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Real Forms of the Radon-Penrose Transform

By

Andrea D'AGNOLO* and Corrado MARASTONI**

Abstract

The complex Radon correspondence relates an n-dimensional projective space
with the Grassmarm manifold of its p-dimensional planes. This is the geometric
background of the Radon-Penrose transform, which intertwines cohomology classes of
homogeneous line bundles with holomorphic solutions to the generalized massless field
equations. A good framework to deal with such problems is provided by the recently
developed theory of integral transforms for sheaves and £>-modules. In particular,
an adjunction formula describes the range of transforms acting on general function
spaces, associated with constructible sheaves.

The linear group SL(n + 1,C) naturally acts on the Radon correspondence. A
distinguished family of function spaces is then the one associated with locally constant
sheaves along the closed orbits of the real forms of SL(n 4- 1, C). In this paper, we
systematically apply the above-mentioned adjunction formula to such function spaces.
We thus obtain in a unified manner several results concerning the complex, conformal,
or real Radon transforms.
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Introduction

Let V be an (n -f l)-dimensional complex vector space, denote by P the
projective space of lines in V, by G = Gr(p + 1; V) the Grassmann manifold of
(p + l)-dimensional subspaces, and by F C P x G the incidence relation. The
generalized Radon-Penrose transform is associated with the double fibration

(i)

where / and g are induced by the natural projections. This is the graph of
the correspondence C ~~° C — f(9~l(0)i mapping £ G G to the p-dimensional
plane of P that it represents. For different choices of "functions" (p, the various
instances of the Radon p-plane transform can thus be expressed as

(2) *»->y/v.
Let us recall some examples for n = 3 and p = I (see [10, 28, 12, 14, 15]).

The Grassmann manifold G = Gr(2; C4) is a complex compact manifold
of dimension 4. A point in G corresponds to a 2-dimensional plane in C4. If
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A is a 4 x 2 matrix of rank 2 with complex coefficients, we denote by [A] E G
the span of its column vectors. An affine chart in G is obtained by considering
the family of 2-dimensional planes £ transversal to a fixed 2-dimensional plane
in C4. For example, denoting by /2 the 2x2 unit matrix,

According to [10], G is a complexification of the conformal compactification of
the linear Minkowski space. In particular, Maxwell wave equation (as well as
the whole family of massless field equations) extends as a differential operator
D acting on a holomorphic line bundle on G. Using the above system Z of
affine coordinates, one has

D = d~id,2 — 9720_i.zl Z2 Zl Z2

The Grassmann manifold G is homogeneous for the complex Lie group SX(4, C).
In the following table we list some of the real forms of SX(4, C), the associated
closed orbit in G, the system R4 3 (xi, . . . , #4) H* Z of affine coordinates in the
intersection of the closed orbit with the above affine chart, and the expression
of D.

real form of 5L(4, C)

closed orbit in G

affine coordinates Z

expression of D

5LT(2,2)

G ~ S1 x S3

f xi+x2 x3+zx4 ^

\x3+ix4 xi-X2 )

<-^2-^3-<

SL(4,R)

G~Gr(2 ;R 4 )

/ XI X2\

\X3 X4 )

dxldx4-dx2dx3

SL(2,H)

HG~5 4

^ xi+ix2 x3+ix4^

\ -(x34-ix4) xi+zx2 )

92 +d2 +Q2 +92
•*• 1 •*• 2 •*•£ •*• 4

(a) The Penrose correspondence describes the set of holomorphic solutions of
D on suitable open subsets U C G by the transform (2). In this case,
(p G Hl(U\ Op(-2)) is a cohomology class of a holomorphic line bundle, and
the integral has to be understood as a Leray-Grothendieck residue.

(b) The manifold G is a conformal compactification of the linear Minkowski
space. Denote by P the closed orbit of 5t/(2, 2) on P. The set of hyper-
functions solutions on G of the hyperbolic wave equation D|Q is obtained
by (2), taking for (p E #p(P; Op(-2)) a cohomology class with support on
P.

(c) The real projective space P is the closed orbit of SL(4;R) on P. Let
(p E <S(R4) be a rapidly decreasing function in an affine chart R4 C P.
Then (2) represents the usual Radon transform, mapping (p to its integrals
along the family of 2-dimensional planes of R4. Functions in its image
satisfy the ultrahyperbolic John equation D|G-
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(d) The elliptic Laplacian D|HG has no global solutions on the 1-dimensionai
quaternionic projective space HG ~ Gr(l;H2). By (2), this corresponds
to the fact that #J(P; Op (-2)) = 0 for any j. (Note that the quaternionic
group 5L(2,H) acts transitively on P.)

Heuristically, the above results appear as different aspects of the complex
Radon p-plane transform (1), for different choices of geometric configurations in
G. The theory of integral transforms for sheaves and Z>-modules (see [6, 7, 21],
and [4] for an exposition) gives to such vague statement a precise meaning. Let
us briefly recall this framework. The analogues of (2) in terms of sheaves and
D-modules are the functors

Q H> CF o Q = Rfi(g-lg), and Ort K-> OR o B¥ = D9l(Df*m),

where g~l, Rf\ and -D/*, Dg\ denote the operations of inverse and proper
direct image in the derived categories of sheaves and P- modules, respectively.
If Q is R-constructible, one associates with it four function spaces on G, that
we denote by CU(G), C°°(G), C~°°(G), and C~"(G}. For example, if Q = CG is
the constant sheaf along a real analytic manifold G, of which G is a complexifi-
cation, these are the sheaves of analytic functions, G°° -functions, distributions
and hyperfunctions, respectively. A general adjunction formula asserts that,
under mild hypotheses, solutions of 9JI with values in C^(C^oG) are isomorphic
to solutions of 971 o SF with values in C^((/), for tj = ±00, ±0;. More precisely,

(3) Sol(OT,eHCFoe))[dimF-dimG] A Sol(2tt o 6

According to [6], the results in [10] imply that massless field equations are
represented by SOT o BF, where 9JI = 2>p(£) is the Dp-module induced by a line
bundle on P. A similar result holds in the general case n > 3, 1 < p < n — 1
(see [7, 8, 2, 5]).

Several results on the Radon p-plane transform are then obtained from
the adjunction formula (3), for different choices of Q. For example, the higher
dimensional analogue of the Penrose transform (a) corresponds to Q = C[/,
the constant sheaf on U C G. Similarly, the higher dimensional analogues of
(b), (d), and of a compactified version of (c), correspond to locally constant
sheaves along the closed orbit of one of the real forms of 5L(V). Some of these
cases have already been considered in [6] for p = 1 and n = 3, and in [7, 3] for
p — n — 1. The aim of this paper is to investigate systematically the results one
gets from (3) for such choices of Q, as well as some other related choices. This
consists essentially in computing the sheaf-theoretical transforms CF o Q. For
a locally closed subset G C G, the complex CF o CG describes the homology
of the family of slices P 3 z — • o z PI G. In other words, it is just by using
some relatively simple topological arguments that we will be able to recover
and generalize the above results on range characterization for the projective,
conformal and affine versions of the real Radon transform.
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This paper is divided into three parts. In the first part we state most of
the results using a classical formalism, i.e. avoiding the language of derived
categories and P-modules. In the second part we recall some results from the
theory of integral transforms for sheaves and P-modules, as the adjunction
formula (3). Since our statements deal with the first non-vanishing cohomol-
ogy group, we also give some technical results that allow one to weaken some
hypotheses. In the last section we give proofs.

