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Abstract. In this paper, we consider the dependence of the Dirichlet eigenva-
lues and eigenspaces of the Laplace operator upon perturbation of the domain of
definition. We prove that the dependence of a certain eigenvalue and of the corre-
sponding eigenspace is analytic on the set of perturbations that leave the multiplicity
constant.
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1. Introduction. For a given regular, connected, bounded open subset � of Rn,
we consider the Dirichlet eigenvalue problem

��u ¼ �u in �;
u ¼ 0 on @�;

�
ð1:1Þ

for � 2 R, u in the Schauder space Ck;�ðcl�Þ of the k-times continuously differenti-
able functions of cl� to R, with �-Hölder continuous k-th order derivatives, for
k � 2, � 2 �0; 1½ . It is well known that problem (1.1) has an increasing sequence of
eigenvalues, that we write as 0 < �1 < �2 	 . . . 	 �j 	 . . ., where each eigenvalue is
repeated as many times as its multiplicity. If � is a diffeomorphism of cl� onto
cl�ð�Þ of class

�
Ck;�ðcl�Þ

�n
, then �ð�Þ is again a sufficiently regular bounded open

domain of Rn, and it makes sense to consider the Dirichlet eigenvalues f�j½��gj2Nnf0g
of �� in the ‘perturbed’ domain �ð�Þ.

Several authors have investigated the problem of establishing the regularity of
the maps which take a perturbed domain, here �ð�Þ, to the spectrum of �� in �ð�Þ,
here f�j½��gj2Nnf0g. For a treatment of this problem, we refer to Chow and Hale [2],
Desaint and Zolésio [5] and Henry [9].

It is well known that the maps � 7!�j½�� are continuous (cf. Courant and Hilbert
[3].) Cox [4] has shown a Lipschitz continuity result for the dependence of �j½�� upon
�. It is also known that if a certain eigenvalue �j½ ~��� relative to the domain ~��ð�Þ has
multiplicity one, then �j½��, as well as a suitably normalized eigenvector relative to
�j½��, depend real analytically upon � in a neighborhood of ~�� (cf. Henry [9], Prodi
[21]). For related results, see also Chow and Hale [2], Desaint and Zolésio [5], [6] and
Gekeler [7].

Glasgow Math. J. 44 (2002) 29–43. # 2002 Glasgow Mathematical Journal Trust. Printed in the United Kingdom



In general, if the multiplicity of �j½ ~��� is greater than one, we do not expect that
�j½�� depends analytically on � around ~��. However, it makes sense to consider the
set of perturbations, sayMk;�;j;m, of those �’s for which �j½�� has multiplicity m, and
one may question whether the function �j½��, as well as the eigenspace relative to �j½��,
depend with a certain degree of regularity on � 2 Mk;�;j;m.

We note that Kong, Wu and Zettl [10] have proved some results related in spirit
to ours. Namely, they have considered certain boundary-value problems for ordin-
ary differential equations depending on a parameter, and they have proved differ-
entiability theorems for eigenvalues of multiplicity higher than one upon variation
of the parameter, under the assumption that locally the multiplicity of the eigen-
value does not change as the parameter is perturbed.

In this paper, we prove that if the multiplicity m of �j½ ~��� is greater than one, then
the restriction of �j½�� to Mk;�;j;m, and the function which takes � 2 Mk;�;j;m to a
suitably chosen projection operator P�;j of the space for u onto the eigenspace rela-
tive to �j½�� can be extended real-analytically in a neighborhood of ~�� to a function
�̂� ~��;j½��, and to a function P̂P ~��;j½�� respectively. It should be mentioned however, that if
� does not belong to Mk;�;j;m, then we cannot expect, in general, that �̂� ~��;j½�� and
P̂P ~��;j½�� coincide with �j½�� and P�;j, respectively.

The idea of the proof is to set up a suitable functional equation involving the
eigenvalues, the function �, and the projection operators associated to the eigen-
spaces, and to use the Implicit Function Theorem. Our methods differ completely
from the classical methods used to study the analytic dependence of the eigenvalues
of a real or complex parameter dependent family of compact self adjoint linear
operators in Hilbert space, which could instead be used to deduce analyticity results
for the dependence of �j½�ðtÞ� upon t, when f�ðtÞgt2R is a one parameter real analytic
family of domain diffeomorphisms.

It should be noted that Lupo and Micheletti [15] have proved that the set of �’s
of class C3 which preserve the multiplicity m ¼ 2 of a certain eigenvalue is locally a
manifold of codimension mðmþ1Þ

2 � 1 in C3, and have given a sufficient condition for
the same result to hold for m > 2. (See also Lupo and Micheletti [16], [17] for related
results.) As we shall see in a forthcoming paper, the same result can be proved for
�’s of class Ck;� by exploiting the methods of this paper.

2. Technical preliminaries and notation. We denote the norm on a (real) normed
space X by k � kX . Let X and Y be normed spaces. We equip the product space
X � Y with the norm k � kX�Y � k � kX þ k � kY , while we use the Euclidean norm for
Rn. By LðX ;YÞ we denote the normed space of the continuous linear maps of X to Y
equipped with the topology of uniform convergence on the unit sphere of X .
BðX � Y;ZÞ denotes the normed space of the continuous bilinear maps of X � Y to
the normed space Z, and is equipped with the topology of uniform convergence on
the cross product of the unit sphere of X and of the unit sphere of Y. For standard
definitions of calculus in normed spaces, we refer to Prodi and Ambrosetti [22].
Furthermore, N denotes the set of natural numbers including 0. Throughout the
paper, n is an element of N n f0g. The inverse function of an invertible function f is
denoted f ð�1Þ, as opposed to the reciprocal of a complex-valued function g, or the
inverse of a matrix A, which are denoted g�1 and A�1, respectively. A dot ‘�’ denotes
the inner product in Rn, or the matrix product between matrices with real entries.
Let A be a matrix. Then At denotes the transpose matrix of A, and trA denotes the
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trace of A. The set of r� r matrices with real entries is denoted by MrðRÞ. Let
E � Rn. Then clE denotes the closure of E. For all R > 0, x 2 Rn, jxj denotes the
Euclidean modulus of x in Rn, and Bðx;RÞ denotes the ball fy 2 Rn : jx� yj < Rg.
Let � be an open subset of Rn. The space of k times continuously differentiable real-
valued functions on � is denoted by Ckð�Þ. Let f 2

