation x 

Time weighting 
Mass lumping 
Mixed Picard-Newton 

x 

x x x 

x x x x x 

x x x x x 

x x 

x x x 

x x x 

x 

x 

x 

x x 

x x 

x x 

x x 

x 

x x 

x x 

x 
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Pressure heod (m) 

Figure 1. Steady state solution for test case IS. Dotted 
lines are the initial solution estimates for the L z -- 3, 7, 10, 
20, and 30 m runs. Solid curve to elevation 3 m is the solution 
for the L z = 3 run, to 7 m for the L z = 7 run, and so on. 

pressure head gradient (and thus moisture flow is purely 
gravitational). As the length L z of the soil column is progres- 
sively increased from 3 to 30 m, the extent of the gravity 
drainage component in the steady state infiltration solution 
also increases, as is seen in Figure 1. 

3.1.2. Results. As can be seen in Figure 2, the Newton 
scheme converged rapidly, in six or seven iterations, for all 
five L z values. Picard convergence, on the other hand, slows 

as L z is increased, and the scheme failed to converge for 
L z = 30. For the L z = 20 run, the Picard scheme converged 
only to a higher tol value of 10 -9, rather than to the value 
10-12 used for all other runs. When applying relaxation (with 
• = 0.2) to the Picard scheme for L z = 30, convergence was 
obtained in 127 iterations. Relaxation did not improve, and 
in some cases worsened, Picard convergence for the other 
L z runs. For Lz = 3 the Newton scheme (convergence in 
seven iterations) required 2.5 CPU s and the Picard scheme 
(16 iterations) 3.6 s. For L z = 30, Newton (again seven 
iterations) required 24.6 s and relaxed Picard (127 iterations) 
214.6 s. Mass lumping, a grid discretization of Az = 0.001 
m, and an initial solution estimate of •z) = -3z/Lz were 
used for all the runs reported in Figure 2. Coarsening the grid 
to Az = 0.01 had a negligible effect except for L z = 30, 
where unrelaxed Picard converged in 279 iterations, but to a 
tol value of 10 -5 only. Changing the initial solution estimate 
to • z) = -z for z -< 3, ½(z) = -3 for z > 3 also made very 
little difference. The Newton scheme converged in seven 
iterations for all five L z values, whereas the Picard scheme 
converged in 16, 30, and 50 iterations for L z = 3, 7, and 10, 
respectively, in 219 iterations (to tol = 10 -9) for L z = 20, 
and failed for L z = 30. 

3.1.3. Discussion. The gravity drainage zone has a clear 
impact on the performance of the Picard scheme. A heuristic 
analysis presented by Paniconi [1991] suggests that the 
derivative of the gravitational gradient component of 
Richards' equation (Ob/O½ in (4)), a nonlinear term which is 
included in the Newton Jacobian but neglected in the Picard 
scheme, becomes dominant as the extent of the gravity 
drainage zone increases. 

3.2. Test Case 1Ta 

3.2.1. Description. The computational efficiency of 
competing numerical schemes is best evaluated on the basis 

10 5 - 

• 10 ø- 

i .". t '"-... :. 

%-•.".... ....... 
ß : ..-..• .. \ •. "',,. '" :\ ',,.,,, ' '...- ............ 

'<--,,'::'--,.,,.,.., ................ ,,,,. .... 

I I I ' I"' I I I 

0 20 40 so 80 120 

Iteration 
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Figure 2. Convergence profiles for test case IS. Solid curves are the Newton results for the L z = 3, 7, 
10, 20, and 30 m runs, dotted curves are the Picard results for the five runs, and dashed curve is the 
relaxed Picard result for the L z = 30 run, with relaxation parameter 1'• = 0.2. 
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Figure 3. Solution for test case 1Ta at various times. 

of CPU time expended to achieve a given level of solution 
accuracy. Since closed form analytical solutions are nonex- 
istent except for simplified forms of R/chards' equation, a 
numerical solution obtained using a very fine grid and time 
discretization can be used as a surrogate "exact" solution 
with respect to which accuracy can be measured. This 
procedure was used by Paniconi et al. [1991] in two test 
problems to evaluate six linearization methods for the one- 
dimensional transient R/chards equation. The Picard and 
Newton results from one of these test problems are summa- 
rized here. The problem is one of infiltration into a soil 
column initially at hydrostatic equilibrium, with the infiltra- 
tion flux increasing linearly with time. A distributed mass 
matrix and • = 0.5 were used. The pressure head profiles at 
various times are shown in Figure 3. 

3.2.2. Results. The Picard and Newton schemes were 

run repeatedly, each run using a different, constant time step 
size ranging from 0.005 to 1.0 hour. It was necessary to keep 
At fixed in order to obtain a measure of the accuracy level 
for each run. The solution accuracy, or numerical error, is 
given by the difference between the numerical solution and 
the surrogate exact solution. Plotting the CPU times for each 
run as a function of these errors (normalized with respect to 
the exact solution) yields the efficiency plot shown in Figure 
4. The superior performance of the Newton scheme for this 
test case is likely due to the continuous forcing provided by 
the time-varying boundary condition, which results in sus- 
tained slow convergence for the Picard scheme. If the 
boundary condition were constant (and in the absence of 
other complicating factors), the Picard scheme would prob- 
ably converge slowly only during the first few time steps, 
and more rapidly at later time steps where the solution 

changes more smoothly between steps. Note in Figure 3 that 
at later times the solution develops a gravity drainage zone. 
This may be another factor contributing to the relatively 
poor performance of the Picard scheme for this test case. 

