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Abstract. Geological and pedological processes rarely form isotropic media as is usually
assumed in transport studies. Anisotropy at the Darcy or field scale may be detected
directly by measuring flow parameters or may become indirectly evident from movement
and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many
cases, be related to the presence of lower-scale directional structures. Miller similitude
with different pore-scale geometries of the basic element is used to model macroscopic
flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor
are derived based on the dynamic law that governs the flow problem at the pore scale.
The effects of anisotropy on transport parameters are estimated by numerical modeling.

1. Introduction

Processes such as sedimentation, compaction, frost action,
and reorientation of the solid matrix are responsible for the
creation of anisotropic natural porous media. Anisotropy can
also be a characteristic of manufactured porous media like
those made of irregularly shaped particles formed by extrusion
or pelletting used in chemical engineering processes. Macro-
scopic effects of anisotropy are, for instance, the property of
showing directionally varying conductivities or, referring to
transport problems, dispersivities that may be larger or smaller
relative to the corresponding isotropic medium, depending on
the water content [McCord et al., 1990; Stephens and Heerman,
1988]. Flow through unsaturated porous media is often de-
scribed based on saturated and relative conductivity functions.
Many authors extended the concept of relative conductivity to
anisotropic media by assuming that this property per se is
directionally independent, but they used directionally differing
saturated conductivities. Results predicted by such models do
not agree with the observations where soils show different
anisotropic, saturation-dependent behavior [McCord et al.,
1990; Stephens and Heerman, 1988].

Anisotropic behavior is often attributed to the presence of
layers or anisotropic correlation structures of variables describ-
ing flow and transport. Mualem [1985] evaluated the anisot-
ropy factor of a soil consisting of many parallel layers. Green
and Freyberg [1995], focusing on state-dependent anisotropy of
conductivities caused by anisotropic correlation structures,
compared their quasi-analytical upscaling with the stochastic
approach of Yeh et al. [1985a, b]. The results of numerical
upscaling in a three-dimensional anisotropic correlation struc-
ture were analyzed by Desbarats [1998]. All of the cited studies

identified layering at the Darcy scale as the cause of macro-
scopic saturation-dependent anisotropy, leading to comparable
results. Anisotropy at the pore scale, however, is rarely con-
sidered, except in some conceptual models assuming that the
void system behaves as a bundle of capillary tubes [Bear et al.,
1987] and in works based on percolation theory [Friedman and
Seaton, 1996]. Upscaling of anisotropy of the pore structure
yields a different macroscopic behavior when compared to
upscaling anisotropy of the correlation structure.

The present study complements the findings of Bear et al.
[1987] using fixed microscale principal directions for capillary
flow. We will consider three different scales: the pore scale, the
scale of the representative elementary volume (REV), as de-
fined by Hubbert [1956] and Bear [1972], and the field scale. At
the pore scale we consider the porous medium as an ensemble
of pores embedded between particles. We introduce three
anisotropic configurations of the void space: one in which only
the density of the pores in the flow cross sections is anisotropic,
one in which only the distribution of their diameters is aniso-
tropic, and another in which density and pore size distribution
are both anisotropic. Then, we derive the anisotropy factor of
the conductivity tensor. Upscaling properties of the pore scale
over a basic volume define the properties of the REV. The
structure of the soil at the field scale is defined by a heteroge-
neous domain consisting of many REVs. We assume that the
different basic elements of the heterogeneous medium are
geometrically similar according to Miller and Miller [1956].
Heterogeneity then is the result of a random distribution of the
Miller scaling factors. It is assumed that the correlation struc-
ture of the Miller scaling factors is isotropic. We evaluate
transverse and longitudinal dispersivity by numerical simula-
tion. Finally, we show the effect of anisotropy on transport by
evaluating the ratio between the dispersivity of an anisotropic
medium and the dispersivity of the corresponding isotropic
medium for different water fluxes.
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2. Theory