§1. Classical Statement of the Results

In this section we state most of our results using a classical formalism,
i.e., avoiding the language of derived categories and P-modules. This should
be considered as a motivation for the reader not acquainted with such theo-
ries. Proofs of the statements, along with some generalizations, are given in
Section 3.

§1.1. The Radon-Penrose transform

For n > 3 , l < p < n - 2 , consider

V a complex vector space of dimension n + 1,

P = Gr(l; V) a complex projective space of dimension n,

G = Gr(p 4-1; V) the family of projective p-dimensional planes

inP,

F = { ( z , () E P x G: z e C} the incidence relation,

where Gr(g; V) denotes the Grassmann manifold of g-dimensional subspaces in
V. Recall that G is a complex compact manifold of dimension (p + l)(n — p),
that the flag manifold F has dimension n + p(n — p), and that P, G and F are
homogeneous with respect to the Lie group 5L(V) ~ SL(n + 1,C). (For the
extreme case p = n — 1, refer to the Appendix.)

The geometric background of the generalized Radon-Penrose transform is
given by the double fibration

(i.i.i)

where / and g are the natural projections (see [10, 28, 12, 14, 15]). Given a
plane C E G, one denotes by £ = f ( g ~ l ( C ) } C P the set of its points. Similarly,
for U C G and z e P one sets U = f ( g ~ l ( U ) ) C P and z = g(f'l(z)) C G.
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As we recalled in the Introduction, for p = I and n = 3, [10] identifies the
manifold G with a conformal compactification of the complexified Minkowski
space. On the Minkowski space lives the family of massless field equations.
Since such equations are conformally invariant, they extend as a family of
differential operators acting on holomorphic sections of homogeneous vector
bundles over G. For n > 3, 0 < p < n — 2, we denote by

Dm : O(Hm) -> O(Hm), m G Z,

their higher dimensional analogue, and we refer to Section 2.3 for details. In our
notations, the operator Dm on Minkowski space is the massless field equation
of helicity — (m + l)/2, so that D_i is Maxwell's wave equation.

In this paper, for m G Z we set

(1.1.2) m* = -m-p-2.

Note that for p = 0 and m* < 0 one has G = P, nm* = 0 (i.e. no differential
equations appear), and

where 0p(m*) is the usual notation for — ra*-th tensor power of the tautological
line bundle.

One says that an open subset U C G is F-elementary if for any z G U
the set £n U is connected, and its homology groups with complex coefficients
vanish in degree 1, . . . ,p.

Proposition 1.1.1, Let m £ Z, with m* < 0, and let U be an F-
elementary open subset of G. Then, one has an isomorphism

HP(U- Ov(m')) A {V e r(C7; 0G(Hm)) : Dmtf> = 0},

the lower cohomology groups being zero.
(A proof is given in Section 3.1.)

This result was obtained in [10] for n — 3 and p = 1, and is discussed in [2]
in an equi variant framework.

Example 1.1.2. The case p + 1 = n - p is of particular interest in
representation theory (see e.g. [26]). There, one takes for U the set of C € G
such that w\£ is positive definite, where a; is a nondegenerate hermitian form

on V of signature (p+ l,p+ 1). Since 2" PI U is contract ible for z G U, the above
result applies. (See also Section A. 3 for the extreme case p = n — 1.)

Example 1.1.3. Recall that an open subset D C P is said to be p-
linearly concave if through any z G D there passes a projective p-dimensional
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plane contained in D. In this case, setting U = G \ (P \ D) = {( e G: C C £>},
one has D = U. For example, take D = P \ L, where L C P is a projective
plane of dimension n — p — 1. Then, U is an affine chart in G, and the above
proposition applies. Note that since U is determined by a subset of P, the
hypotheses could be weakened (see [13], [16]).

§1.2. Action of SU(p + 1, n - p)

1.2.1. Conformal case.
Let uj be a nondegenerate hermitian form on V of signature (p+ l,n — p),

and let us assume that p+1 < n—p. The Lie group SU(uj\ V) ~ SU(p+l,n— p)
is a real form of 5L(V), and hence acts on P and G. The closed orbits of

;V} in P and G are, respectively,

JP the set of u;-isotropic lines in V,
1 G the set u-isotropic (p + 1) -dimensional planes in V,

where a subspace C C V is called u;-isotropic if LJ\^ = 0.
Recall that a real submanifold M of a complex manifold X is called generic

if TM +M iTM = TX\M, where TM denotes the tangent bundle to M. Note
that orbits of real forms of a simple complex Lie group acting on a homogeneous
manifold are always generic. Concerning (1.2.1), P is a real hypersurface of P
with non-degenerate Levi form of signature (p, n — p — 1), and G is a generic
submanifold of G of codimension (p + I)2. We denote by

the analytic and hyperfunction CR- functions on G (i.e., solutions of the tan-

gential Cauchy-Riemann system d ). If Q is an (9c-niodule, we shall use the
short-hand notation

Proposition 1.2.1. For m* < 0 one has a commutative diagram

; Op(m-)|p) -^ ty e r(G;^f (Hm}): Umib = 0}

- 0}.

(A proof is given in Section 3.2.1.)

When p+l = n— p, Gisa complexification of G, and hence AQ = AG and

BQ = BQ are the sheaves of analytic functions and hyperfunctions, respectively.
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For n = 3 and p = 1 the manifold G is the conformal eompactification of the
Minkowski space R4, and the above result is due to [28].

1.2.2. Conformal affine case.
Let £0 £ G, and denote by f^- its u;-orthogonal, which is an (n — p)-

dimensional subspace of V containing £0. The "light cone" with vertex £0 is
the subset of G described by those (" G G having non-transversal intersection
with ^. Consider

Go-GnG0 , Go = {CeG: en £- = <)},

Note that G0 and G0 are affine charts in G and G, respectively, obtained by
removing the light cone at infinity.

Proposition 1.2.2. For m* < 0 one has

B?(HTO)): nm^ = o}.
Moreover, ifp+l^n— p— 1, the natural restriction map

{V € r(G;B%(Hm)): Dm</> - 0} -)• {</> 6 r(G0;£gVm)) : Dm</> = 0}

is surjective.
(A proof is given in Section 3.2.2.)

For n = 3 and p = 1 this is a result due to [1]. In this case, G0 — R4 is
the Minkowski space, and the second part of the statement above asserts that
the light cone at infinity is a removable singularity for hyperfunction solutions
of the massless field equations.

§1.3. Action of SL(n 4- 1, R)

1.3.1. Real projective case»
Let V be a real vector space of dimension n + 1, of which V ~ C 0^ V

is a complexification. The Lie group SL(V) ~ SL(n + 1,R) is a real form of
SL(V). Its closed orbits on P and G are identified with, respectively,

(1.3.1)

{P = Gr(l; V) a real projective space of dimension n,
G = Gr(p + 1; V) the family of projective p-dimensional planes in P,

which are totally real submanifolds.
Let Q be the open subset of Vp+1 consisting of (p+l)-uples of linearly inde-

pendent vectors, and denote by q: O — > G the projection mapping (i?i, . . . , vp
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to the subspace of V that they generate. For e G Z/2Z, consider the real line
bundle over G whose sheaf of C°° sections, that we denote by C£°(o|e), is the
subsheaf of q*C££ described by the homogeneity condition

= (sgndet/x)e?/;(£) for fj, G GL(p+ 1;R).