�
Ckð�Þ

�n
. The s-th component

of f is denoted fs, and Df denotes the gradient matrix @fs
@xl

� �
s;l¼1;...;n

. Let 
 �

ð
1; . . . ; 
nÞ 2 Nn, j
j � 
1 þ . . .þ 
n. Then D
f denotes @j
jf

@x
1
1

...@x
nn
. The subspace of

Ckð�Þ of those functions f such that f and its derivatives D
f of order j
j 	 k can be
extended with continuity to cl� is denoted by Ckðcl�Þ. Let � be a bounded open
subset of Rn. Ckðcl�Þ equipped with the norm k f kk �

P
j
j	k supcl� jD


f j is a
Banach space. The subspace of Ckðcl�Þ whose functions have k-th order derivatives
that are Hölder continuous with exponent � 2 ð0; 1� is denoted Ck;�ðcl�Þ, (cf. e.g.
Gilbarg and Trudinger [8].) Let E � Rn. Then Ck;�ðcl�;EÞ denotes
f 2 Ck;�ðcl�Þ

� �n
: fðcl�Þ � E

� �
. Ck;�ðcl�;MrðRÞÞ denotes the space of functions of

cl� to MrðRÞ, whose components are of class Ck;�. If f 2 C0;�ðcl�Þ, then its Hölder

quotient j f j� is defined as j fðxÞ�fðyÞj
jx�yj� : x; y 2 cl�; x 6¼ y

n o
. The space Ck;�ðcl�Þ, equip-

ped with its usual norm k f kk;� ¼ k f kk þ
P

j
j¼k jD

f j�, is well known to be a

Banach space. We say that a bounded open subset is of class Ck or of class Ck;�, if it
is a manifold with boundary imbedded in Rn of class Ck or Ck;�, respectively.

We summarize in the following statement some known properties of the
Schauder spaces that we need in the sequel (cf. e.g. Gilbarg and Trudinger [8], and
[12, Section 2]).

Lemma 2.1. Let k 2 N, �, � 2 �0; 1�. Let � be a bounded connected open subset of
Rn of class C1.

(i) The pointwise product is continuous in Ck;�ðcl�Þ.
(ii) Ckþ1ðcl�Þ is continuously imbedded in Ck;1ðcl�Þ.
(iii) If � > �, then Ck;�ðcl�Þ is compactly imbedded in Ck;�ðcl�Þ.
(iv) If f flgl2N is a bounded sequence of Ck;�ðcl�Þ, that converges pointwise to

some f 2 C0ðcl�Þ, then f 2 Ck;�ðcl�Þ and f flgl2N converges to f in Ck;�ðcl�Þ, for all
� 2 �0; �½.

As we have announced in the introduction, we shall parametrize our domains by
means of diffeomorphisms � 2 Ck;�ðcl�;Rn

Þ. To apply our methods, we need to
show that the set of such �’s is open. Thus we introduce the following variant of [13,
Lemma 5.2] and [14, Lemma 2.2].

Lemma 2.2. Let � be a bounded connected open subset of Rn of class C1. Then the
following statements hold.

(i) The set A � � 2 C1ðcl�;Rn
Þ : � is injective; detD�ðxÞ 6¼ 0; 8x 2 cl�g

�
is

open in C1ðcl�;Rn
Þ.

(ii) If � 2 A, then @�ðcl�Þ ¼ �ð@�Þ ¼ @�ð�Þ, and �ð�Þ is the interior of �ðcl�Þ.
The map � is a homeomorphism of cl� onto cl�ð�Þ.

We summarize in the following Lemma the properties of the composition and of
the inversion of functions in Schauder spaces that we need in the sequel. For a
proof, we refer to [12, Lemmas 3.1, 4.26, and Theorem. 4.28].
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Lemma 2.3. Let k 2 N n f0g, � 2 �0; 1�. Let �, �1 be open bounded connected
subsets of class C1 of Rn. Then the following statements hold.

(i) If ð�; Þ 2 Ck;�ðcl�1Þ � Ck;�ðcl�; cl�1Þ, then � �  2 Ck;�ðcl�Þ.
(ii) If � 2 Ck;�ðcl�;Rn

Þ \ A, then the inverse function �ð�1Þ 2 Ck;�ðcl�ð�Þ;Rn
Þ.

Next, we have the following result.

Lemma 2.4. Let k 2 N n f0g, � 2 �0; 1�. Let � be an open bounded connected subset
of Rn of class Ck;�. Let � 2 Ck;�ðcl�;Rn

Þ \ A. Then �ð�Þ is of class Ck;�.

Proof. Since � is of class Ck;�, it is well known that each � 2 Ck;�ðcl�;Rn
Þ

admits an extension � of class Ck;� in a ball clBð0;RÞ containing cl� in the interior.
By applying the Inverse Function Theorem to the function � at the points of @�,
and by using the local charts of @�, one can easily construct local charts around the
points of @�ð�Þ. &

We collect in the following Theorem a few well-known facts on the eigenvalues
of the Laplace operator.

Theorem 2.5. Let k 2 N n f0; 1g, � 2 �0; 1½. Let � be an open bounded connected
subset of Rn of class Ck;�. Let � 2 Ck;�ðcl�;Rn

Þ \ A. Then the boundary value
problem

��v ¼ �v in �(�),
v ¼ 0 on @�(�),

�
ð2:6Þ

has a nontrivial solution v 2 Ck;�ðcl�ð�ÞÞ if and only if � is a term of an increasing
sequence f�j½��gj2Nnf0g in �0;þ1½. For each � 2 f�j½�� : j 2 N n f0gg, problem (2.6) has
a finite dimensional space of solutions. We call the dimension of this space the multi-
plicity of the eigenvalue �, and we agree to repeat each eigenvalue in the sequence
f�j½��gj2Nnf0g as many times as its multiplicity. For each fixed j 2 N n f0g, the map �j½��

of Ck;�ðcl�;Rn
Þ \ A to R that takes � to �j½�� is continuous.

For the proof of the first part of the statement, we refer to Nečas [20, Theorem
3.1, p. 135] and to Gilbarg and Trudinger [8, Theorem 6.19, p. 111 and Theorem
8.37, p. 214]. For the statement concerning the continuity of the eigenvalues, we
refer to Courant and Hilbert [3, Theorem 8, p. 419].