2.1. Upscaling Procedures for the Anisotropic Conductivity
Tensor

The REV is an operational definition which implies that the
physical properties of the porous media at a scale smaller than
that of the REV affect macroscale processes only in a statisti-
cal sense. As a consequence, any continuum model, being
based on the characterization of the REV, relies on the as-
sumptions regarding the subscale soil structure and the dynam-
ics of fluids at the pore level. It is obvious that size, shape, and
arrangement of solid particles, varying from soil to soil, have a
profound impact on flow and transport. In this section we
discuss the applicability of the scaling procedure developed by
Miller and Miller [1956] to anisotropic media. We then present
three different idealized anisotropic structures, and we derive
the macroscopic anisotropy factor of the corresponding REVs.

Miller similitude is a physically based algorithm for defining
scale-invariant capillary processes in unsaturated geometrically
similar porous media [Miller and Miller, 1956]. It is based on
the physical relationship between matric potential and pore
size. Each REV is geometrically similar to the others and is
identified by a characteristic length, that is, the size of grains
and pores with respect to some reference element. Scaled
relationships are derived assuming that the microscopic behav-
ior of the liquid phase is governed by surface tension and the
law of viscous flow. Isotropy of the macroscopic properties of
the medium is defined by Miller and Miller [1956] as “a non-
essential simplifying assumption.” However, it is invoked to
justify the assumption of parallelism between driving force and
velocity in deriving Darcy’s law from the viscous flow equation.
We postulate that it is possible to choose the REV scale and
the microscopic anisotropy factor in a way that the parallelism
between driving force and velocity still holds when a gradient
in one or the other of the main directions is imposed.

A crucial assertion of the Miller-scaling procedure is that,
given a certain water content, similar elements of the porous
medium are in a similar state. The concept of similar state
requires postulating invariance of volumetric water content
(classical Miller scaling) or invariance of areal pore size distri-
bution (generalized scaling) [Sposito and Jury, 1990]. In the
following the pore space distribution is the invariant quantity.
Conceptually, the scaling factor applies to a complex system of
stream tubes. In the anisotropic case this system has direction-
dependent average numbers of tubes and/or diameter sizes.
We will analyze three different anisotropic geometrically sim-
ilar microstructures. For each microstructure, at the pore scale,
the anisotropy is quantified with a microscopic anisotropy fac-
tor ai, with i 5 1, 2, and 3, that represents the ratio between
the characteristic length of some geometric variable in the two
main directions. At the larger scale the effect of the pore scale
anisotropy ai is quantified by the ratio between the conductiv-
ities in the main directions (macroscopic anisotropy factors
Ai). Figure 1 shows schematically the reference configuration
for the isotropic (Figure 1a) and the three different anisotropic
Miller-similar media that we analyze.

The first of the proposed models (Figure 1b) represents a
medium with direction-dependent average number of pores.
The microscopic anisotropy factor a1 is defined as the ratio
between the characteristic lengths of the grains in the two main
directions. The oblate grains are all oriented in the same di-
rection. The structure of a square REV is characterized by a
larger number of pores in the direction of the smaller grain

length and by a direction-independent statistical distribution of
the pore diameters, coincident with that of the corresponding
isotropic medium. The ratio between the average number of
pores in the two main directions assumes the constant value
1/a1. The effect of a direction-dependent pore density on the
conductivity K can be derived with the one-dimensional form
of Darcy’s law:

K 5
qDz
DC

, (1)

where q [L/T] is the flux through all the conductive channels
in the squared REV with dimension Dz [L] and DC [L] is the
imposed pressure difference between the inlet and the outlet
boundaries. Because the statistical pore size distribution is
direction-independent, q is proportional to the average num-
ber of pores contributing to the flow process at a given satu-
ration degree. As a consequence, in this case, the macroscopic
anisotropy factor A1, defined as the ratio between the conduc-

Figure 1. Schematic representation of basic porous struc-
tures of different Miller-similar media. (a) Isotropic, (b) aniso-
tropic average number of pores (anp) and isotropic pore size
distribution (psd), (c) anisotropic psd and isotropic anp, and
(d) anisotropic anp and psd.
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tivities of the REV in the two main directions, is equal to the
inverse of the microscopic anisotropy factor a1 and does not
depend on saturation;

A1 5 Kz/Kx 5 1/a1, (2)

where Kz and Kx are the vertical and horizontal components of
the conductivity tensor, respectively.