Moreover, for ra G Z set

In particular, for ra* < 0 the sheaf Cp°(#m*|e) = Cp°(m*|e) is the subsheaf of
w^ose sections </? satisfy

(p(\x) = (sgn A)e Am* <p(z) for A G Rx .

Proposition 1.3.1. For ra* < 0 one /ms the isomorphism

g°(Hm |-i)): Dm^ = Q},

£/ie similar isomorphisms obtained when C°° is replaced by real analytic
functions, distributions, or hyperf unctions.
(A proof is given in Section 3.3.1.)

This result appears for example in [12, p. 91-92] for the C°° case. For
ra = — 1, ?7i* = — p — 1, the above morphism is a projective compactification
of the classical Radon p-plane transform, where functions on P are integrated
along p-dimensional planes.

1.3.2. Real affine case.
Let us consider the setting of the affine Radon transform

fA = P\H for a hyperplane H C P,
[GA C G the set of f G G with £ $ H.

The Schwartz space «S(A) of rapidly decreasing C °° -functions on the affine
space A ~ Rn, is identified with the subspace of r(P;Cp°(m*|-p-i)) whose
sections vanish up to infinite order on H.

The map q : £ i-> £ H H endows GA with a structure of (n — p)-dimensional
real vector bundle over the compact Grassmann manifold of (p— l)-dimensional
projective planes in H. Let us denote by S(Hm\-i)(^fC) the subspace of
r(GA;Co°(Hm |-i)) whose sections are rapidly decreasing along the fibers of q.
As above, this is identified with the subspace of F(G; C^(Hm\-i)) whose sections
vanish up to infinite order on G \ GA-
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Proposition 1.3.2. Form* < Q, the isomorphism of Proposition 1.3.1
induces an isomorphism

5(A) A {^ e 5(Hm|-i)(GA) : Om^ = 0}.

(A proof is given in Section 3.3.2.)

For m = — 1, this result appears, for example, in [12, p. 85]. Recall that
for p = 1 and n = 3, the operator D_I|GA is the ultrahyperbolic operator of
John [17].

§1.4. Action of SL(n + 1, C)R

As we shall see in Section 3.3.1, the topology underlying Proposition 1.3.1
is quite intricate. A somewhat simpler situation is obtained by considering the
real analytic manifold underlying the complex Grassmann manifold.

1.4.1. Realified complex projective case.
Denote by P the manifold P endowed with the conjugate complex ana-

lytic structure (i.e. the ringed space (P, Op), where Op is the sheaf of anti-
holomorphic functions). The diagonal PR C P x P is identified with the space
P, endowed with its underlying structure of real analytic manifold. We thus
consider

J PR C P x P the realified complex projective space,
1 GR C G x G the realified complex Grassmann manifold.

Note that PR C Px P is the closed orbit of the real form 5L(V)R of the complex
Lie group SL(V) x SL(V), and GR its closed orbit in G x G.

For ra, ra e Z, denote by Qgjfl™,/?™) the sheaf of C°° sections of (Hm M
Hm)\GR- Note in particular that, for m* < 0, sections (p G Cp^(./frri*,7/:

mo ~
Cp° (m*,m*) satisfy the homogeneity condition

^(Xz) = |A|2m>(z) for A e C x .

Proposition 1.4.1. For m*, in* < 0 one has an isomorphism

;C^(m*,m*)) A {^ G r(GR;C£(Hm,H*)): Dm^ = D^ = O},

and the similar isomorphisms obtained when C°° is replaced by real analytic
functions, distributions, or hyperf unctions.
(A proof is given in Section 3.4.1.)

In the C°° case, and for ra = m, this result is proven in [12].
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1.4.2. Realified complex affine case.
Let us consider the affine setting

J A = P \ H for a hyperplane H C P,
^ ' ' ' [GA C G the set of C e G with C C/ EL

With notations similar to those in Proposition 1.3.2, one has

Proposition 1.4.2. Form*,m* < 0, there is an isomorphism

5(AR) A {^ G 5(Hmi^)(GAR): Dm^ - Dinti = 0}.

(A proof is given in Section 3.4.2.)

For m — m = — 1, this result appears in [12].

§1.5. Action of SL((n + l)/2, H)

Assume that n and p are odd, and let W be a complex vector space of
dimension (n + l)/2, such that V = W © W. Denote by H the skew field of
quaternions, which is a division algebra over R with basis 1, z, jf, k satisfying i2 —
j2 = k2 = —1, ij = k, jk = i, ki = j. The identification C®C ^> C© jC — H
induces an isomorphism h: V -^ W®c H, given by (w\, w^) <-> w\ ® l + w? (£)j.
Since ft is right C-linear, the group SL(W<g)cH) ~ SL((ra+l)/2, H) of H-linear
automorphisms of the quaternionic vector space W ®c H is identified with a
real form of SL(V). The action of 5L(W (g)c H) on P is transitive, while its
closed orbit HG in G is described by the family of complex (p + l)-dimensional
subspaces £ C V such that ft(£) is a quaternionic (p-fl)/2-dimensional subspace
of W®c H. Since HG is generic, and has half of the dimension of G, it is totally
real in G.

Proposition 1.5.1. For m* < 0 one has

{^ e r(HG;BHG(Hm)): Dm^ - 0} - 0.

(A proof is given in Section 3.5.)

§2. Adjunction Formula for the Radon Transform

In the first part of this section, we recall the formalism of integral trans-
forms for sheaves and P-modules, as developed in [6, 7] and [21] (see [4] for an
exposition). In the last part, we apply these methods to get a general adjunc-
tion formula for the Radon transform, already considered in [6] for p — 1 and
n = 3, and in [7] for the extreme case p = n — 1.
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§2ol8 Function spaces

On a complex manifold X, denote by Ox its structural sheaf, and by DX
the sheaf of linear differential operators. Let Db(C^) and Db(Dx) be the
bounded derived category of sheaves of C- vector spaces and Vx -modules re-
spectively, and consider their full triangulated subcategories D^_c(Cx) and
Bb

oh(l>x) of objects with R-constructible and coherent cohomology, respec-
tively.

With T G D^_c(Cx) one associates the (complexes of) sheaves

(2.1.1)

C-°°(JT) = TUom(F',Ox], C~"(F] = KUom (F1 , 0 x] ,

where J7' = RH(m(r,Cx) denotes the dual of J7, and THom(-,Ox) and
• 0 Ox are the functors of temperate and formal cohomology introduced in [19]
and [21], respectively. For SDl,C € Db(X>x), we denote by

Sol(m,C) =

Sol(SW,C) -

the complexes of local and global solutions to OJl with values in C.
In order to discuss some examples, recall that if A C X is a locally closed

subset, one denotes by &A\X (or QA, if there is no risk of confusion) the sheaf
whose restriction to A is the constant sheaf with fiber C and which is zero on
X\A.

o If Y C X is a complex analytic subset, then C°°(Cy) = OX\Y i§ tne formal
restriction along Y, and C~°°(Cy) = KT[Y]Ox is the algebraic cohomology
with support on Y.