3.2.3. Discussion. The cost of obtaining a fine discretiza- 
tion surrogate exact solution is prohibitive for two- and three- 
dimensional problems, so the efficiency analysis described 
above, although straightforward, has not been performed for 
any of the other test cases. Some of the results from the 
one-dimensional analysis can be generalized, however, espe- 
cially considering that the per-iteration CPU cost ratio between 
the Newton and Picard methods remains approximately con- 
stunt for one-, two-, and three-dimensional problems. In test 
case 1Ta, for instance, the Picard scheme required 2-3 times 
more iterations overall than Newton, and this is roughly the 
threshold at which the Newton method becomes more efficient 

than Picard, regardless of the dimensionality of the problem. 
Another generalization from the procedure described above is 
that for a given time step value, two schemes with truncation 
error of the same order do not generally achieve the same 
accuracy level (related in this case to the asymptotic constant 
of convergence), and thus an objective measure of computa- 
tional efficiency is of some importance [Paniconi et al., 1991]. 

3.3. Test Case 2S 

3.3.1. Description. Test case 2S is taken from Cooley 
[1983] and involves steady state flow through a square 
embankment. Cooley [1983] used two grid discretizations 
and observed slower convergence for the finer grid. This 
behavior is elaborated here, and the effects of soil charac- 
teristics are also examined. A representative solution using 

13_ 

O - 

Newton 

-• Picard 

0.05 0.50 5.00 

Relative error (%) 

Figure 4. Computational efficiency of the Picard and New- 
ton schemes for test case 1Ta. 
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Table 5. Summary of Results for Test Case 2S With 
gr(•b) Relationship (8) 

Equation Grid 
(8) Discretiza- 

Parameters tion 

n 4's zXx •z 

Number of Nonlinear Iterations 

Mixed 

Picard Newton Picard-Newton 

5 -20 10 10 
5 -20 2 2 
5 -3 10 10 
5 -3 2 2 
3 -3 10 10 
3 -3 2 2 
I 5 -3 10 10 
1.5 -3 2 2 

16 24 6+ 14' 
20 29 5+ 19 
17 176 8+ 15 
74 failed 10+ 33 
24 50 8+ 21 
74 failed 8+ 30 

failed 44 9+ 29 
failed failed 6+ 29 

90. o 

0 20 40 60 80 100 

x 

*Picard iterations + Newton iterations. 

Figure 5. Steady state pressure head contours for test case 
2S with grid discretization Ax = zXz = 2 m and equation (12) 
parameters/3 = 4 and n = 4. 

one of the grid and soil parameter combinations is shown in 
Figure 5. Attempts were made to enhance the convergence 
properties of the iterative schemes with relaxation, chord 
slope approximations, and the mixed Picard-Newton ap- 
proach. In all simulations, sf• = O, Sfcvg = 1, and a 
distributed mass matrix were used. 

3.3.2. Results. Tables 4 and 5 summarize the conver- 

gence results obtained using two Kr(40 relationships, with 
several parameter combinations, and two grid discretiza- 
tions. The performance of the Picard and Newton schemes 
deteriorated appreciably for the finer grid in almost all runs, 
in some cases passing from rapid convergence with the 10-m 
grid to nonconvergence with the 2-m grid. The mixed Picard- 
Newton scheme was very effective in overcoming conver- 
gence problems at both grid discretizations, in some cases 
providing rapid convergence where the Picard and/or 
Newton schemes failed to converge. 

The conductivity curves for the range of parameter values 

Table 4. Summary of Results for Test Case 2S With 
Kr(q•) Relationship (12) 

Equation Grid 
(12) Discret- 

Param- iza- 
eters tion Number of Nonlinear Iterations 

Mixed Relaxed 

Ax Az Picard Newton Picard-Newton Picard 

4 4 10 10 21 failed 10+ 15' 35 
4 4 2 2 1138 failed 52 + 64 53 
2 2 10 10 34 44 14+ 19 
2 2 2 2 78 failed 10+ 27 
I 2 10 10 89 35 10+ 28 
I 2 2 2 87 34 6+ 25 
I 4 10 10 failed 58 9+ 31 44 
1 4 2 2 failed failed 7 + 30 87 

*Picard iterations + Newton iterations 

used in the two Kr($) relationships are shown in Figure 6. 
Referring again to the results in Tables 4 and 5, it can be seen 
that the curves that are most strongly nonlinear (those 
spanning many orders of magnitude in Kr or having very 
steep or near-discontinuous gradients around ½ = 0) caused 
the greatest convergence difficulties for the Picard and 
Newton schemes. As before, the mixed Picard-Newton 

scheme was very effective in improving convergence behav- 
ior. 