The second model of anisotropy, shown in Figure 1c, de-
scribes direction-dependent distributions of pore sizes. The
average number of pores is the same in the two main direc-
tions. To estimate the effect of the microscopic anisotropy
factor a2 on the macroscopic anisotropy factor A2, we make
use of the scaling theory of Miller and Miller [1956] twice, once
when the mean gradient and flow are parallel to one of the
main directions and once when they are parallel to the other,
to obtain the scaled components of the conductivity tensor Kz

and Kx.
The functional relationships between soil properties at dif-

ferent locations of an isotropic heterogeneous domain which
obeys Miller-Miller similarity are [Miller and Miller, 1956]:

l9C9~Q! 5 lC~Q! (3)

K9~Q!

l92 5
K~Q!

l2 , (4)

where Q 5 u/us is the relative water saturation (ratio between
the volumetric water content u and the volumetric water con-
tent at saturation us), K9(Q) represents the dependence of
the hydraulic conductivity on the relative water saturation in
the neighborhood of a region with characteristic scale l9, and
K(Q) represents the same relationship in the neighborhood of
a region with characteristic scale l. We can also express the
conductivities K9[C9(Q)] 5 K9[C(Q)l/l9] and K[C(Q)] as
a function of the corresponding pressures by eliminating Q.
Equations (3) and (4) were used to derive the horizontal and
vertical conductivities of an anisotropic element with respect to
a reference conductivity. Assuming that a2 is the ratio between
the characteristic pore-scale lengths in the two main directions,
we consider gradient and flow parallel to each one of them.
Applying the Miller-scaling procedure for the cases in which
the mean gradient is directed in each one of the two main
directions, assuming that the average number of pores is the
same, and expressing the conductivities as a function of pres-
sure, we obtain

Kz~C! 5 K~C! (5)

Kx~C! 5
1
a2

2 KSC

a2
D . (6)

Kz and Kx are the main components of the conductivity tensor
(vertical and horizontal, respectively, with respect to Figure 1),
and K is the reference conductivity. For such an anisotropic
medium the anisotropy factor A2 is a function of capillary
pressure head:

A2~C! 5
Kz

Kx
5

a2
2K~C!

K~C/a2!
. (7)

The third model proposed (Figure 1d) is a particular case of
direction-dependent number of pores and pore sizes. Consider
an isotropic reference state and stretch or squeeze it in one
direction by a factor a3. The ratio between the scaling factors
of the pore sizes in the two main directions is a3, and the ratio
between average number of pores is 1/a3. The two effects tend

to compensate each other partially. The resulting conductivity
anisotropy factor has the following form:

A3~C! 5
Kz

Kx
5

a3K~C!

K~C/a3!
. (8)

2.2. Numerical Solution of Flow and Transport Problems
in Anisotropic Heterogeneous Porous Media

Many numerical studies demonstrate the influence of small-
scale heterogeneity on flow and transport through macroscop-
ically isotropic Miller-similar media [Russo, 1991; Tseng and
Jury, 1994; Roth, 1995]. We will now explore the effect of
relaxing the hypothesis of isotropy on the basis of numerical
simulations. We solve numerically the problem of flow and
transport for anisotropic media with properties corresponding
to models in Figures 1b and 1c, as derived in section 2.1. The
details of the implemented numerical procedure to determine
longitudinal and transverse dispersivity are given by Roth
[1995] and Roth and Hammel [1996]. We focus on a single
realization of a random field of lognormally distributed scaling
factors. The correlation structure of the logarithm of the scal-
ing factor was characterized by a variance of sl