We close the present section by collecting some known properties of elementary
operators in the following Lemma. We note that throughout the paper ‘analytic’
means ‘real analytic’. For the definition of analytic operator, we refer to Prodi and
Ambrosetti [22, p. 89].

Lemma 2.7. Let r; k 2 N, r > 0, � 2 �0; 1�. Let � be a bounded connected open
subset of Rn of class C1. Let F�1 be the inverse matrix of (an invertible)
F 2 Ck;�ðcl�;MrðRÞÞ.

(i) The pointwise matrix product, which reduces to the pointwise product of
functions when r ¼ 1, is bilinear and continuous and henceforth analytic from the space
Ck;�ðcl�;MrðRÞÞ � Ck;�ðcl�;MrðRÞÞ to the space Ck;�ðcl�;MrðRÞÞ.
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(ii) The map F 7!F�1 is analytic from F 2 Ck;�ðcl�;MrðRÞÞ :
�

det F 6¼ 0 on cl�
�

to itself, and its differential at the element F0 is given by the map
M 7! � F�10 �M � F�10 .

We also mention that continuous (multi)linear operators between normed
spaces are analytic (cf. e.g. Prodi and Ambrosetti [22]).

3. An analyticity result for multiple eigenvalues. As it is often done in the study of
domain dependent problems, we transform our boundary value problem on �ð�Þ
into a problem on � by means of the following Proposition 3.1, whose validity can
be easily verified by Lemma 2.3 and by the chain rule. Right after the statement of
Proposition 3.1, we introduce some notation and we explain the structure of this
section.

Proposition 3.1. Let k 2 N n f0; 1g, � 2 �0; 1�. Let � be an open bounded con-
nected subset of Rn of class C1. Let � 2 Ck;�ðcl�;Rn

Þ \ A, � 2 �0;þ1½. Then the
function v 2 Ck;�ðcl�ð�ÞÞ satisfies the boundary value problem (2.6) if and only if the
function u � v � � belongs to Ck;�ðcl�Þ and satisfies the boundary value problem

���u ¼ �u in �,
u ¼ 0 on @�,

�
ð3:2Þ

where ��u � �ðu � �ð�1ÞÞ
� �

� �. Furthermore

��u ¼ tr ðD�Þ�1
� �t

�ðHuÞ � ðD�Þ�1
� �n o

þ
Xn

i;s;l¼1

@u

@xi

@is

@xl
ls; ð3:3Þ

where is is the ði; sÞ entry of the matrix ðD�Þ�1, and where Hu � @2u
@xi@xs

� �
i;s¼1;...;n

. The

operator �� is uniformly elliptic in �, and its ellipticity constant in � is greater or
equal to the constant minx2cl� minf�2Rn:j�j¼1g ðD�Þ�1�t � �

� ��2��� .

We now introduce some notation. For all � 2 Ck;�ðcl�;Rn
Þ \ A, with k; j 2 N,

k � 2, j � 1, � 2 �0; 1½, we set Ck;�
0 ðcl�Þ � u 2 Ck;�ðcl�Þ : uj@� ¼ 0

� �
, and

E�;j � u 2 Ck;�
0 ðcl �Þ : ���u ¼ �j½��u in �

� �
:

Thus the multiplicity of �j½�� equals dimE�;j. Then we denote by L2
�ð�Þ the Hilbert

space of the (equivalence classes) of functions of � to R that are square summable
with respect to the measure j det D�jdx, equipped with the scalar product defined by

< u1; u2 >��

Z
�

u1u2j det D�j dx; 8u1; u2 2 L2
�ð�Þ: ð3:4Þ

Then we set

Mk;�;j;m � � 2 Ck;�ðcl �;Rn
Þ \ A : dim E�;j ¼ m

� �
;
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for all m 2 N n f0g. Now we fix an element ~�� 2 Mk;�;j;m. For all � 2 Mk;�;j;m, we

denote by P�;j the orthogonal projection of L2
~��
ð�Þ; < �; � > ~��

� �
onto the eigenspace

E�; j.
Our goal is to prove that the functions which map � 2 Mk;�;j;m to �j½�� 2 R and

to P�;j 2 L Ck;�
0 ðcl�Þ;Ck;�

0 ðcl�Þ
� �

, are real analytic around ~��, in the sense that they
admit a real analytic extension in a neighborhood of ~��. As a first step, we consider
the restriction p�;j of P�;j to E ~��;j, and we note that the triple ð�; p�;j; �j½��Þ is char-
acterized by a certain system of equations (cf. Theorem 3.6), that we recast in the
form of an abstract equation

F ½�; p; �� ¼ 0: ð3:5Þ

In order to analyze equation (3.5), we analyze the corresponding operator F in
Theorem 3.13. Now it may be natural to think of applying the Implicit Function
Theorem to equation (3.5) in order to deduce the regularity of the dependence of
ðp; �Þ as a function of �. However, this cannot be done, because the linearized dðp;�ÞF
at the reference state ð ~��; I; �j½ ~���Þ is not onto the target space of F (cf. Theorem 3.13).
We circumvent this difficulty by introducing the projection � onto the image of the
linearized operator dðp;�ÞF ~��; I; �j½ ~���

� �
, and by considering the modified equation

� � F ½�; p; �� ¼ 0, which obviously contains the zeros of equation (3.5). Then we
show that we can apply the Implicit Function Theorem to equation
� � F ½�; p; �� ¼ 0, and we obtain ðp; �Þ as a certain functional of � (cf. Theorem
3.34). In order to show that such implicitly defined functional coincides on Mk;�;j;m

with � 7!ðp�;j; �j½��Þ, a fact which we state in our main Theorem 3.34, we need to
show that p�;j is continuous at ~�� for � 2 Mk;�;j;m (see Lemma 3.20 and Proposition
3.30) and, in order to deduce the regularity of the dependence of P�;j upon � from
the corresponding result for p�;j, we shall prove the technical Lemma 3.32. Finally,
in the last part of the section, we shall derive the Hadamard formulae for the deri-
vatives of �j½�� along a curve of deformations of ~�� on Mk;�;j;m.

We now introduce a system of equations involving ð�; p�;j;�j½��Þ by means of the
following result.