Nonlinear relaxation and chord slope approximations 
were tried on the four most difficult cases represented in 
Table 4' the coarse and fine grid runs for/3 = 4, n = 4 and 
/3 = 1, n = 4. The relaxed Picard results reported in the 
table are for constant relaxation parameter t2 = 0.5. ft = 1.2, 
0.8, and 0.2, and relaxation with iteration-dependent fl, all 
gave worse results than f• = 0.5. Both fixed and variable 12 
relaxation were unsuccessful for the Newton scheme. The 

convergence profiles for some of the/3 = 4, n = 4 and/3 = 
1, n = 4 runs are plotted in Figures 7 and 8, showing the 
dramatic effect that grid discretization, relaxation, and the 
mixed Picard-Newton scheme can have on the performance 
of the Picard and Newton methods. Note in Figure 8 the 
characteristic manner in which the two methods fail: The 

Picard scheme oscillates within a narrow error band whereas 

the Newton scheme rapidly diverges. 
For steady state simulations, chord slope approximations 

will only affect the Newton scheme. All four chord slope 
methods were tried, using a variety of tolerance settings and 
localization ranges. For the coarse grid /3 = 1, n = 4 case, 
for which the Newton scheme converged in 58 iterations, 
chord slope methods 1 and 2 failed to converge, and methods 
3 and 4 gave results similar or much worse than regular 
Newton, depending on the tolerance value and localization 
range. In the other three cases the Newton scheme failed to 
converge, and the chord slope methods also failed, except in 
two instances for the coarse grid/3 = 4, n = 4 case, where 
method 3 converged in 168 iterations and method 4 in 409 
iterations. 

In Figures 9 and 10 a comparison is shown of the behavior 
of convergence and residual errors using the 12 and l= 
norms. The results are broadly representative in that for 
most simulations very little difference was observed between 
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Figure 6. Relative hydraulic conductivity profiles for test case 2S with (12) (parameters fl and n) and (8) 
(parameters n and •s)- 

the 12 and l= norms. Moreover, the convergence and resid- 
ual errors usually followed parallel paths, although excep- 
tions did occur, as seen in Figure 10, and thus it is important 
to keep track of both errors when checking the convergence 
of an iterative procedure [Matthies and Strang, 1979]. 

3.3.3. Discussion. Deterioration in Picard and Newton 

performance when a grid is refined or when the size of a 
problem is otherwise increased (by an increase in dimension- 
ality, for instance) has been observed for several of the test 
cases. Although it is not clear what the causes of this 
behavior are, more often than not they appear to act only 
during the initial stage of convergence. Typically, this initial 
stage is characterized by a flat convergence profile, as 
opposed to the final stage where linear or quadratic conver- 

gence can be verified. The initial convergence behavior of 
both the Picard and Newton schemes is unpredictable and 
should be studied in greater detail. The difficulties caused by 
the strong nonlinearities in some of the Kr(•t) curves were 
compounded for this test case by the presence of a water 
table and an extended saturated zone. In particular, the 
steep and near-discontinuous gradients around ½ = 0 result 
in sharp changes in Kr(•t) and its derivative across the 
saturated/unsaturated interface. The chord slope approxima- 
tions were unable to handle these strong nonlinearities, with 
only methods 3 and 4 marginally successful. On the other 
hand, good performance was achieved with nonlinear relax- 
ation for the Picard scheme and with the mixed Picard- 

Newton approach. A constant value of 0.5 for parameter Q 
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Figure 7. Convergence profiles for test case 2S with equa- 
tion (12) parameters fl = 4 and n = 4. 
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Figure 8. Convergence profiles for test case 2S with equa- 
tion (12) parameters fi = 1 and n = 4. 
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Figure 9. Convergence error (meters) and residual error 
(square meters per hour) for the Picard simulation of test 
case 2S with grid discretization Ax = AZ = 2 m and equation 
(12) parameters/3 = 4 and n = 4. 

worked best for nonlinear relaxation, whereas for the mixed 
approach the switching from Picard to Newton iteration was 
done after the convergence error was reduced by I order of 
magnitude, measured relative to the second Picard iteration. 

3.4. Test Case 2T 

3.4.1. Description. This test case involves two- 
dimensional transient flow in an unsaturated soil slab. The 

geometry and configuration for this test case are adapted 
from Huyakorn et al. [1985], where the solution of an 
associated transport problem is described. The characteris- 
tic feature of this test case is the occurrence of convergence 
difficulties several time steps into the simulation, in response 
to the buildup of a sharp moisture front near the inflow 
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Iteration 

Figure 10. Convergence error (meters) and residual error 
(square meters per hour) for the Newton iterations in the 
mixed Picard-Newton simulation of test case 2S with grid 
discretization Ax = Az = 2 m and equation (12) parameters 
/3=4andn = 4. 

Figure 11. Pressure head contours at time 5 days for test 
case 2T with grid discretization Ax = Ac = I cm and 
equation (11) and (12) parameters/3 = 1, -y = -1, and n = 1. 

boundary at x = 0, 6 -< z -< 10. Representative solutions 
using two soil parameter combinations are shown in Figures 
11 and 12. At 5 days the solutions have essentially reached 
steady state. 