2 5 0.25, by an
isotropic correlation length of Ll 5 0.1 m, and by an expo-
nential autocovariance. We considered a two-dimensional do-
main extending 5 m in the horizontal direction and 6.25 m in
the vertical direction, which is discretized with a grid constant
of 0.025 m. Uniform and constant water flow was assumed at
the top boundary, and a pressure of zero was assumed at the
bottom boundary. Different flow rates were used to examine
the effect of differing average pressures. The soil properties
were parameterized according to the Mualem-van Genuchten
model [van Genuchten, 1980], which is used in the following
form

C~Q! 5 2a21@Qn/~12n! 2 1#~1/n! (9)

K~Q! 5 KsQ
1/ 2$1 2 @1 2 Qn/~n21!#121/n%2 (10)

Q 5 u/u s. (11)

The vertical component of the conductivity was always kept
constant Kz 5 K(Q), whereas the horizontal component Kx

was varied according to the proposed relations (2) and (7).
This provided, for a given water flux, an average water content
independent of the microscopic anisotropy factors. The follow-
ing parameters were used: Ks 5 1025 m s21, a 5 4 m21, us 5
0.4, and n 5 2. These values are typical for a sand, which is
a medium that might possibly follow Miller scaling. The flow
problem was solved for steady state conditions. Afterward, the
solute transport was explored by particle tracking. Particles are
initially located at the upper boundary and are uniformly dis-
tributed horizontally with the exception of a 0.5 m neighbor-
hood of the vertical boundaries to prevent boundary effects.
We deal exactly with the problem setup defined by Roth [1995]
and Roth and Hammel [1996] but with a new realization of
scaling factors l and with anisotropic conductivities. Subscale
dispersion (local dispersion) is neglected. The longitudinal dis-
persivity a l and the transverse dispersivity a t were estimated
according to the following expressions:

a l 5
z Var@t~ z!#

2^t~ z!&2 (12)

a t 5
Var@Dx~ z!#

2z , (13)
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where t( z) is the arrival time at a certain depth z of a generic
particle, ^t( z)& is its expectance, Var[t( z)] is its variance, and
Var[Dx( z)] is the variance of the horizontal deviation of the
generic particle with respect to the initial point of injection.

On the basis of the obtained numerical results, we estimated
two anisotropy factors: the longitudinal and the transverse
dispersivity ratios. The first is the ratio between the longitudi-
nal dispersivity (LDR) derived for an anisotropic case and the
one obtained assuming ai 5 1 (isotropic case):

LDR 5
a l@ai Þ 1#

a l@ai 5 1#
. (14)

The second is the ratio between the transversal dispersivity
(TDR) derived for an anisotropic case and the one obtained in
the corresponding isotropic case:

TDR 5
a t@ai Þ 1#

a t@ai 5 1#
. (15)

3. Results and Discussion
3.1. Anisotropic Conductivity Tensor

Equations (2), (7), and (8) express the results of the upscal-
ing procedures described in section 2.2. The macroscopic an-
isotropy factor A1 is constant for all saturation degrees. There-
fore anisotropy at the REV scale is completely defined by a
saturated conductivity tensor. The macroscopic anisotropy fac-
tors A2 and A3 are functions of the capillary pressure head.
The scaling procedure captures the tensorial nature of the
relative conductivity function. In the following we analyze the
relations A2(C) and A3(C) in more detail.