Theorem 3.6. Let k 2 N n f0; 1g, j, m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. If � 2 Mk;�;j;m, then the
triple ð�; p�;j; �j½��Þ, where p�;j � P�;jjE ~��; j

and where P�;j denotes the orthogonal pro-
jection of L2

~��
ð�Þ onto E�;j, satisfies the system

�� � p�;j þ �j½��p�;j ¼ 0 in L E ~��;j;C
k�2;�ðcl �Þ

� �
;

< I� p�;j
� �

ðaÞ; p�;jðbÞ > ~��¼ 0; 8ða; bÞ 2 E2
~��;j
;

8<
: ð3:7Þ

where I denotes the inclusion map of E ~��;j in Ck;�
0 ðcl�Þ. Conversely, there exists an open

neighborhood V of ð ~��; I; �j½ ~���Þ in
�
Ck;�ðcl�;Rn

Þ \ A
�
� L

�
E ~��;j;C

k;�
0 ðcl�Þ

�
� R such

that if ð�; p; �Þ 2 V and if

�� � pþ �p ¼ 0 in L E ~��;j;C
k�2;�ðcl �Þ

� �
;

< I� pð ÞðaÞ; pðbÞ > ~��¼ 0; 8ða; bÞ 2 E2
~��;j
;

8<
: ð3:8Þ

then p ¼ P�;jjE ~��;j
, � ¼ �j½��, � 2 Mk;�;j;m.
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Proof. The first part of the statement is obvious. We now prove the second part.
Since �j½ ~��� has multiplicity m, we can assume that �j½ ~��� ¼ � � � ¼ �jþm�1½ ~���. By the
continuous dependence of the eigenvalues upon � (cf. Theorem 2.5), there exists an
open interval J containing �j½ ~���, and an open neighborhood W of ~�� such that
�h½�� 2 J for h ¼ j; . . . ; jþm� 1, �h½�� 62 J for h 2 N n f0; j; . . . ; jþm� 1g and
� 2 W. A simple contradiction argument shows that there exists an open neighbor-
hood J of I such that if p 2 J , then p is injective. Accordingly dim pðE ~��;j Þ ¼ m, for
all p 2 J . Now, if ð�; p; �Þ 2 W � J � J � V, and if equation (3.8) is satisfied, then
� is an eigenvalue whose corresponding eigenspace contains pðE ~��;j Þ, and thus � has
multiplicity at least m. Since � 2 J, � 2 W, we must have � 2 f�j½��; . . . ; �jþm�1½��g,
and thus the multiplicity of � is at most m. Then the multiplicity is m, equality
� ¼ �j½�� ¼ . . . ¼ �jþm�1½�� holds, and pðE ~��;jÞ ¼ E�;j. We still have to prove that p
coincides with the restriction to E ~��;j of the orthogonal projection of L2

~��
ð�Þ onto E�;j.

Let D � E ~��;j \ E�;j, E ~��;j �
~QQ%D, with ~QQ ? D, and E�;j ¼ D%Q, with D ? Q. Let

the space H be such that L2
~��
ð�Þ ¼

�
~QQ%D%Q

�
%H, with H ?

�
~QQ%D%Q

�
, where

all direct sums have been taken in L2
~��
ð�Þ. We set Pð ~qqþ dþ qþ hÞ � pð ~qqþ dÞ þ q, for

all ð ~qq; d; q; hÞ 2 ~QQ�D�Q�H. Now, we show that P is the orthogonal projection
of L2

~��
ð�Þ onto E�;j. It clearly suffices to verify that

< I� Pð Þð ~qqþ dþ qþ hÞ;Pð ~qq1 þ d1 þ q1 þ h1Þ > ~��¼ 0; ð3:9Þ

for all ð ~qq; d; q; hÞ; ð ~qq1; d1; q1; h1Þ 2 ~QQ�D�Q�H. By the second equation of (3.8)
and by the orthogonality of h to E�;j, the left hand side of (3.9) equals

< ~qqþ d� pð ~qq1 þ dÞ; q1 > ~�� : ð3:10Þ

We note that E�;j ¼ pðE ~��;jÞ and accordingly, there exists w 2 E ~��;j such that q1 ¼ pðwÞ.
Then the scalar product in (3.10) vanishes by the second equation of (3.8), and thus
we have proved that condition (3.9) holds. &

We now note that one can think of the set of the solutions of system (3.8) as the
set of zeros of a certain function F. We introduce and analyze the function F in
Theorem 3.13. To do so however, we need the following technical statement, whose
validity can be easily verified by Lemma 2.3, by the chain rule, and by standard
results of elliptic theory (cf. e.g. Nečas [20, Theorem 3.1, p. 135], Gilbarg and
Trudinger [8, Theorem 6.19, p. 111 and Theorem 8.12, p. 186], Troianiello [23,
Theorem 3.23, p. 189]).

Theorem 3.11. Let k 2 N n f0; 1g, j, m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. Then

� ~��uþ �j½ ~���u : u 2 Ck;�
0 ðcl �Þ

n o
¼ f 2 Ck�2;�ðcl �Þ :< f;w > ~��¼ 0; 8w 2 E ~��;j

n o
:

ð3:12Þ

We are now ready to prove the following result.

Theorem 3.13. Let k 2 N n f0; 1g, j, m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. Let F be the map of
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Ck;�ðcl�;Rn
Þ \ A

� �
� L

�
E ~��;j;C

k;�
0 ðcl�Þ

�
� R to L

�
E ~��;j;C

k�2;�ðcl�Þ
�
� B

�
E2

~��;j
;R

�
defined by

F ½�; p; �� � �� � pþ �p; < ðI� pÞð�Þ; pð�Þ > ~��

� �
; ð3:14Þ

for all ð�; p; �Þ 2
�
Ck;�ðcl�;Rn

Þ \ A
�
� L

�
E ~��;j;C

k;�
0 ðcl�Þ

�
� R; where I denotes the

inclusion of E ~��;j in Ck;�
0 ðcl�Þ. Then the map F is real analytic. Let

Y � M 2 L E ~��;j;C
k�2;�ðcl �Þ

� �
: M E ~��;j

� �
is orthogonal to E ~��;j in L2

~��
ð�Þ

n o
;

Z � �I : � 2 Rf g:

Then Y \ Z ¼ f0g and the space Y % Zð Þ � B
�
E2

~��;j
;R

�
is a closed subspace of

L
�
E ~��;j;C

k�2;�ðcl�Þ
�
� B

�
E2

~��;j
;R

�
. The differential dðp;�ÞF ½ ~��; I; �j½ ~���� is a linear homeo-

morphism of L
�
E ~��;j;C

k;�
0 ðcl�Þ

�
� R onto

�
Y % Z

�
� B

�
E2

~��;j
;R

�
.