3.4.2. Results. The results of 10 Picard and Newton 

simulations of test case 2T are summarized in Table 6. The 

parameter values used for the base run are A = 0.5, F• = 1 (no 
relaxation), ..Xx = 1, _xc = 1, Tma x = 5, It 0 = 5 x 10 -5, 
Atma x = 1.5, maxit = 500, ½(x, z, 0) = --90, /3 = 3, 1' = 
--3, and n = 4. The values for other parameters are as 
indicated in Tables I and 2. The base run used a distributed 

mass matrix and no chord slope approximations. After about 
eight time steps the Picard and Newton schemes began to 
experience convergence difficulties. At the tenth time step 
(time 1.0348 x 10 -3 day) the Picard scheme required 413 
iterations to converge. At its worst the Newton scheme 
converged in 127 iterations, during the thirteenth step (time 
8.4912 x 10 -4 day), a better result than Picard, although the 
Newton method also failed to converge several times during 
the course of the simulation (four back stepping occurrenc- 
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Figure 12. Pressure head contours at time 5 days for test 
case 2T with grid discretization Ax = AZ = I cm and 
equation (11) and (12) parameters/3 = 3, 'y = -3, and n = 4. 
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Figure 13. Pressure head profiles at time 5 days, cross 
section z = 8 cm for test case 2T with At 0 = 0.1 days, grid 
discretization Ax = Az = 1 cm, and equation (11) and (12) 
parameters/3 = 3, 9' = -3, and n = 4. 

es). Toward the end of the simulation the Newton method 
performed better than Picard, requiring fewer iterations per 
step and achieving higher time step sizes. However, due to 
At reductions during back stepping, the Newton run re- 
quired significantly more time steps overall than the Picard 
run. Note that comparing the Picard and Newton CPU times 
in Table 6 is meaningful only for those runs where neither 
scheme back stepped, since with back stepping the CPU 
times include the cost of failed convergence, which is an 
arbitrary cost dependent on the value of maxit. Also note 
that the average iterations per time step reported in the table 
do not include iterations during failed time steps. 

The base run conditions were altered in various ways for 
the other nine Picard and Newton simulations. Unlike test 

case 2S, relaxation with iteration-dependent 11 performed 
well here while relaxation with constant 11 did not. The 

backward Euler scheme (A = !.0) and chord slope approxi- 
mations did not yield significant improvements over the base 
run. Mass lumping was able to reduce oscillations at the 
sharp moisture front, thus resulting in good convergence for 
both the Picard and Newton schemes. The biggest improve- 
ments over the base run came about by reducing the severity 
of the sharp front, either by making the pressure head drop 
across the front smaller (changing the initial conditions to 
½(x, z, 0) = -20) or by using smoother characteristic 
equations (/3 = 1, 7 = -1, n = 1). Both these measures 
produce smaller jumps in the nonlinear coefficients Kr(•) 
and S e (½) (and their derivatives) across the sharp front, and 
a Kr(½) that is more permeable to water on the dry side of 
the front. Smoother Se(½) and Kr(½) curves were tried for 
illustrative purposes only, since altering the characteristic 
equations changes the physical problem that is being solved 
(compare Figures 11 and 12). The use of a larger initial time 
step size (At0 = 0.1) was an attempt to avoid the trouble 
area encountered in the base run at around time 0.00! day. 
However, convergence troubles were merely shifted to later 
times, and the end result was still a large number of time 
steps overall. Moreover, the Picard method (with and with- 

out mass lumping) produced an oscillatory solution, as can 
be seen in Figure 13, whereas the Newton solution was 
oscillation-free, owing to back stepping-induced smaller 
time steps early in the simulation. The fine grid case (Ax = 
0.25, Az = 1.0) was only run to Tma x = 0.005. Both Picard 
and Newton performed poorly for this case, in •t manner 
similar to the behavior seen in other test cases for fine grids. 
The constant time step run (At = !0 -5) to Tmax = 0.01 
allowed a step by step comparison of the Picard and Newton 
schemes. Convergence was slightly better for the Picard 
scheme, and Picard required 30% less CPU time. 

3.4.3. Discussion. The combination of soil parameters 
and boundary and initial conditions used in the base run 
produces a sharp moisture front with a large drop in conduc- 
tivity and saturation across the front. These conditions 
create convergence difficulties for the Picard and Newton 
scheme which can be alleviated to some extent by using 
lumped rather than distributed mass matrices. This test case 
is a good illustration of both the utility and limitations of 
dynamic time stepping and back stepping. For instance, in 
the Newton base run, which required 145 s of CPU, At 
ranged over almost 5 orders of magnitude during the course 
of the simulation. Running the 5-day simulation at the time 
step size needed to overcome the early convergence diffi- 
culties, At = 10 -5, would have required approximately 18 
hours of CPU. On the other hand, in the Picard simulation 
with At 0 = 0.1, the time step control mechanisms were not 
sufficient to guarantee an accurate (oscillation-free) solution. 