Figure 2a shows the pressure dependence of the anisotropy
factors A2, and Figure 2b shows the pressure dependence of
A3 for microscopic anisotropy factors a2,3 5 0.2, 0.5, 1, 2, 5,
and 7.07. A2(0) 5 a2

2 and A3(0) 5 a3 represent the ratios
between the two main components of the saturated conductiv-
ity tensor defined at the REV level for given a2,3. The curves
plotted in Figure 2 show an interesting feature: These aniso-
tropic media are more conductive in one direction at high-
pressure values but become more conductive in the perpen-

dicular direction at low-pressure values. The switching point
between these two different regimes moves to lower-pressure
values (to smaller water saturation) for increasing a2 or a3.
When a2 5 a3, the switching point of the A2 function takes
place for lower pressures with respect to the switching point of
the A3 function. At the point where the anisotropy factor
equals one, the medium shows isotropic behavior. The exis-
tence of a switching point separating the two complementary

Figure 3. Trajectories and isobars. Macroscopic anisotropy
factor is A1 5 10 (saturation independent). Here a1 5 0.1,
with 2log ( jw

0 /Ksz) 5 2 and 4 (these numbers are reported on
the right side).

Figure 2. Pressure-dependent anisotropy factors A2,3 5 Kz/Kx for a2,3 5 0.2, 0.5, 1, 2, 5, and 7.07. (a)
Cases of anisotropic pore size distribution but isotropic number of pore ( A2). (b) Cases of anisotropic
number of pores and pore size distribution ( A3). The horizontal line applies to the isotropic medium
characterized by a2,3 5 1. An intersection of another curve with the isotropic case indicates the switching
point of the anisotropic medium where it behaves like isotropic.
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regimes is related to the directionally dependent pore size
distribution. For lower-pressure values, water moves mainly
through the smaller pores, and the medium is more conductive
in the direction of their higher abundance. At higher pressure
(closer to water saturation) the larger pores are water-filled,
and water might more easily flow in the other direction.

3.2. Steady State Flow and Transport in Unsaturated
Miller-Similar Media

We will solve the transport problem for the media charac-
terized by anisotropic average number of pores and by aniso-
tropic pore size distribution only. For the first model of an-
isotropy, with a pressure-independent anisotropy factor A1,
two cases were considered: vertical grain orientation (a1 5
0.1), shown in Figure 3, and horizontal grain orientation
(a1 5 10), shown in Figure 4. For each value of a1 the
transport problem was solved for two different upper boundary
conditions, namely, 2log ( jw

0 /Ksz) 5 2 and 4, where jw
0 is the

imposed water flux at the surface. For the medium character-
ized by a pressure-dependent anisotropy factor A2, four dif-
ferent water fluxes jw

0 were considered: 2log ( jw
0 /Ksz) 5 1, 2,

3, and 4. In the reported examples the microscopic anisotropy
factor was a2 5 7.07 (Figure 5). When the medium is satu-
rated, the macroscopic anisotropy factor is A2 5 Ksz/Ksx 5
50. The corresponding isotropic cases are shown in Figure 6.

Tables 1 and 2 list, for all the cases, the water fluxes, the
corresponding average values of capillary pressure, which do
not depend on anisotropy, and the average values of the tor-
tuosity t that were computed, for the generic particle, using the
following expression:

t 5 ~,/,min!
2, (16)

where , is the effective travel distance of the generic trajectory
and ,min is the straight line between the starting and ending
points of this trajectory.

Some of the main results derived for a medium that is
macroscopically homogeneous and microscopically heteroge-
neous, isotropic, and Miller-similar [Roth, 1995; Roth and
Hammel, 1996] hold as well for the analyzed anisotropic Mill-
er-similar media. They are summarized in the following: (1) A

Figure 4. Trajectories and isobars. Macroscopic anisotropy
factor is A1 5 0.1 (saturation independent). Here a1 5 10,
with 2log ( jw

0 /Ksz) 5 2 and 4 (these numbers are reported on
the right side).