Let M be a real analytic manifold, of which X is a complexification, and
denote by

Cu; ^- /7OO f— n — CXD ,— p—u
M C LM C LM C LM

the sheaves of of real analytic functions, C00-functions, Schwartz distribu-
tions and Sato hyperfunctions, respectively. Then, for t] = ±00, ±0;,

(2.1.2)

© If Z C M is a closed sub- analytic subset, then

where Xf^M denotes the ideal of C^J of functions vanishing up to infinite
order on J£, and or^ the orientation sheaf.
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® Let N C X be a real analytic generic submanifold. Then

(2-1.4) C

is the solution complex to the tangential Cauchy-Riemann system with
values in Cjy , and similarly for oo replaced by — oo, ±0;.

® Let H —> X be a holomorphic vector bundle. We denote be O(H] the sheaf
of its holomorphic sections, and by T>(H} = Vx
locally free left T>x -module. Then

(2.1.5) Sol(V(H*}, Ox] ^ O(H).

§2.2. Review on integral transforms

Let X and Y be complex manifolds, and consider the projections

X 1— X x Y — » Y.
91 92

One denotes by

and

the three operations of inverse image, tensor product, and proper direct image,
in the categories of sheaves and £>-modules, respectively. An expression like

(p(x) •-> (p(x) -k(x,£),

which represents an integral transform, has a P-module analog in the functor

(2.2.1) OT h-» OT o R = Dq^(Dqim I) K),

where OT and ^ are (complexes of) P-modules on X and on X x Y , respectively.
Similarly, at the level of sheaves, one considers the functor

(2.2.2) Q h-> 1C o g = Rqil(q^lg (8) /C),

where Q and JC are (complexes of) sheaves on Y and on X x V, respectively.
Recall that with OT G D^oh(Dx) one associates its characteristic variety

char(9Jl) (see [18]), which is a closed conic involutive subset of the cotangent
bundle T*X. Recall also that the Riemann-Hilbert correspondence establishes
an equivalence between the categories D]?h(r>xxy) of regular holonomic mod-
ules, and DQ_ c(Cxxy) of C-constructible sheaves, by the assignments
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In the following, we will denote by X the zero-section of T*X.

Theorem 2.2.1. (see [6, 7] and [21]) Let 1C e D^_c(CXxr) and & G
D^h(Vxxy) be interchanged by the Riemann-Hilbert correspondence. Assume
that

(a) qi and q2 are proper on supp(£)7

(b) char(£) H (T*X xY)cXxY.

Then, for any Tt € D£oh(Px), Q G D^_c(Cy), and \\ = ±oc, ±u, there is an
isomorphism

(2.2.3) Sol(m,C*(IC o g))[dimx] ~ Sol(2tt o &,

In particular, let S C X x Y be a closed submanifold, and consider the
double fibration

(2.2.4)

X Y,

where / and g are the restrictions to 5 of the projections q\ and q^. In this
case, it is natural to consider the perverse sheaf 1C — Cs|^xy[-codimS], to
which corresponds the regular holonomic module ^ = BS\XXY of holomorphic
hyperfunctions along 5. Notice that

(2.2.5) C5 o g ~ Rfig~lg, OT o S5 ~ D^Afm

Corollary 2.2.2. (see [6] and [21]) Let S be a closed submanifold of
X x Y. Assume that f and g are smooth and proper. Then, for any 9JI G
~D^oh(T>x}) Q G Dj^_c(Cy), and \ = ±00, ±0;, there is an isomorphism

.5-dimy] ASol(3Tt'

In order to apply this result, we are left to deal with two separate problems

(i) to calculate the P-module transform 9JI o BS,

(ii) to calculate the sheaf-theoretical transform Cs o Q.

Problem (i) is of an analytic nature, and we will recall in the next section how
it is solved in the case of the Radon transform. Concerning problem (ii), note
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that g identifies the fiber of / at x G X with the subset x C Y. Then, if G C Y
is a locally closed subset, one has

In other words, the complex C$ ° &G describes the topology of the slices x Pi G,
when x varies in X.

Before turning to the Radon transform, let us recall some miscellaneous
results which will be of use in Section 3.

« Let Z be another manifold. With /C G Db(CXxy) and £ G Db(CyxZ) one
associates

/Co £ = Rqi3}(qi

Note that if Z is reduced to a point, one recovers (2.2.2). One easily checks the
associativity of the functor o, i.e.,

(2.2.6) ( J C o C ) o H = JCo(Con)

for *H G Db(Czxw)- The same remarks apply for D-modules.

® The functor o is compatible with exterior products. More precisely, let X,Y
be another pair of complex analytic manifolds, and take 1C G Db(Cxxr),
£ G Db(C^x?), G G Db(Cy) and Q G Db(C?). Then

(2.2.7) r*(£ m K) o (g m g} - (K o g) ® (/c o g),

where r:XxYxXxY-^XxXxYxY. The same remark applies to
P-modules.

® Consider for simplicity the case /C = C 5 , f o r 5 c ^ x y a closed submanifold,
and assume that the maps / and g in (2.2.4) are smooth and proper. Let
F G Db(Cx) and Q G Db(Cr). Then, one has the adjunction formula (see [7,
Proposition B.2])

(2.2.8) RHom (T o C5, Q} ~ RHom (F, Cs o ̂ )[dimR s-dimR r],

and the commutation with duality

(2.2.9) (C5 O Q}' ~ C5 O ^[dimR S-dimR X].

• Following [20], we set

(2.2.10) D^_C(X; T*X) = D^_C(X)/M,

where J\T is the null system of objects TV G DJ^_C(X) whose micro-support
SS(N) is contained in the zero-section of T*X. In other words, T — 0 in
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Djl_c(X',T*X) if and only if its cohomology groups are locally constant. If
T, Q G Dk_c(X), we write

(2.2.11) f = Q if ^-&inD^_c(X;T*-X').

§2B3o Massless field equations

Let us recall the construction of a distinguished family of De-modules
attached to the correspondence (1.1.1).

The tautological bundle U of G is the (p-fl) -dimensional vector sub-bundle
of the trivial bundle G x V, whose fiber over a point of G is that same point
considered as a subspace of V. The quotient bundle Q is defined by the exact
sequence

0 - » [ / - ^ G x V - * < 2 - > > 0 .

Denoting by V* the dual of V, there is a natural identification G ~ Gr (n — p; V* )
obtained by associating with a (p+ l)-dimensional subspace of V its orthogonal
in V* . If C = (Ci ? • • • 5 Cn-p) £ V* n~p is an (n — p)-uple of independent vectors
in V*, let us still denote by £ the point of G corresponding to (£)-L C V. One
has

For example, as in [12], a section of [70m ®deti7, where 0 denotes the sym-
metric tensor product, may be represented by a function t/>(£; <TI, . . . , crm) such
that

J ^(£; <TI, . . . , <7m) is multilinear and symmetrical in cr^ G V*/(£),

i 5 - " 5 c r m ) for // G GL(n-p,C).

As another example, in the identification T*G c± Q*®?7, the exterior differential
reads

where x—which is a priori a section of the trivial bundle G x (V (8) V*)—is in
fact a linear function of a G V*/{(") and t G V/{(^}J-, since ?/>(/^C) — ̂ (C) f°r

//G GL(n-p,C).
For ra G Z, the higher dimensional massless field equations of helicity

— (ra + l)/2 are the differential operators

(2.3.1) 0(Hm) -^—> O(Sm)

acting between sections of the vector bundles

{ j/0-(m+i) (gdett/ for m < -1,

det U for m = — 1,

(Q*)0(™+i)® detl7 f o r m > - l ,\ V / /
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and (using Young tableaux)

0detJ7 f o r r a < - l ,
g*A2 0 [/A2 ^ det y for m = -1,

•n+l

v
3=1=1 0 Z7® det U for m >-1.