3.5. Test Case 3S 

3.5.1. Description. This test case is taken from Huya- 
korn et al. [1986] and involves three-dimensional flow in a 
pumped unconfined aquifer. The grid discretization in the x 
and z directions is nonuniform, while in the y direction it is 
uniform with Ay = 50 m. The grid nodes in the x direction 
are located atx = 0, 70,120,160,200,275,350,400,450, 
500, 540, 570, 600, 650, 700, 750, 800, 850, 900, 950, 
and 1000 m. In the z direction the nodes are at z = 0, 15, 30, 
35, 40, 45, 50, 55, 60, 66, and 72 m. The pumping well is 
simulated via three Dirichlet nodes, at z = 0, 15, and 30 m, 
with a seepage face above these nodes (30 < z < 72). The 
flow problem is solved under both steady state (this test 
case) and transient (test case 3Ta) conditions. In the steady 
state case a curious effect of well positioning is illustrated. 
Two runs are performed, run 1 with the pumping well at x = 
540 m, y = 400 m and run 2 with the well at x = 540 m, 
y = 0 m. The solution contours at cross section y = 400 m 
for the first run are shown in Figure 14. For both runs, sf• = 
O, sfc,•g = 1, and a distributed mass matrix were used. 

3.5.2. Restfits. The solutions for runs 1 and 2 are exact 

mirror images of each other since the grid discretization in 
the y direction is uniform and since, apart from the well 
position, the boundary conditions at y = 400 and y = 0 are 
identical. However, as shown in Figure 15, the Newton 
scheme took nearly twice as many iterations to converge for 
run 1 as for run 2. The same node numbering sequence was 
used for both runs, and thus different node numbers got 
assigned to the pumping well for the two runs. This produced 
a slight structural difference in the coefficient matrices of the 
discretized system, which apparently affected the initial 
convergence behavior of the Newton scheme. During the 
final stage of convergence, the two Newton runs, and also 
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Figure 14. Steady state pressure head contours at cross 
section y = 400 m for test case 3S with the pumping well at 
x = 540m y = 400m. 

the Picard runs, displayed very similar behavior, converging 
in 9-13 iterations (Figure 15). 

3.5.3. An aside. Huyakorn et al. [1986] reported that 
177 min of CPU were needed for six Picard iterations in 

single precision on a VAX model 11/750 minicomputer. On 
the IBM 560 RISC workstation, 15 Picard iterations in 
double precision required 9 s of CPU, which is more than 
3000 times faster than the simulations run a mere 8 years 
ago. 

3.6. Test Case 3Ta 

3.6.1. Description. The flow problem described in test 
case 3S is solved here under transient conditions. The 

simulations were run to Tmax = .5000 days using the time 
discretization parameters given in Table 1. Very small time 
step sizes were needed initially (..Xt 0 = 2 x 10 -5 day), but 
as the solution approached steady state (after approximately 
3000 days), the time step sizes increased to •tma x = 100 
days. Oscillations along the rapidly changing saturated/ 
unsaturated interface near the seepage face caused conver- 
gence problems early in the simulations. Various strategies 
were tried in attempts to overcome these convergence 
difficulties. 

3.6.2. Results. Only the backward Euler scheme (,a = 
1.0) was effective in overcoming the nonlinear convergence 
oscillations near the seepage face. With ,X = 0.5 both the 
?icard and Newton schemes failed to converge, with and 
without chord slope approximations and with and without 
mass lumping. The troubles occurred during the first two 
time steps, and included repeated nonconvergence of the 
seepage face exit point, regardless of the values of Sfl and 
sfcvg. With ,• = 1.0, successful convergence was achieved 
for both iterative methods, again with no apparent effect of 
parameters sf• and Sfcvg (all four combinations of these two 
parameters were tried). Other strategies also had a minor 
effect on the performance of the Newton and Picard 
schemes. Mass lumping was slightly more efficient than the 
distributed case, and the chord slope approximations gave 
noticeably worse results than not using these approxima- 

tions. For the chord slope methods a tolerance setting of 
10 -5 was used, and methods 1 and 2 gave identical results. 

The results of several of the runs described above are 
summarized in Table 7. The BICGSTAB linear solver was 
used for the Newton runs reported in the table. Other 
nonsymmetric solvers were also tried (GRAMRB, GCRK, 
and TFQMR), but none of these was as efficient as BICG- 
STAB, requiring, in the best case, 50% more iterations and 
CPU time. 

Overall, the Picard scheme converged faster and was more 
efficient than the Newton scheme. For this test case the CPU 

time per nonlinear iteration required for the Picard scheme 
was approximately 0.32 s, and for the Newton scheme 
approximately 0.60 s. The breakdown of the total CPU cost 
for one of the Picard and Newton runs for this test case is 

shown in Figure 16. This cost distribution, which is typical 
for the multidimensional transient simulations performed in 
this and other test cases, shows that for both the Picard and 
Newton schemes, over half the CPU time is used in solving 
the linearized system of equations. The next most intensive 
kernel, requiring about one quarter of the total CPU time, is 
the calculation and assembly of the finite element system 
matrices, including the Jacobian matrix for the Newton 
scheme. All the other tasks combined use up only 15-20% of 
the total CPU time. 