Figure 5. Trajectories and isobars. Macroscopic anisotropy
factor A2 is dependent on saturation. Here a2 5 7.07, with
2log ( jw

0 /Ksz) 5 1, 2, 3, and 4 (these numbers are reported
on the right side).
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complex network of flow channels exists. (2) The topology of
the network varies with saturation degree, and there are two
complementary states separated by a critical point at which
flow structures disappear (for the parameters chosen, the crit-
ical point appears approximatively for 2log ( jw

0 /Ksz) 5 1
[Roth, 1995]). (3) The asymptotic state for transport is reached
after traveling about 10 correlation lengths of the underlying
structure. (4) The asymptotic longitudinal dispersivity depends
on the water flux and has a minimum near the critical point.

For the rest of this paper we focus on features related to
anisotropy. A first qualitative statement about the topography
of trajectories and isobars is the following. A medium charac-
terized by pore-scale anisotropy exhibits macroscopically a ten-

Figure 6. Trajectories and isobars. Isotropic case is shown
with 2log ( jw

0 /Ksz) 5 1, 2, 3, and 4 (these numbers are
reported on the right side).

Figure 7. Ratio between the longitudinal dispersivity in an
anisotropic medium with a constant anisotropy factor A1 and
the longitudinal dispersivity in an isotropic medium for two
different water flow rates: 2log ( jw

0 /Ksz) 5 2 and 4 (these
numbers are reported in Figure 7). Long and short dashes
correspond to the cases a1 5 10 and a1 5 0.1, respectively.

Table 1. Summary of Simulations for Constant
Macroscopic Anisotropy Factor

2log
( jw

0 /Ksz)
Mean

Pressure, m

Tortuosity

a1 5 1 a1 5 10 a1 5 0.1

2 20.5 1.1 1.2 1
4 21.6 1.1 1.4 1

Table 2. Summary of Simulations for Pressure-Dependent
Macroscopic Anisotropy Factor

2log
( jw

0 /Ksz)
Mean

Pressure, m

Tortuosity

a2 5 1 a2 5 7.07

1 20.2 1 1
2 20.5 1.1 1.1
3 20.9 1.1 1.3
4 21.6 1.1 1.6

URSINO ET AL.: UNSATURATED MILLER-SIMILAR POROUS MEDIA426



dency to behave like a “column” system or a “layer system,”
depending on the direction of the higher conductivity being
vertical or horizontal. The term column is inspired mainly by
the geometry of the trajectories in a medium that is more
conductive in the vertical direction, and the term layer is in-
spired by the pressure distribution aspect of a medium that is
more conductive in the horizontal direction. When the macro-
scopic anisotropy factor remains constant for different flow
rates, a particular soil behaves always either like a column
system or like a layer system. When the anisotropy factor
depends on the mean pressure, the same medium, for different
water flows, switches from a column system at one flow rate to
a layer system at another flow rate. In between, at the switching
point, it behaves isotropically. In the following we will summa-
rize the main properties of these two different regimes.

The capillary pressure head exhibits large-scale structures
that differ considerably between the column and the layer
system. In the column system the pressure tends to compensate
the random distribution of the scaling factors in the vertical
direction, leading to large pressure gradients. In the layer sys-
tem the pressure tends to be constant in the horizontal direc-
tion. The trajectories are almost straight and vertical in the
column regime and are more tortuous in the layer system as

depicted in Figures 4–6. It is important to note that the switch-
ing point between the layer and the column system is not
identical to the critical point between the “coarse-texture high-
conductivity” and the “fine-texture high-conductivity” regimes
as defined by Roth [1995]. At the critical point the medium
behaves almost homogeneously; at the switching point it be-
haves almost isotropically. Close to the critical point, the effect
of anisotropy becomes negligible, since the network structure
of the flow channels disappears, and, for the particular bound-
ary conditions considered, the flow field tends to be one-
dimensional. Far from the critical point, the pore-scale anisot-
ropy has a striking effect on the conductivity, on the topology
of the trajectories, and on the transversal dispersivity com-
pared to the corresponding isotropic case, as will be shown in
section 3.3.