The section \ — nmi/j G O(Hm) is defined by

• \ / /

for 771 < — 1,

^^
for ra = — 1,

> t0, 9C)^(C; ti, . . . , tm+i))^^,
for ?n > —1,

where <j£ £ V*/(£), t^ G "^/{C)-1-, and (TO <-> o"i denotes anti-symmetrization in
00 ,<7 i . ^

Fixing a basis of V* ~ Cn+1, the elements of the matrix (CD^'Zn-p
formed with the row vectors ("fc = (Cj?? • • • j C f c ) ? are called dual Stiefel coor-
dinates of £ G G. For example, if z/;(£) e O(H_i), Maxwell's wave equation
D_i^ = 0 reads

For m ^ — 1, Dm is represented by a system of first order partial differential
equations.

Remark. In Penrose's abstract index notations, one sets OA' — O(U],
OA = O(Q*), O[l] = O(dett/). Considering for example the case of negative
helicity m > — 1, the above operators are written as (cf [2, Example 9.7.1])

<t>BC-D ^ ^ A'[A$B}C~-D-

Denoting by HomdifT(O(Hm), O(Hm)) the set of differential operators acting
between section of the holomorphic vector bundles O(Hm) and 0(#m), one has
an identification
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where we set V(H^} = VQ ®OG O(H^). We still denote by Dm the associated
defined by

In particular,

Dm* = £>P(-m*) = PP <8>0p 0p(-m*) for p = 0, ra* < 0.

As stated in the next theorem, the Radon-Penrose transform with kernel BF
realizes Dm as the image of the locally free Pp-module of rank one Dp(-m*).

Theorem 2.3.1. Form* < 0 the Radon correspondence (1.1.1) can be
quantized to give a V^-linear isomorphism

*) O BF.

For n = 3 and p = I the above isomorphism was obtained in [6], using
the results in [10]. Similarly, the general case can be obtained using the results
in [2]. The more satisfactory approach via quantization, which is needed for
the description of integral kernels, is discussed in [7] for p = n — 1, and in [5]
for p < n — 1. In the framework of twisted equivariant P-modules, a proof of
the above isomorphism for ra = — 1 is given in [27] (see also [24]).

§2.4. Radon adjunction formula

Combining Corollary 2.2.2 and Theorem 2.3.1, we get

Theorem 2.4.1. For ra* < 0, G £ D^_C(CG), and \\ = ±00, ±<j, the
Radon correspondence (1.1.1) induces an isomorphism

(2.4.1) Rr(P; C'(CF o G)(m'))[P] ~ Sol(Dm,CH£))-

The above isomorphism holds in the derived category, while most of the
results that we stated in the first section deals only with the first non- vanishing
cohomology group. Thus, we now give some technical results that allows one
to get an isomorphism

with hypotheses weaker than T ~ Cp o Q\p\.
Let C and C' be two abelian categories, and $ : D+(C) — > D+(C') a triangu-

lated functor. Recall that $ is said to be left exact (for the natural ^-structure)
if $(D^°(C)) C D^°(C/). For example, the right derived functor RF of a
left exact functor F: C —> Cf is left exact. One denotes by r-r and r-r the
truncation functors in derived categories.

Lemma 2.4.2. Let C and C' be two abelian categories, $: D+(C) —>
D^C') a left exact functor, and N a null system in D+(C). Assume that
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(a) for somes > 2 and for any N G A/"nD^°(C), one has <$>(N) -^r^s$(N).

Let X,Y G D^°(C), and assume that

(b) for some r < s — 1 there is a distinguished triangle Y —> r-rX —>• N — >,

withN

Tften

Proof. Consider the distinguished triangle

Y -» r^rX -» N — >,
+1

of hypothesis (b). By hypothesis (a), r<s<&(N) = 0. Consider the distinguished
triangle 3>(Y) — >• $(r-rX) — >> $(N) — >. Since r < s — 1, one deduces that

r^r$(r^rX). The statement follows since $ is left exact. D

Recall the notation F = Q of (2.2.11).

Corollary 2.4.3. Let F be an H- constructive sheaf on P, and Q an R-
constructible sheaf on G. Assume that r-p(C$ o (/) = J"[-p]. T/ien, /or m* < 0

= ±00, ±0; the Radon correspondence (1.1.1) induces an isomorphism

(2.4.2) H°(I

Proof. By (2.4.1), we have to prove

This follows from Lemma 2.4.2, for X = CFo£, y = JF[-P], $ = RF(P; C^( - ) (m*) ) ,
JV" = {J* G D^_C(CP): J7 = 0}, s = n, and r = p. (Note that hypothesis (a) in
Lemma 2.4.2 follows from Serre's isomorphism (3.3.8).) D

The following result will be of use.

Lemma 2.4.4. LetC andC' be two abelian categories, and$\ D^C) —»•
D+(C') a £e/t exact junctor. Let X G D-°(C), y G C; and assume that for some
r > 0 one has r<r<$>(X) = 07 and Hj(X) ~ Y*> for j < r, with 4 / 0. T/ien

= 0,
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Proof. The statement is obvious if r = 0, so we may assume r > 0.
As short hand notations, set Xj = r-jX, <F(-) — H3 ; ($(•))• Consider the
distinguished triangles

(2.4.3)

For j = 0, part of the associated long exact cohomology sequence reads

and hence it is sufficient to prove that $r~~lXi = 3>rXi = 0. In fact, we will
show that for 0 < i < r — 1 the following statement holds

*
W ' *+iXfc = 0 for any 1 < fc < r - i

For i = 0, we have to prove that $°Y = $kXk — 0 for any 1 < fc < r. This
is true, since the beginning of the long exact cohomology sequence associated
with (2.4.3) for j = Q reads

0 _> $ ° } o __> $x = 0,

and moreover $kXk = $°Yik since $ is left exact.
Assuming that P(j) holds for j < z, let us show that P(i) holds. Similarly

as above, there is an exact sequence

Since ^~lXi = 0 by P(i - 2), this implies &Y = 0. Finally, for k such that
1 < fc £ r — ̂  consider the exact sequence

We just proved that $1Y = 0, and moreover $k+iXk+i = QbyP(i-l). D

§3o Proofs and Further Results

§38lo The Radon-Penrose transform

Proof of Proposition 1.1.1. By definition, one has

In particular, the isomorphism in the statement of Proposition 1.1.1 can be
rewritten as
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By Corollary 2.4.3, it is then enough to show that

T^CFoCi,)-^.

By (2.2.9), this is in turn equivalent to the isomorphism

which is proved in the next lemma. D

The following result is a slight extension of [6, Lemma 2.8]

Lemma 3.1.1* IfUcGis F- elementary, then

Proof. For z (E [7, consider the natural morphism

p:C->RT(2nl7;C) .

By definition, U C G is F-elementary if and only if H3 (p) is an isomorphism
for j < p. Note that z~ n U is an open subset of the complex manifold £ ~
Gr(p; W/z), which has dimension p(n — p). By Poincare-Verdier duality, this
is equivalent to say that the dual morphism

p* : RTc(z H C7; C)[2P(n-P)] -» C

induces isomorphisms HJ(p*) for j > —p. One concludes by noticing that p*
is the fiber at z of the adjunction morphism

CF O C[/[2p(n-p)] ~ fl/iC^-i(i/)[2P(n-P)] ~ RfifCfi -> Cp.