3.6.3. Related results. Putti and Paniconi [1992] con- 
sidered a variant of test case 3Ta. The test problem was 
modified to include prevailing flow along the x direction. 
Variable and fixed time step size simulations were run, and 
characteristic equations (7) and (8) were used in addition to 
(11) and (12). For some of the time steps in these tests the 
Picard scheme had trouble converging while the Newton 
method converged rapidly. Chord slope approximations 
applied to the Picard scheme increased its rate of conver- 
gence, although yielding very irregular or oscillatory conver- 
gence profiles. 

3.7. Test Case 3Tb 

3.7.1. Description. This test case involves the simula- 
tion of an evaporation event on a subcatchment of the Konza 
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Figure 15. Convergence profiles for test case 3S showing 
the effect of pumping well position. 
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Table 7. Summary of Results for Test Case 3Ta 

Iteration Mass Chord Slope Time Back 
Scheme ,• Lumping Approximation Steps Steps 

Linear 

Nonlinear Iterations 

Iterations per 
per Time Nonlinear 

Step Iteration 
CPU 

Seconds 

Picard 0.5 yes no failed 
Newton 0.5 yes no failed 
Picard 0.5 no no failed 
Newton 0.5 no no failed 
Picard 0.5 yes yes failed 
Newton 0.5 yes yes failed 
Picard I yes no 178 
Newton I yes no 178 
Picard 1 no no 178 
Newton I no no 184 
Picard I no yes 178 
Newton I no yes 186 

0 5.31 9.08 304 

0 7.92 5.00 849 

0 5.80 10.66 362 
0 9.35 5.04 1065 
0 7.19 10.Ol 435 
i 10.83 4.78 1222 

Prairie reserve in northeastern Kansas. The catchment, the 
numerical model, and the observation data used to parame- 
terize the model are described by Paniconi and Wood [ 1993]. 
The model differs from the one used for test cases 3S and 
3Ta in that hexahedral elements are used and the nonlinear 

system integrals are evaluated by Gaussian quadrature. The 
grid discretization in the x and y directions is uniform with 
.•x = ,Xv = 30 m. Vertically, the catchment is discretized 
into 25 layers of increasing thickness from the surface to the 
base, with Az = 0.002 (surface layer), 0.002, 0.002, 0.004, 
0.004, 0.005, 0.005, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.04, 
0.04, 0.046, 0.05, 0.05, 0.06, 0.1, 0.1, 0.1,0.1, 0.1, and 0.1 m 
(base layer). The saturated hydraulic conductivity is verti- 
cally heterogeneous, with the distribution of values given by 
the exponential relationship in Table 2. The evaporation flux 
at the surface of the catchment increases uniformly from 0.0 
to -0.00024 m/h for the first 24 hours of simulation, and then 
remains constant at -0.00024 m/h until the pressure head at 
a surface node becomes smaller than the air-dry value 
½rnin -- --15.0 m, at which point the boundary condition at 
that node switches from specified flux to constant head. In 
Figure 17 the vertical solution profiles at a selected point on 
the catchment are shown at various times. From these 
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Figure 16. Test case 3Ta CPU distributions for the (left) 
Picard and (right) Newton schemes. Here c denotes evalua- 
tion and differentiation of characteristic equations; d, pro- 
gram overhead (including initialization, setting of boundary 
conditions, calculation of the right-hand side vector, and 
convergence checking); and e, calculation of mass balance 
errors and updating of seepage faces. 

profiles it can be seen that the surface becomes air-dry at a 
time between 200 and 500 hours. 

3.7.2. Results. Two sets of simulations were run for 

this test case, one using Tmax = 30,000 hours, .Xt0 = 1 hour, 
A/ma x = 200 hours, and tol = 5 x 10 -2 and the other using 
Tma x -- 336 hours, At0 = 0.1 hour, Atrnax -- 12 hours and 
tol = 5 x 10 -4, with all other parameters as indicated in 
Tables 1 and 2. Of the two tol values, tol - 5 x 10 -2 
represents the less stringent accuracy requirement, and for 
this set of simulations a very large time discretization could 
be used without incurring convergence difficulties and back 
stepping costs. 

For the tol - 5 x 10 -4 simulations, much smaller time 
step sizes were required, and severe convergence troubles 
were encountered. The results for this second set of simu- 

lations are summarized in Table 8 and show that for many 
time steps the Picard and Newton schemes failed to con- 
verge (the number of back stepping occurrences for each run 
ranged from 29 to 162). The convergence troubles occurred 
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Figure 17. Vertical pressure head profiles at x = 150 m, 
v - 360 m lbr test case 3Tb. Similar profiles were obtained 
for test case 1Tb. 
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Table 8. Summary of Results for Test Case 3Tb With 
Truax = 336 Hours, At0 = 0.1 Hour, Atma x = 12 Hours, 
and tol = 5 x 10 -4 