3.3. Dispersivity Ratios

The longitudinal and transversal dispersivity values (equa-
tions (12) and (13)) were used to estimate a second index of
anisotropy at the field scale: the ratio between the dispersivity
evaluated for the anisotropic case and that evaluated for the
corresponding isotropic case (assuming a1 5 1) as stated in
(14) and (15). The values of these dispersivity ratios are plotted
as a function of depth. Figures 7 and 8 depict the longitudinal

Figure 8. Ratio between the longitudinal dispersivity in an
anisotropic medium with a pressure-dependent anisotropy fac-
tor A2 and the longitudinal dispersivity in an isotropic medium
for four different water flow rates: 2log ( jw

0 /Ksz) 5 1, 2, 3,
and 4. The microscopic anisotropy factor is a2 5 7.07 leading
to a macroscopic anisotropy factor A2 5 50 at saturation.
Increasing dash lengths correspond to decreasing water fluxes.

Figure 9. Ratio between the transverse dispersivity in an
anisotropic medium with a constant anisotropy factor A1 and
the transverse dispersivity in an isotropic medium for two dif-
ferent water flow rates: 2log ( jw

0 /Ksz) 5 2 and 4 (these
numbers are reported in Figure 9). Long and short dashes
correspond to the cases a1 5 10 and a1 5 0.1, respectively.
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dispersivity ratio values for the constant ( A1) and for the
pressure-dependent ( A2) macroscopic anisotropy factors, re-
spectively. Transversal dispersivity ratios are plotted for the
same cases in Figures 9 and 10. Note that the underlying
structure for the various flow field simulations always corre-
sponded to the same realization.

In the examined cases the longitudinal dispersivity does not
seem to be influenced by variations of the microscopic anisot-
ropy factors at different flow rates (Figures 7 and 8). In other
words, the variability of travel times at a given flow rate seems
to be independent of the lateral displacement due to anisot-
ropy. A systematic variation of the transversal dispersivity is
induced by anisotropy (Figures 9 and 10). The dispersivity
ratios clearly depend on the value of the macroscopic anisot-
ropy factor A1 or A2. When the macroscopic anisotropy factor
is pressure-dependent ( A2), the dispersivity ratio, for decreas-
ing water flux, shifts from values less than 1 to values larger
than 1. In the case A1 5 10 it is evident that lower water flux
leads to higher tortuosity (Table 1) and higher transverse dis-
persivity ratio (Figure 9). When A1 5 0.1, because of anisot-
ropy, trajectories are straight vertical (t 5 1 in Table 1), and
the transverse dispersivity ratio does not depend on the water
flux (Figure 9). Water flows in a complex network of channels

which have a characteristic length [Roth, 1995]. The periodicity
of the transverse dispersivity ratio and the tortuosity of the
trajectories can be related to this “channel length.” The sig-
nificant fluctuations of the ratio between transversal dispersivi-
ties with depth can be attributed to nonergodicity. For our
particular realization the mean trajectory (not shown) is not
vertical, when not forced by anisotropy. Deviation depends on
anisotropy. In ergodic conditions the transversal dispersivity is
proportional to the spreading around the trajectory of the
ensemble centroid [Dagan, 1989]. In our case, as a conse-
quence of nonergodicity, dispersivity is partly overestimated
with respect to the ergodic case because the center of mass of
the plume does not travel vertically along the mean direction
of flow. To test this assertion, we computed the variance of
displacement around the nonzero mean transversal displace-
ment instead of around the injection point, deriving an “effec-
tive transversal dispersivity ratio.” This effective transversal
dispersivity ratio shows less pronounced fluctuations (Figures
11 and 12).