Let f ~uu1; . . . ; ~uumg be an orthonormal basis for E ~��;j with respect to the scalar product

of L2
~��
ð�Þ. Let �1 be the map of L

�
E ~��;j;C

k�2;�ðcl�Þ
�

to Y % Z defined by

�1ðM Þ � M½�� �
Xm

l¼1

< M½��; ~uul > ~�� ~uulþ < M½ ~uu1�; ~uu1 > ~�� I; ð3:15Þ

where I is the inclusion of E ~��;j into Ck�2;�ðcl�Þ. The map �1 is linear and continuous,

and restricts the identity on Y % Z.

Proof. To shorten our notation, we set ~�� � �j½ ~���, X1 � L
�
E ~��;j;C

k;�
0 ðcl�Þ

�
,

X 2 � L
�
E ~��;j;C

k�2;�ðcl�Þ
�
, B � B

�
E2

~��;j
;R

�
. The real analyticity of F is an immediate

consequence of (3.3) and of Lemma 2.7. Equality Y \ Z ¼ f0g is obvious. By simple
computations, it can be easily verified that �1 is linear and continuous and that
�1jY%Z restricts the identity on Y % Z. Then Y % Z ¼ Ker I��1ð Þ and, accordingly,
Y % Z is closed. By standard calculus and by (3.14), we have

dðp;�ÞF ½ ~��; I; ~���ðQ; �Þ ¼ � ~�� �Qþ ~��Qþ �I;B½Q�
� �

; 8ðQ; �Þ 2 �1 � R;

where B½Q� is the element of B defined by B½Q�ða; bÞ � � < QðaÞ; b > ~��, for all
a; b 2 E ~��;j. We now prove that dðp;�ÞF ½ ~��; I; ~��� is injective. Assume that there exist
Q 2 X 1, � 2 R such that

� ~�� �Qþ ~��Qþ �I ¼ 0 in X 2;

� < QðaÞ; b > ~��¼ 0; 8a; b 2 E ~��;j:

(
ð3:16Þ

Then we have

� ~��ðQðuÞÞ þ
~��ðQðuÞÞ þ �u ¼ 0; in �; ð3:17Þ

for all u 2 E ~��;j, and thus, by Theorem 3.11, we obtain � ¼ 0. Then, by equation
(3.17), we conclude that QðuÞ 2 E ~��;j, for all u 2 E ~��;j, and thus, by the second
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equation of (3.16), we obtain < QðuÞ;QðuÞ > ~��¼ 0, for all u 2 E ~��;j. Accordingly
Q ¼ 0, and thus dðp;�ÞF ½ ~��; I; ~��� is injective.We now show that dðp;�ÞF ½ ~��; I; ~���ðX 1 � RÞ ¼

Y % Zð Þ � B. If the pair ðM;S Þ belongs to dðp;�ÞF ½ ~��; I; ~���ðX 1 � RÞ, then the system

� ~�� �Qþ ~��Qþ �I ¼ M in X 2,
� < QðaÞ; b > ~��¼ Sða; bÞ; 8a; b 2 E ~��;j;

�
ð3:18Þ

has at least one solution ðQ; �Þ 2 X 1 � R. Then we have � ~��ðQðvÞÞ þ
~��QðvÞ ¼

M½v� � �v, for all v 2 E ~��;j and thus, by Theorem 3.11, we obtain

< M½ ~uui�; ~uus > ~��¼ � < ~uui; ~uus > ~��; 8i; s 2 f1; . . . ;mg: ð3:19Þ

Now, we can write M½ ~uui� as M½ ~uui� ¼
Pm

l¼1 �li ~uul þ vi, with �li 2 R, vi 2 Ck�2;�ðcl�Þ and
< vi; ~uus > ~��¼ 0, for all s ¼ 1; . . . ;m. By (3.19) and by our choice of ~uu1; . . . ; ~uum, we
have �li ¼ � < ~uul; ~uui > ~��. Then we have M 2 Y % Z. Conversely, let ðM;S Þ 2
Y % Zð Þ � B. Then M ¼ M1 þM2, with M1 2 Y, M2 2 Z. In particular, there exists
� 2 R such that M2 ¼ �I, and by our choice of ~uu1; . . . ; ~uum, and by the orthogonality
of the image of M1 to E ~��;j, we obtain (3.19) and thus by Theorem 3.11, there exist
~!!i 2 Ck;�

0 ðcl�Þ such that � ~�� ~!!i þ ~�� ~!!i ¼ M½ ~uui� � � ~uui in �, for all i ¼ 1; . . . ;m. Now
we set !i � ~!!i þ

Pm
l¼1 ail ~uul, with ail 2 R, for all i; l 2 f1; . . . ;mg, and we determine

the coefficients ail so that � < !i; ~uus > ~��¼ Sð ~uui; ~uusÞ, for all i; s 2 f1; . . . ;mg. Clearly,
we can take ail ¼ �Sð ~uui; ~uulÞ� < ~!!i; ~uul > ~��. Now, let Q be the element of X1 defined
by Q½ ~uui� ¼ !i. Then we must necessarily have dðp;�ÞF ½ ~��; I; ~���ðQ; �Þ ¼ ðM;S Þ. &

We now prove the continuity of the dependence of P�;j at � ¼ ~��, for
� 2 Mk;�;j;m by means of the following two statements.

Lemma 3.20. Let k 2 N n f0; 1g, j;m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let f�lgl2N be a sequence in Mk;�;j;m that
converges to ~�� 2 Mk;�;j;m in Ck;�ðcl�;Rn

Þ. Let ul 2 E�l;j, < ul; ul > ~��¼ 1, for all l 2 N.
Then there exists a subsequence fulrgr2N of fulgl2N and u 2 E ~��;j such that
limr!þ1 ulr ¼ u in Ck;�ðcl�Þ, and < u; u > ~��¼ 1.