Nonlinear 

Iteration Mass Time Back Iterations per 
Scheme X Lumping Steps Steps Time Step 

Picard 0.5 yes !98 44 4.05 
Newton 0.5 yes 144 29 3.33 
Picard 1 yes 246 57 4.21 
Newton 1 yes 172 37 3.37 
Picard 0.5 no 533 136 3.39 
Newton 0.5 no 365 90 2.98 
Picard 1 no 628 162 3.47 
Newton 1 no 409 102 3.11 

in the early stages of simulation and diminished as the soil 
became drier. In fact, these troubles were directly related to 
the extent of the saturated zone and were due to pressure 
head oscillations at nodes along the water table and in the 
saturated zone. The characteristic equations used for these 
simulations, in particular the Kr([p) curve, are strongly 
nonlinear with steep gradients around ½ = 0. After the water 
table dropped below the base of the catchment and the soil 
became entirely unsaturated (around time 250 hours), con- 
vergence became much more rapid, and the time step sizes 
increased steadily to Atma x. As can be seen in Table 8, the 
Newton scheme had less difficulty converging than Picard 
for these runs, Crank-Nicolson time weighting (A = 0.5) gave 
somewhat better performance than the backward Euler 
scheme, and lumped mass matrices gave much better results 
than distributed mass matrices. 

3.7.3. Discussion. As in test case 3Ta these simulations 

experienced convergence difficulties due to oscillations near 
the saturated/unsaturated interface. Unlike test case 3Ta, 
where backward Euler time weighting was necessary to 
achieve convergence, in this test case the Crank-Nico!son 
scheme was also successful. In test case 3Ta, convergence 
failures occurred only during the first two time steps, and the 
changes in pressure head around the seepage face were 
probably more sudden (in response to well pumping) than 
the water table changes in test case 3Tb in response to 
slowly varying evaporation fluxes. 

For simulations that exhibit pressure head oscillations 
during an iterative procedure, the convergence check can be 
modified to detect such oscillations, thereby avoiding need- 
lessly iterating maxit times. A trickier aspect of oscillation- 
related convergence failure is that the dynamic time stepping 
procedure does not always work in an optimal fashion for 
such cases. Convergence can be very rapid at one time step 
and oscillatory the next, so the strategy of gradually increas- 
ing the time step size so long as convergence is rapid can 
result in repeated occurrences of back stepping. This behav- 
ior is reflected in Table 8, where many back steps occurred 
in tandem with a rather small average number of nonlinear 
iterations per time step. 

3.8. Test Case lTb 

3.8.1. Description. In this test case, one-dimensional 
simulations are run at a selected point on the catchment of 
test case 3Tb. For a 30,000-hour simulation the same solu- 
tion profiles obtained for test case 3Tb apply (see Figure 17), 
although only 336-hour simulations are reported here. The 

Kr(•b) relationship for this test case is the same as the one 
used for the previous test case, and thus similar convergence 
problems, owing to the strong nonlinearity of this curve near 
½ = 0, are to be expected. In reality, however, the conver- 
gence difficulties are much greater for this test case, because 
characteristic equation (7) with S s = 0.0 is used rather than 
(10) with Ss = 0.001. This combination results in a discon- 
tinuous dSw/d½ curve at ½ = 0 and a general storage term •/ 
which is zero in the saturated zone. With r/= 0 for ½ > 0 the 
governing equation (1) changes from a parabolic equation to 
an elliptic one across the saturated/unsaturated interface. 
Three grid discretizations and two initial conditions were 
tried in attempts to overcome these convergence difficukies. 
Two of the grid discretizations were uniform, with Az = 
0.04 m for one set of runs and Az = 0.002 m for the other. 
The third discretization is the same nonuniform one used in 
test case 3Tb. Both initial conditions were hydrostatic, with 
the first one, ½(z, 0) = L z - z, resulting in a fully saturated 
column and the second, ½(z, 0) = -z, being completely 
unsaturated except for the node at z = 0. 

3.8.2. Results. The results for this test case are summa- 

rized in Table 9. With saturated initial conditions, very poor 
performance was obtained for both the Picard and Newton 
schemes for all three grid discretizations. None of the 
Newton runs converged, and only a few of the Picard runs 
were successful, although a very small Atmin (10 -6 hour)was 
needed and many back steps occurred. Nonlinear relaxation 
was also tried for these runs, but without success. With 
unsaturated initial conditions both the Picard and Newton 

schemes converged easily and without back stepping, with 
Newton converging a little faster than Picard. Crank- 
Nicolson time weighting gave slightly better performance 
than the backward Euler scheme, while lumped and distrib- 
uted mass matrices gave nearly identical results. 

3.8.3. Discussion. With saturated initial conditions the 

governing equation is completely elliptic during the first 
iterations of the first time step (it does not remain so for very 
long due to the evaporation boundary condition which 
quickly produces unsaturated nodes and hence nonzero 
storage coefficients). A unique solution is not guaranteed for 
an elliptic equation with only flux boundary conditions 
specified. This was likely a factor, in addition to the previ- 
ously described characteristic equation-related convergence 
problems, in the very poor performance of the Picard and 
Newton schemes for the runs with saturated initial condi- 
tions. 