D

§3.2. Action of 5C/(p -f 1, n - p)

3.2.1. Conformal case.
As in Section 1.2.1, let uj be a nondegenerate hermitian form on V of

signature (p + 1, n — p), and denote by P C P and G C G the submanifolds of
isotropic lines and planes, respectively.

Proof of Proposition 1.2.1. We have to show that the horizontal rows of
the commutative diagram

H° Sol(Dm, CW(CG))

— (CG))
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are isomorphisms. Concerning the top row, by Theorem 2.4.1 we are left to
show that

^(P;C"(CP)(m*)) ~ /P(P; CW(CF o CG)(m*)).

Set C - Mod(Cp), C' = Mod(C), $ = RT(P;Cfa '(-)(rO), X = CFoCG, Y = CP,
r = p, and IQ = 1. Theorem 2.4.1 implies that r<r^(X) — 0, while Propo-
sition 3.2.1 below ensures that H^(X) ~ Y*3 . Then, the above isomorphism
follows from Lemma 2.4.4.

Similarly, in order to prove that the bottom line of the above diagram is
an isomorphism, it is enough to show that

i.e., that

This is a consequence of Lemma 2.4.4, for C = Mod(Cp)opp, the opposite
category, C' = Mod(C), $ = RHom(-,OP(m*)), X = (CF o CG)'[i], Y = CP[i],
r = p + 1, and £Q = 1. To check that the hypotheses of Lemma 2.4.4 are
satisfied, note the following facts. Since P C P is a hypersurface, CP[i] ~ Cp.
By Lemma 3.2.2 (ii), C'G ~ CG[-(P+i)2]. Moreover, by (2.2.9),

(CFoCGy 2± CFoCG[2p(n-p)]

~ CF O CG[p(2n-3p-2)-l],

so that (Op o CG)'[i] is in degree < 0 by Proposition 3.2.1. D

Remark. More generally, consider a nondegenerate hermitian form uj of
signature (q + l,n - g), with p + l<q+l<(n + l)/2. Using the above
arguments, one could prove that there is a commutative diagram

*)|P) -^^ W-P Sol(Dm, A? )

- ) ) — H « - P Sol(Dm, Sg),

and that the lower cohomology groups vanish.

Proposition 3.2.1. With the above notations, one has

fffc(CF o CG) ~ G£%

where £0 = 1, and 4 = 0 for k > p(2n - 3p - 2).
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Proof. Consider the double fibration

P C P G c G,

where F = g~l(G), and note that P = G. Since CF o CG = Rf\CF, the
statement is a corollary of the following Lemma, noticing that p(2n — 3p — 2) =

Lemma 3.2.2. Assume that p + 1 < n — p. Then

(i) P is a simply connected, quadratic hypersurface of P,

(ii) G is a generic, affine, orientable submanifold of codimension (p + I)2 in
G,

(iii) The projection /|p : F — > P decomposes into sphere bundles F - > Fp_i — >
fp-i

• • • FI — >> P, where the fiber dimension of //- is 2(n — p — I — k] — 1.
/o

Proof, (i) By definition, z G P if and only if it is u;-isotropic. Take a basis
of V, so that

•p+i ^
0 — ln-p

and let [z] = [zf, z"\ be the corresponding homogeneous coordinates in P. Then,
P is defined by the quadratic equation \z'\ = \z"\. Moreover, the map [zf, z"} H>
[z'\ induces a fibration of P over a p-dimensional complex projective space,
whose fibers are (2(n — p) — 1)-dimensional spheres. Since 2(n — p) — 1 >
2(p + 1) — 1 > 3, we get that P is simply connected.

(ii) As we already noticed, orbits of real forms of complex Lie groups are
always generic. Let [£] = [C'jC"] be the Stiefel coordinates in G associated
with the above choice of basis, where £' and £" are (p + 1) x (p + 1) and
(p +1) x (n — p) matrices, respectively. Then, G is defined by the homogeneous
system of equations £'£'* = C"C"*- In particular^' is invertible, since otherwise
there would be A £ GL(p + 1,C) such that £ = A( contains a row vector
£fc = (0, ("fc)» which is not o;-isotropic. Hence, G is contained in the affine chart
of G defined by det(£;) ^ 0, which is endowed with the system of coordinates
(£")• In this chart, G is defined by C;/C/7* — IP+IJ which gives a system of
(p + I)2 independent real equations. In particular, G is orientable.

Denoting by ££' the row vectors of the matrix (("")? these equations read

(Cl CD = «*.«• Thus, the maps C" = (Ci, - • •, C+i) ^ (Ci', • • •, C) ^ • • • ->•
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£(' define sphere bundles G = Gp+i — > Gp — > ••• — > GI, where the fiber
qp qi

dimension of g& is 2(n — p — k) — 1, and GI is a sphere of dimension 2(n — p) — 1.
Recall that if 77 is a d-dimensional o;-isotropic subspace of V, with d < p-f 1,

then the space V11 = rj^-/r] is naturally endowed with the form a;77 (^+77, w+rj) =
u(v, w) of signature (p + 1 - d, n — p — d). The correspondence

(3.2.1) C-K^KCrVj + rd/T/

satisfies (C77)"1 = (C"1)77^ and hence sends u;-isotropic subspaces of V to u;77-
isotropic subspaces of V77 . In particular, there is a bijection between points
(z, C) € F and pairs (z, C2), where ("z is an isotropic p-dimensional plane in Vz ~
Cn-1. This shows that / is a fiber bundle over P, whose fiber is the Grassmann
manifold of isotropic p-dimensional planes in V* . Finally, a construction similar
to the one in the previous paragraph proves that this bundle can be decomposed
in a chain of sphere bundles with the claimed fiber dimensions. D

3o2.2. Conformal affine case,,
As in Section 1.2.2, let Co € G, denote by G0 C G the open subset of

planes transversal to C^1, and set G0 = G Pi G0 . Similarly, consider P0 C P and
— p n P

O - -*• I I JT0 .

Proof of Proposition 1.2.2. We have to prove that

By Proposition 3.2.3 below, this is a consequence of Theorem 2.4.1.
As for the extendability of solutions, using the above result and Proposi-

tion 1.2.1 we get a commutative diagram

B g m ) ) : Dm^ - 0}.

It is then enough to prove that

#p+2RHom(Cp\po,C>p(m*)) - 0.

By definition, P \ P0 is the set of o;-isotropic lines in £^-, and since any line is
isotropic, it is identified with a p-dimensional complex projective space. Let us
set L — P \ P0 for short, and consider the distinguished triangle

RHom(CL,0P(m*)) -» RHom(CP,0p(m*)) ->• RHom(Cp\L,Op(m*)) —> .
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As we recalled in Example 1.1.3, P \ L is p-linearly concave, and hence the
last complex vanishes in degree smaller than n — p — 1. Moreover, P \ L is
covered by the n — p Stein open subsets P \ H^, where H^ is the hyperplane
zp+J = 0 in the system of homogeneous coordinates where L is defined by
Zp+i = • • • = zn+i = 0. It follows that the last complex is concentrated in
degree n — p — I. Since m* < 0, the second complex is concentrated in degree
n. We can then conclude, unless p + 1 = n — p — 1. D

Proposition 3.2.3. With the above notations, one has

CF O CGo ^ CPo[-p(2n-3p-2)].