Proof. Since the map of Ck;�ðcl�;Rn
Þ \ A to Ck�1;�ðcl�;MnðRÞÞ that takes � to

ðD�Þ�1 is real analytic, the same map is also bounded around ~��. Accordingly, there
exist a neighborhood W of ~�� and a constant c > 0 such that

1

c
< min

x2cl �
min

f�2Rn: j�j¼1g
ðD�Þ�1
� �t

��
��� ���2;

sup
i;s¼1;...;n

D�ð Þ
�1

� �
is

��� ���
Ck�1;�ðcl �Þ

< c;

sup
i;s;l¼1;...;n

@ ðD�Þ�1
� �

is

@xl
ðD�Þ�1
� �

ls

�����
�����

Ck�2;�ðcl �Þ

< c;

ð3:21Þ

for all � 2 W. By standard elliptic estimates (cf. e.g. Troianiello [23, Theorem 3.28
(ii), p. 194]), there exists a constant c1 > 0 depending only on c, n, �, k, �, W such
that
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kukCk;�ðcl �Þ 	 c1k��ukCk�2;�ðcl �Þ; 8u 2 Ck;�
0 ðcl �Þ; 8� 2 W: ð3:22Þ

Since liml!1 �l ¼ ~��, then by possibly neglecting a finite number of terms of the
sequence, we can assume that

kulkCk;�ðcl �Þ 	 c1�j½�l�kulkCk�2;�ðcl �Þ 8l 2 N: ð3:23Þ

By Theorem 2.5, the function �j½�� is continuous. Then there exists c2 > 0 such that

c2 � sup
l2N

�j½�l� < þ1: ð3:24Þ

By Lemma 2.1, the space Ck;�ðcl�Þ is compactly imbedded in Ck�2;�ðcl�Þ, and
Ck�2;�ðcl�Þ is imbedded in L2ð�Þ. Thus by Lion’s Lemma (cf. for example Berger [1,
p. 35]), there exists a constant c3 > 0, depending only on �, n, k, �, c1, c2, such that

kukCk�2;�ðcl �Þ 	
1

2c1c2
kukCk;�ðcl �Þ þ c3kukL2ð�Þ; 8u 2 Ck;�ðcl �Þ: ð3:25Þ

Then by (3.23), (3.24), (3.25), we conclude that 1
2 kulkCk;�ðcl�Þ 	 c1c2c3kulkL2ð�Þ, for all

l 2 N. Since j det D ~��j is continuous and positive in cl�, we can assume that there
exists a constant c4 > 0 such that 0 < c4 < minx2cl� j det D ~��j. SinceR
� u2l j det D ~��jdx ¼ 1, we conclude that

kulkCk;�ðcl �Þ 	 2c1c2c3c
�1=2
4 ; 8l 2 N: ð3:26Þ

Now let � 2 �0; �½. By Lemma 2.1 (iv) there exists a subsequence fulrgr2N of fulgl2N,
and u 2 Ck;�ðcl�Þ such that limr!þ1 ulr ¼ u in Ck;�ðcl�Þ. Since limr!þ1 �lr ¼

~�� in
Ck;�ðcl�Þ and limr!þ1 �j½�lr � ¼ �j½ ~��� (cf. Theorem 2.5), we have � ~��uþ �j½ ~���u ¼ 0 in
�. Thus u 2 E ~��;j. Now, by (3.22), and by the membership of ulr 2 E�lr ;j, and of
u 2 E ~��;j, we have

kulr � ukCk;�ðcl �Þ 	 c1 k� ~��ulr ���lr
ulrkCk�2;�ðcl �Þ þ k�j½�lr �ulr � �j½ ~���ukCk�2;�ðcl �Þ

n o
;

ð3:27Þ

for all r 2 N. Since Ck;�ðcl�Þ is continuously imbedded in Ck�2;�ðcl�Þ, we have
limr!þ1 ulr ¼ u in Ck�2;�ðcl�Þ. By Theorem 2.5, we have limr!þ1 �j½�lr � ¼ �j½ ~���.
Then we conclude that

lim
r!þ1

k�j½�lr �ulr � �j½ ~���ukCk�2;�ðcl �Þ ¼ 0: ð3:28Þ

By inequality (3.26), the sequence fulrgr2N is bounded in Ck;�ðcl�Þ. Then, by (3.3),
the triangle inequality, the continuity of the pointwise product in Ck;�ðcl�Þ, and the
convergence of f�lrgr2N to ~�� in Ck;�ðcl�;Rn

Þ, we conclude that

lim
r!þ1

k� ~��ulr ���lr
ulrkCk�2;�ðcl �Þ ¼ 0: ð3:29Þ

By combining (3.27), (3.28), (3.29), we deduce that limr!þ1 ulr ¼ u in Ck;�ðcl�Þ. &

38 P. D. LAMBERTI AND M. LANZA DE CRISTOFORIS



Proposition 3.30. Let k 2 N n f0; 1g, j;m 2 N n f0g, � 2 �0; 1½. Let � be a
bounded open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. Let P�;j be the
restriction to Ck;�

0 ðcl�Þ of the orthogonal projection in L2
~��
ð�Þ of L2

~��
ð�Þ onto E�;j, for all

� 2 Mk;�;j;m. Then the map of Mk;�;j;m to L
�
Ck;�
0 ðcl�Þ;Ck;�

0 ðcl�Þ
�

that takes � to P�;j
is continuous at ~��.

Proof. For all � 2 Mk;�;j;m, we fix an orthonormal basis fu�;1; . . . ; u�;mg of E�;j in
the scalar product of L2

~��
ð�Þ. Clearly,

P�;j½u� ¼
Xm

s¼1

< u; u�;s > ~�� u�;s; 8u 2 Ck;�
0 ðcl �Þ: ð3:31Þ

Then P�;j 2 L
�
Ck;�
0 ðcl�Þ;Ck;�

0 ðcl�Þ
�
. To prove the continuity of the map which takes

� to P�;j, it suffices to show that if a sequence f�lgl2N converges to ~�� inMk;�;j;m, then
there exists a subsequence f�lrgr2N of f�lgl2N such that fP�lr ;jgr2N converges to P ~��;j in
L Ck;�

0 ðcl�Þ;Ck;�
0 ðcl�Þ

� �
. By the previous Lemma, there exist a subsequence f�lrgr2N,

and ~uu1; . . . ; ~uum 2 E ~��;j such that limr!þ1 u�lr ;s ¼ ~uus, for all s 2 f1; . . . ;mg. Clearly
f ~uu1; . . . ; ~uumg is an orthonormal basis of E ~��;j and P ~��;j½u� ¼

Pm
s¼1 < u; ~uus > ~�� ~uus, for all

u 2 Ck;�
0 ðcl�Þ. Then by the equality (3.31) and by the limiting relation

limr!þ1 u�lr;s ¼ ~uus, we can easily deduce that limr!þ1 P�lr ;j ¼ P ~��;j in
L Ck;�

0 ðcl�Þ;Ck;�
0 ðcl�Þ

� �
. &

We now prove the following technical statement, which we employ in the proof
of our main Theorem 3.34 in order to deduce the regularity of the dependence of P�;j
upon � by the corresponding regularity result for p�;j upon �.