4. Conclusions 

Numerical procedures for solving large-scale nonlinear 
problems are computationally intensive and require highly 
efficient and robust algorithms. Efficiency ensures optimal 
utilization of CPU and storage resources to attain a desired 
level of solution accuracy, while robustness implies that a 
given algorithm exhibits acceptable convergence behavior 
across a wide spectrum of simulation scenarios. The two 
most commonly used iterative procedures for solving Rich- 
ards' equation, the Picard and Newton schemes, have been 
tested in a series of finite element simulations of flow in 

variably saturated porous media. Steady state and transient 
simulations in one-, two-, and three-dimensional media were 
conducted. Various factors affecting the efficiency and ro- 
bustness of the Picard and Newton methods were investi- 
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Table 9. Summary of Results for Test Case 1Tb 

Initial Conditions 

Nonlinear 
Number Iterations 

of Iteration Mass Time Back per Time 
Grid Discretization Elements Scheme X Lumping Steps Steps Step 

CPU 
Seconds 

Mz, 0) = L z - z 
•(z, 0) = L z - z 
•z, 0) = L z - z 
•(z,O) = L z - z 
•½(z,O) = L z - z 
•z, O) = L z - z 
•z, O) = L z - z 
,½(z, O) = L z - z 
•z, O) = L z - z 
½(z, O) = -z 
½(z, O) = -z 
•(z, o) = -z 
•gz, O) = -z 
•gz, O) = -z 
•(z, o) = -z 
•(z, O) = -z 
•gz, O) = -z 

uniform, Az = 0.04 25 
uniform, Az = 0.04 25 
uniform, Az = 0.04 25 
uniform, Az = 0.04 25 
uniform, Az = 0.04 25 
uniform, Az = 0.002 500 
uniform, Az = 0.002 500 

nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.!] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 
nonuniform, Az = [0.002,0.1] 25 

Picard 0.5 yes 128 20 3.44 2.21 
Newton 0.5 yes failed 
Picard 1 yes 164 22 6.10 3.27 
Picard 0.5 no failed 
Picard 1 no failed 

Picard 0.5 yes 64 1 4.88 9.49 
Newton 0.5 yes failed 
Picard 0.5 yes 64 3 4.28 0.96 
Newton 0.5 yes failed 
Picard 0.5 yes 56 0 4.34 0.72 
Newton 0.5 yes 56 0 2.66 0.76 
Picard 1 yes 56 0 4.98 0.74 
Newton ! yes 56 0 2.79 0.78 
Picard 0.5 no 56 0 4.34 0.68 
Newton 0.5 no 56 0 2.66 0.72 
Picard 1 no 56 0 4.93 0.76 
Newton 1 no 56 0 2.77 0.78 

gated. These factors are indicated in Table 3, and their 
effects illustrated and summarized in the tables and figures 
for each of the test cases referred to in Table 3. We make a 
few additonal remarks here. 

In many cases the Picard scheme converges well, and in 
such cases it is clearly the simplest and most efficient method 
for linearizing Richards' equaton. However, there are cases 
where the Picard scheme fails to converge or converges very 
slowly. We note in particular the difficulties encountered 
with gravity drainage zones, complex time-varying boundary 
conditions, strongly nonlinear characteristic equations, and 
saturated/unsaturated interfaces. Relaxation is sometimes 

successful in overcoming these convergence troubles, with 
the minor drawback that one has to choose an appropriate 
value for the relaxation parameter f•, either empirically after 
every iteration or as an a priori constant. The various chord 
slope approximations were not very effective, and, like 
.relaxation, additional parameters need to be specified (toler- 
ance levels, localization regions). The Newton scheme is 
generally more robust and faster converging than Picard, 
although it too can fail to converge, in some cases for the 
same reasons as Picard (strongly nonlinear characteristic 
equations and saturated/unsaturated interfaces), and in other 
cases due to poor initial solution estimates. The mixed 
Picard-Newton approach can effectively overcome the New- 
ton scheme's sensitivity to initial solution estimates, but it 
has the disadvantage of requiring both symmetric and non- 
symmetric storage modes (unless the Picard scheme is 
stored and solved as a nonsymmetric system). This mixed 
approach requires further study to establish an optimal 
criterion for switching from Picard to Newton iteration. 

In future work the effects of heterogeneity on convergence 
behavior, not addressed in this paper, will be investigated. 
Other approaches to solving nonlinear equations will be 
implemented, such as modified Newton, quasi-Newton, im- 
plicit factored, and explicit multigrid schemes [Ortega and 
Rheinboldt, 1970; Dennis and Mor•, 1977; Paniconi et al., 
199!; Putti et al., 1990]. Three of these methods seek to 
reduce the costs associated with Newton iteration by selec- 
tively updating the Jacobian (modified Newton), approxi- 
mating the inverse Jacobian (quasi-Newton), or evaluating 

the full Jacobian but not iterating (implicit factored). The 
fourth uses an explicit time stepping scheme, along with a 
multigrid algorithm to alleviate the time step constraint 
needed to preserve stability. 
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