4. Conclusions
In this paper we demonstrated the striking effects of mi-

croscale anisotropy on hydraulic conductivity and transverse

Figure 10. Ratio between the transverse dispersivity in an
anisotropic medium with a pressure-dependent anisotropy fac-
tor A2 and the transverse dispersivity in an isotropic medium
for four different water flow rates: 2log ( jw

0 /Ksz) 5 1, 2, 3,
and 4. The microscopic anisotropy factor is a2 5 7.07 leading
to a macroscopic anisotropy factor A2 5 50 at saturation.
Increasing dash lengths correspond to decreasing water fluxes.

Figure 11. Ratio between the variance of the displacement
around the mean transverse displacement in an anisotropic
medium with a constant anisotropy factor A1 and the variance
of the displacement around the mean transverse displacement
in an isotropic medium for two different water flow rates: 2log
( jw

0 /Ksz) 5 2 and 4 (these numbers are reported in Figure 11).
Long and short dashes correspond to the cases a1 5 10 and
a1 5 0.1, respectively.

URSINO ET AL.: UNSATURATED MILLER-SIMILAR POROUS MEDIA428



dispersivity in a very simple case: that of steady state flow, no
subscale dispersion, and main flow parallel to the structure
bedding. From lateral dispersion observed in field experiments,
anisotropic conductivities can be inferred, but detection of the
subscale (pore scale) properties of the soil, that could provide
an explanation for the macroscopic anisotropic behavior, is in
many cases experimentally not possible. Therefore models that
link microscopic soil properties with macroscopically observ-
able parameters like dispersivity can help to accept or reject
structural hypotheses.

We compared conceptual models of anisotropy at the pore
scale applying Miller similarity. One of the pore-scale models
leads to a constant anisotropy factor expressed as the ratio
between conductivities in the two main directions. The other
models yield anisotropy factors which strongly depend on sat-
uration. In particular, the conductivity ratios switch from val-
ues below 1 to values above 1 or vice versa, depending on
saturation. In the examined cases only the transverse disper-
sivities were considerably affected by anisotropy, whereas the
longitudinal dispersivities remained more or less invariant.
Note, however, that relatively large variations of the conduc-

tivity ratios lead only to relatively small variations of the trans-
verse dispersivity ratios as compared to the isotropic cases,
when local dispersion is neglected.

We would like to stress the fact that the correlation structure
in this analysis was isotropic. It is well known that a macro-
scopic anisotropic pressure-dependent behavior may also orig-
inate from the presence of thin layers of different materials
[Mualem, 1985], or, more generally, from an anisotropic cor-
relation structure [Desbarats, 1998; Yeh et al., 1985a, b]. Here
we demonstrate the effect of pore geometry of an idealized,
inert, and nondeformable Miller-similar microstructure on
flow and transport. The geometry of the microstructure can
lead to anisotropic behavior at the larger scale, even if the
system is characterized by an isotropic correlation structure.
Anisotropic correlation structure of hydraulic parameters and
anisotropy in the pore structure do not lead to the same mac-
roscopic behavior. Both types of anisotropy can be modeled by
assuming a properly upscaled anisotropic, saturation-
dependent conductivity tensor, but the dependence of the con-
ductivity tensor on the water content is different for the two
concepts of anisotropy. An anisotropic pore size distribution
gives a conductivity ratio that is larger or lower than 1, de-
pending on saturation; the medium acts as a column as well as
a layer system. Such a switching behavior cannot be repro-
duced by assuming anisotropy in the correlation structure: the
REV turns out to be always more conductive in the direction
parallel to the bedding [Mualem,, 1985; Yeh et al., 1985b;
Russo, 1995a, b; Desbarats, 1998]. For this reason, comparing
experimental observations with simulation results will allow
discrimination between a model based on anisotropic correla-
tion structures and a conceptual model based on anisotropy of
the void space of the medium. The results obtained suggest in
addition the importance of investigating microstructures to
justify or reject the assumptions about the pore space. This will
avoid that such models be used as a black box. Finally, the
pore-scale models may also help to design artificial porous
media with well-defined anisotropic characteristics.
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