Lemma 3.32. Let m; k 2 N, � 2 �0; 1½. Let � be a bounded open subset of Rn. Let �
be a continuous function of cl� to �0;þ1½. Let E be a subspace of Ck;�

0 ðcl�Þ of
dimension m. Let I be the inclusion map of E into Ck;�

0 ðcl�Þ. Then there exists an open
neighborhood U of I in the space L

�
E;Ck;�

0 ðcl�Þ
�
, and a real analytic map �� of U to

L Ck;�
0 ðcl�Þ;Ck;�

0 ðcl�Þ
� �

, which takes an operator T into the orthogonal projection
��½T � of Ck;�

0 ðcl�Þ onto TðEÞ with respect to the scalar product defined by

< u; v >�

Z
�

uv� dx; 8u; v 2 Ck;�
0 ðcl �Þ: ð3:33Þ

Proof. We can clearly assume that m > 0. A simple contradiction argument
shows that there exists an open neighborhood U of I such that T is injective, for all
T 2 U. Since E has finite dimension m, the dimension of TðEÞ is exactly m, for all
T 2 U. Let E be generated by fu1; . . . ; umg. Clearly, for all T 2 U, the set fTðu1Þ; . . . ;
TðumÞg is a basis for TðEÞ, and the set of vectors fv1½T �; . . . ; vm½T �g defined by

v1½T � �
Tðu1ÞR

�½Tðu1Þ�
2� dx

� �1=2 ;
vsþ1½T � �

Tðusþ1Þ �
Ps

l¼1

R
�

Tðusþ1Þvl½T �� dxvl½T �R
� Tðusþ1Þ �

Ps
l¼1

R
� Tðusþ1Þvl½T �� dxvl½T �

� �2
� dx

n o1=2 ;

THE LAPLACE OPERATOR 39



for all s ¼ 1; . . . ;m� 1, is an orthonormal basis for TðEÞ, with respect to the scalar
product of (3.33). Since ��½T �ðuÞ ¼

Pm
l¼1

R
� uvl½T ��dxvl½T �, and the functions vs½��,

with s ¼ 1; . . . ;m are real analytic, we conclude that �� ½�� is real analytic. &

We are now ready to prove our main result.

Theorem 3.34. Let k 2 N n f0; 1g, j;m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. Let �1 be the map of
(3.15). Let � be the map of L

�
E ~��;j;C

k�2;�ðcl�Þ
�
� B

�
E2

~��;j
;R

�
to Y % Zð Þ � B

�
E2

~��;j
;R

�
defined by �ðM;S Þ � ð�1ðMÞ;S Þ, for all ðM;S Þ 2 L

�
E ~��;j;C

k�2;�ðcl�Þ
�
� B

�
E2

~��;j
;R

�
.

Let F be the map of Theorem 3.13. Let P�;j be the restriction to Ck;�
0 ðcl�Þ of the

orthogonal projection of L2
~��
ð�Þ onto E�;j, for all � 2 Mk;�;j;m. Let p�;j be the restriction

of P�;j to E ~��;j. Then there exist an open neighborhood W of ~�� in Ck;�ðcl�;Rn
Þ \ A, an

open neighborhood U of I in L
�
E ~��;j;C

k;�
0 ðcl�Þ

�
, an open interval J of R containing

�j½ ~���, a real analytic map �̂� ~��;j of W to J, a real analytic map p̂p ~��;j of W to U, a real

analytic map P̂P ~��;j of W to L
�
Ck;�
0 ðcl�Þ;Ck;�

0 ðcl�Þ
�

such that P̂P ~��;j½�� is the orthogonal

projection of Ck;�
0 ðcl�Þ onto the space p̂p ~��;j½��

�
E ~��;j

�
with respect to the product of L2

~��
ð�Þ

for all � 2 W, and such that

ð�; p; �Þ 2 W � U � J : �ðF ½�; p; ��Þ ¼ 0
� �

¼ ð�; p̂p ~��;j½��; �̂� ~��;j½��Þ : � 2 W
n o

; ð3:35Þ

�̂� ~��;j½�� ¼ �j½��; 8� 2 W \Mk;�;j;m; ð3:36Þ

p̂p ~��;j½�� ¼ p�;j; 8� 2 W \Mk;�;j;m; ð3:37Þ

P̂P ~��;j½�� ¼ P�;j; 8� 2 W \Mk;�;j;m; ð3:38Þ

dim p̂p ~��;j½��
�
E ~��;j

�
¼ dim P̂P ~��;j½��

�
Ck;�
0 ðcl �Þ

�
¼ m; 8� 2 W: ð3:39Þ

Proof. By Theorem 3.13, we can apply the Implicit Function Theorem to equa-
tion � � F ¼ 0, around the point ð ~��; I; �j½ ~���Þ, and deduce the existence of W, U, J,
�̂� ~��;j, p̂p ~��;j, as in (3.35). By possibly shrinking W and U, we can assume that U is con-
tained in the neighborhood U of Lemma 3.32, with � ¼ j det D ~��j. Then, by setting
P̂P ~��;j½�� � �

j det D ~��j p̂p�;j½��
� �

for all � 2 W and, by invoking Theorem 2.5, Proposition
3.30 and Theorem 3.6, one can easily see that (3.36)–(3.39) hold. &

Remark 3.40. Although (3.36)–(3.39) hold, we do not expect, in general, that
for � 2 W nMk;�;j;m the value �̂� ~��;j½�� of the function �̂� ~��;j½�� coincides with �j½��, and
that the space p̂p ~��;j½��

�
E ~��;j

�
is the eigenspace E�;j.

Remark 3.41. If m ¼ 1, ~�� 2 Mk;�;j;1 then, by the continuity of �j½�� around ~��,
one easily deduces that ~�� is interior to Mk;�;j;1. By the previous Theorem, �j½�� and
P�;j are real analytic in �, for � in a neighborhood of ~��. In particular, a suitably
normalized eigenvector generating E�;j depends real analytically upon � in a neigh-
borhood of ~��. Such an analyticity result is well known (cf. Henry [9, x3.2].)