Proof. Setting Fo = g~l(G0), we have G0 = P0, and CFoCGo ~RfiCFo.
The statement is then a corollary of the following Lemma. D

Lemma 3.2.4. Assume that p + 1 < n - p. Then

(i) P0 is an open simply connected subset of P,

(ii) Go ~ R(P+l)(2n-3p-l) is an affine chart in Q^

(iii) The map /|Fo: F0 -> P0 is an 1^^-^-^-bundle.

Proof. Recall that P \ P0 is a p-dimensional complex projective space. In
particular, P \ P0 has codimension In — 1 — 2p > 2p + 1 > 3 in P. Since P is
simply connected, so is P0.

To prove (ii), choose a basis {ei, . . . , en+i} of V so that £0 is the complex
plane (ep+2 , . . . , e2(p+i))c generated by ep+2, • • •, e2(p+i), and

In particular, (^ = (ep +2,. . . , en+i)c> In the associated system of Stiefel
coordinates [C'jC^C'"]? ^o is described by the inequality det£' ^ 0, so that
(lp+i, C'? C/;) is a system of coordinates in G0. (Note that ("" and ("/;/ are
(p + 1) x (p -f 1) and (p + 1) x (n — 2p — 1) matrices, respectively.) In this
system of coordinates, the isotropy condition defining G0 C G0 reads £' — £'* =
_^//^//* ^p^jg js a system of (p+1)2 linear independent conditions on the anti-
hermitian part of £'. It follows that G0 C G is a real afSne chart of dimension
2((p 4-1)2 + (p + l)(n - 2p - 1)) - (p + I)2 - (p + l)(2n - 3p - 1).

For z G P0, f ~ l ( z ) n^~1(G0) is the family of u;-isotropic (p+ l)-subspaces
of V containing z and transversal to ^. The map C ^ C2 °f (3.2.1), identifies
it to the family of u^-isotropic p-subspaces of V2 transversal to (Co)"1- The
construction in the previous paragraph shows that this set is in turn identified

3p-2). D
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§3.3. Action of SL(n + 1, R)

With the notations of section 1.3.1, let us consider the double fibration

F c F c F

P C P G C G,

where F = F n (P x G), and F = F n (P x G).

3.3.1. Real projective case.
Recall that P denotes a real projective space of which P is a complexifica-

tion, and Cp°(m|e) is the sheaf of sections of the C°° line bundle described by
the homogeneity condition

(p(\x) = (sgn A) £ \™(p(x ) for A <E Rx.

Proof of Proposition 1.3.1. Since 7i"i(P) = Z/2Z, there are essentially two
plocal systems of rank one on P. Let us denote them by Cp , for e G Z/2Z, so

that Cp is the constant sheaf Cp. Then, one checks that

for t) = ±00, ±0;. Similarly, recall that 7Ti(G) = Z/2Z, and note that

By the above remarks, the statement of the proposition can be rewritten as

By Proposition 3.3.1 below, this is a corollary of Corollary 2.4.3, with Q =
C(~1} , and T = C(

p-
p~1} . D

Proposition 3.3.1. With the above notations, one has

T-
(_ i ) JCp\p[-p+i] forpodd,

lCp [-p] for p even.

In particular,
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Proof. The second assertion follows from the first one by considering the
distinguished triangle associated with the short exact sequence

0 -» Cp\P -> Cp — > Cp -> 0.

Let us prove the first assertion. By (2.2.5), one has

where cle) = C^ 0g~lC(^}. The natural identification
induces a projection V — > V, which in turn induces a map

p : P - > P U G r ( 2 ; V ) .

More precisely, for x,y e V one has p((x + iy)c) = (z,y)n, so that p p is the
identity, and p ~ l ( r j ) = Gr(l;ry (% C) for r] G Gr(2;V). For z e P, C ^ G, one
has

and hence the fiber F2 = F fl f~l(z) has the description

(3.3.D f . - t t e 6=PWce} .. pz)) if z e P \ P .

Applying the functor #/, to the short exact sequence

o-^c^-^cl-^-^c^^o,

we get the distinguished triangle

(3.3.2) ^/!CKF
1} "> CF o C^1} -» fl/.C^1) -^ .

By (3.3.1), F \ F is a Gr(p - 1; Rn~"1)-bundle over P \ P, which is simply con-
nected, and hence

(3.3.3)

, for Pk =

Moreover, F is a Gr(p; Rn)-bundle over P, which is not simply connected, and
hence

(3.3.4) HkRflC
(
f~

l} is a locally free sheaf on P of rank 6 (_i)(fc;p, n),

where b(_1}(k;p,n} = dim#fc(Gr(p;Rn); C^.Rn)).
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Let us consider the case p + 1 < n — p. Concerning the topology of
Gr(g; Rm), we need the following result, valid for 1 < q < m - q

fO k<q,
(3.3.5) #fc(Gr(g; R™); C^;Rm)) = \ 0 k = q and q odd,

^ C k — q and q even.

(This is a particular case of Proposition 3.6.3 (ii).) Using (3.3.3), (3.3.4), and
(3.3.5), we can compute the beginning of the long exact cohomology sequence
associated with (3.3.2). This gives

(3.3.6)
[-p] for p even,

and we are left to check that e = —p —1 = 1 mod 2. This follows from

(3-3.7) ~ Horn (CP o CF, C(~ 1}[-P})

where the second isomorphism is due to (3.3.6), the third one to (2.2.3), the
fourth one to Lemma 3.3.3 below, and the last term vanishes by (3.3.5). This
concludes the proof for the case p 4- 1 < n — p.

Let us now consider the case p + 1 > n — p. As we already noticed, there
is a natural identification G ~ Gi(n — p; V*) obtained by mapping a subspace
of V to its orthogonal in V* . Let P ~ Gr(l; V*) be the dual projective space,
and denote by F* C P* x G the incidence relation. As in the Appendix, denote
by S C P x P* the incidence relation associated with the projective duality, and
consider the correspondences

Set for short

Sc = (P x F) \ S, r = (P x G) \ F.
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The statement follows from the chain of isomorphisms

§c O CF* ° Cr- [2n — 2 p — l ] j

• r - - P - r i= ^p [-p]-

Here, the first equality follows from Lemma 3.3.2 below, the second and fourth
ones from the identity r-a(X[b}) = T^a+bX[b], and the fifth one from (A. 2.1).
We are then reduced to prove the third isomorphism. Since the roles of p 4- 1
and n — p are interchanged when considering the incidence relation F* instead
of F, the first part of the proof gives

It is then possible to apply Lemma 2.4.2 for C = Mod(Cp*), C' = Mod(Cp),

$ = C§c[n] o (•), J\f the null system of constant objects, X — CF* o C^" ,

Y = Cp*~n)[-(n-p-i)], r — n — p — 1, and s = n. This gives

n

Lemma 3.3.2. With the above notations, one has

C§c O CF* ^ CFc[-2(n-p-l)],

and hence
CF = Cge o CF* [2(n-P)-i].

Proof. The stalk of C§c o CF* at the point (2;, C) e P x G is described by
the compactly supported cohomology of the set

({z} x F x {C}) n (§c XP. F) = {r, 6 F : z£ r], C C 77}.