We now show that Theorem 3.34 allows us, in particular, to prove the Hada-
mard formulae for the derivatives of the function �j½�� along a curve �ð�Þ of deform-
ations of ~�� onMk;�;j;m. (See also Henry [9, x4.1] and Desaint and Zolésio [6].) To do
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so, we introduce the following technical Lemma, whose proof exploits a computa-
tion of Micheletti [18, pp. 161–163].

Lemma 3.42. Let k 2 N n f0; 1g, j;m 2 N n f0g, � 2 �0; 1½. Let � be a bounded
open connected subset of Rn of class Ck;�. Let ~�� 2 Mk;�;j;m. Then, for all
u 2 Ck;�

0 ðcl�Þ, the differential @�
j�¼ ~��
ð��uÞ of the map of Ck;�ðcl�;Rn

Þ \ A to
Ck�2;�ðcl�Þ that takes � to ��u at � ¼ ~�� is delivered by the map

 7! � 2
Xn

r;s¼1

@2 u � ~��ð�1Þ
� �
@yr@ys

@  s � ~��ð�1Þ
� �

@yr

" #
� ~��þ

�
Xn

s¼1

@ u � ~��ð�1Þ
� �
@ys

�  s � ~��ð�1Þ
� �" #

� ~��;

ð3:43Þ

for all  � ð 1; . . . ;  nÞ 2 Ck;�ðcl�;Rn
Þ. Furthermore, if u1, u2 are two elements of

E ~��;j, then

Z
�

@�j�¼ ~��ð��u1Þð Þu2j det D ~��j dx ¼

Z
@ ~��ð�Þ

Xn

r¼1

ð�r�rÞ
@v1
@�

@v2
@�

d; ð3:44Þ

where � � ð�1; . . . ; �nÞ �  � ~��ð�1Þ, vi � ui � ~��ð�1Þ, for i ¼ 1; 2 and where
� � ð�1; . . . ; �nÞ denotes the unit exterior normal to @ ~��ð�Þ.

Proof. Formula (3.43) can be derived by standard calculus in normed space. To
prove formula (3.44), we note that by exploiting formula (3.43), by changing the
variable in the integrals with the function y ¼ �ðxÞ, and by integrating by parts, we
obtainZ

�

@�j�¼ ~��ð��u1Þð Þu2j det D ~��j dx ¼ �

Z
~��ð�Þ

ð�v1Þv2div� dy

�
Xn

r¼1

Z
~��ð�Þ

@v1
@yr

@v2
@yr

div� dyþ
Xn

r;s¼1

Z
~��ð�Þ

@�s

@yr
þ
@�r

@ys

� �
@v1
@yr

@v2
@ys

dy:

ð3:45Þ

Since v1 and v2 are eigenvectors of �� in ~��ð�Þ relative to the eigenvalue �j½ ~���, the
previous expression equals

�
1

2

Z
~��ð�Þ

� v1v2ð Þð Þdiv� dyþ
Xn

r;s¼1

Z
~��ð�Þ

@�s

@yr
þ
@�r

@ys

� �
@v1
@yr

@v2
@ys

dy: ð3:46Þ

Now, by exploiting the computations of Micheletti [18, pp. 161–163], one obtains
that the expression in (3.46) equals the right-hand side of (3.44). &

We are now ready to compute the derivative of �j½�� along �ð�Þ by using a stan-
dard argument.
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Theorem 3.47. Let k 2 N n f0; 1g, j;m 2 N n f0g, � 2 �0; 1½, � > 0. Let � be a
bounded open connected subset of Rn of class Ck;�. Let ~�� be an element of Mk;�;j;m. Let
� � ð�1; . . . ; �nÞ 2 C1 ½��; ��;Mk;�;j;m

� �
, �ð0Þ ¼ ~��. Let u 2 E ~��;j be such that

< u; u > ~��¼ 1. Then

d

dtjt¼0
�j½�ðtÞ� ¼ �

Z
@ ~��ð�Þ

Xn

r¼1

� 0rð0Þ �
~��ð�1Þ

� �
�r

@v

@�

� �2

d; ð3:48Þ

where � � ð�1; . . . ; �nÞ denotes the exterior unit normal to @ ~��ð�Þ, and where
v � u � ~��ð�1Þ.

Proof. By possibly considering a restriction of �, we can assume that �ðtÞ
belongs to the neighborhood W of ~�� of Theorem 3.34, for all t 2 ½��; ��. To shorten
our notation, we set �ðtÞ � �j½�ðtÞ�, pðtÞ � p̂p ~��;j½�ðtÞ�, and we denote by a dot the
differentiation with respect to t. Then we have ��ðtÞ � pðtÞ þ �ðtÞpðtÞ ¼ 0 in
L
�
E ~��;j;C

k�2;�ðcl�Þ
�
, for all t 2 ½��; ��. By differentiating with respect to t, by setting

t ¼ 0, and by computing both sides of the resulting equation at u 2 E ~��;j, we obtain

� ~�� _ppð0Þ½u�ð Þ þ �ð0Þð _ppð0Þ½u�Þ ¼ � @�j�¼ ~�� ��u
� �

½ _��ð0Þ�
� �

� _��ð0Þu:

Thus, by Theorem 3.11 and by formula (3.44), we deduce the validity of formula
(3.48). &

Acknowledgements. This paper represents an extension of a part of the work
performed by P. D. Lamberti in his ‘Laurea’ Thesis under the guidance of M. Lanza
de Cristoforis.

REFERENCES

1. M. S. Berger, Nonlinearity and functional analysis (Academic Press, 1977).
2. Sh. N. Chow and J. K. Hale, Methods of bifurcation theory (Springer-Verlag, 1982).
3. R. Courant and D. Hilbert,Methods of mathematical physics,Vol. I (Interscience, 1953).
4. S. J. Cox, The generalized gradient at a multiple eigenvalue, J. Functional Analysis

133 (1995), 30–40.
5. F. Desaint and J. P. Zolésio, Sensitivity analysis of all eigenvalues of a symmetrical

elliptic operator, in Boundary control and variation, Lecture Notes in Pure and Applied
Mathematics, 163 (1994), 141–160.
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