Such a set is empty if (2, C) £ F, and isomorphic to Cn~p-1 otherwise. Since
¥° is simply connected, the locally constant sheaf (C§c o CF* [-2(n-p-i)])|F^ is
constant, and the lemma is proved. D

Finally, let us prove the following lemma, that we used in the first part of
the proof of Proposition 3.3.1.
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Lemma 3.3.3. One has

k=0

Proof. Since Cp o CF — Rg\C^^ the stalk at (" G G is computed by

(CPoCF)c~Rrc(Fc;C),

where

is a complex p-dimensional projective space. In particular, Cp o CF is locally
constant. Moreover, since G is simply connected, one has

n*(r n n \~ JCc for * = 2j' Q^3<P,H (Cp o CF) ~ <
10 otherwise,

where we used the well-known relation

JC for * = 2J5 0 < j < p,
= <n ^u10 otherwise.

We are thus reduced to check that this complex splits as the direct sum of
its cohomology groups, which is true since cohomology occurs only in even
degrees. D

Remark. For z E P, one has ¥z = {C G G: C 3 z} - Gr(p; V/C). Then,
using Proposition 3.7.2, one can similarly prove the isomorphism

p(n-p)

3.3.2. Real affine case.
As in section 1.3.2, let H C P be a hyperplane, and set A = P \ H, GA =

G \ G H , where GH is the Grassmann manifold of projective p-dimensional planes
in H.

Proof of Proposition 1.3.2. Since A is open subanalytic in P, C°°(CA) =
Z^lp is the ideal of Cp° of functions vanishing up to infinite order on H. In
particular,
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where the last isomorphism is due to the fact that A is an affine chart in P.
Applying the functor Rr(P;C°°(-)(m*)) to the short exact sequence

n __x nC-p"1) _^ r*(~P~1} _^ c*(~p~1} _^ nU — r v>^ — T \_>p — r ^Y\ — ̂  ^'

we then get

5(A) ~ ker ̂ H0(P',C°°(C(
p'

P~l})(m^) -» H0(P-C°°(C^p~l))(m

Similarly, {-0 G <S(//m |_i)(GA) : Omi/j = 0} is isomorphic to

By Proposition 1.3.1, we know that

It is then enough to prove the isomorphism

Denote by j: H *-+ P the complexification of H C P. Let ^" be as in Proposi-
tion 3.3.4 below. One has the chain of isomorphisms

where the first one is due to Lemma 2.4.2 for $ = Rr(P;C°°(J!(-))(™*))5 hy-
pothesis (a) being implied by Lemma 3.3.5 below, and the second one follows
from Corollary 2.4.3. D

Proposition 3.3.4. Denoting by j : H ^ P the complexification of H C
P7 one has

T^(C¥OC(^)=J^

where T = c[f+1)[-P] in Db(CH; T*H).

Proo/. Denote by fc: Ge "-> G the complexification of GH C G, and set
FM = F n (H x GH). Consider the double fibration

Fe CF

C G,
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and set ¥° = (PxG)\F, F| = (H x GM ) \ FH . As pointed out in [3, Lemma 3.3],
one has C^c o k\( • ) ~ J!(^FH

C ° • )• Then

where the fourth isomorphism holds since j\ is an exact functor. Finally, one
has

in Db(Ce; T*H), where the second isomorphism is due to Proposition 3.3.1. D

Lemma 3.3,5. For ra* < 0 the complex Rr(P;C°°(Ce)(™*)) is concen-
trated in degree n — l. In particular, if N £ D-°(Ce) is zero in D-°(Ce; T*H)
(i.e. N = 0), then r<n-1(Rr(P;C00(7V)(m*))) = 0.

Proof. Since M is simply connected, H^(N) is a constant sheaf along EL
It is then enough to show that RF(P; C°° (Ce)(™*)) is in degree n — l. As in the
Appendix, denote by P* the dual projective space, by S the incidence relation,
and set Sc = (P x P*) \ S. Let ft G P* be the point such that h = EL By
Theorem A. 1.1, one has

Note that C§ o Ch ~ Ce, Cpxp* ° C^ ~ Cp, and that Serre's isomorphism
reads

(3.3.8) Rr(P;OP(m*))[n] -

where both complexes are concentrated in degree zero. From the short exact
sequence 0 — > C§c — > Cpxp* — > Cs — » 0, one gets the distinguished triangle

— >• C§c

Applying the functor Rr(P;C°°(- o Ch)(rrT)), we get the distinguished triangle

r(F;0p*(-m*-n-l)) -> C?p*(-m*-n-l)k -> RF(P; C°° (Ce)(m*))[-n+l] - > .
a +1

One concludes since a is inject ive. D
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§3.4. Action of SL(n + 1, C)R

3.4.1. Realified complex projective case.
Let us use the notations of Section 1.4.1. In particular, PR denotes the real

analytic manifold underlying P, and P x P D PR its natural complexification.
D

Let us denote by IE the exterior tensor product for P-modules. Using
the D-module analogue of formula (2.2.7), one gets the following variation of
Corollary 2.4.3.

Corollary 3.4.1. Let F_be an H-constructive sheaf on P x P, and Q an
R-constructive sheaf on G x G. Assume that T-2p(C¥x^ oQ) = F[-ip]. Then,
for ?n*, ?ri* < 0 and \\ = ±00, ±o> one has

(3.4.1) Jf°(P x P;

Proof of Proposition 1.4.1. Consider for example the case b = oo. Since
P x P is a complexification of PR, one has C°°(CpR) = C|̂ , and hence

Similarly,

F°Sol(Dm ED^C00^)) ^ {V € r(Gn;C£ (*„,,:»*)): DmV = D^ = 0}.

By Proposition 3.4.2 below, the statement is then a corollary of Corollary 3.4.1,
with Q = CGR , and f — CPR. D

Proposition 3.4.2. With the above notations, one has

Proof. Consider the projections

(P x P) x (G x G)
Q2q\V

<?13
X GR X P G X G,

where q is induced by the first projection G x G —>> GR. Setting

F = (F x P) n (P x F) = {(z, C, w) e P x GR x P: C D z + w},
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one has

CFxF °

For (z, iu) 6 P x P, set F(z,w) = F n Qi^z, w), and note that

~ fGr(p;V/z) f a r z = w,

1 Gr(p — 1; V/(z + w)) for z ^ w.

Consider the subsets of P x GR x P

U = T\F.

Applying the functor ^9131 to the short exact sequence

0 —>• GU —>• Cf —^ Cp —>• 0,

we get a distinguished triangle

! ! FxF R +1

Note that T(Z)U;) ~ Gr(p; V/z). Since T is a Gr(p; Cn)-bundle over Px P, which
is simply connected, one has

(3.4.3) Hk(Rq13,CT) ~ M^ for Mk = Hk(Gi(p; Cn); CGr(j,;C-)).

The fiber U(2i2) is empty, while U(2?ty) = {C G GR : (" D z, C ^ ^} for z ^ w.
Thus, for z 7^ w the projection of the (p + l)-dimensional plane (" G U(Zilu)
to V/(z -f it;) is a p-dimensional complex plane. One then has a commutative
diagram

u

913 lu

( P x P ) \ P R ,

where U is the Gr(p; Cn~1)-bundle over (P x P) \ PR defined by

and a, /? are the natural projections. For z ^ w and ("' G Gr(p;V/(^
one has

a-\z,C,w) = {C 6 GR: C C C' + z + t«,C => «
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which is identified with an affine chart in the dual projective space Gr(p; £' + w).
Since a is a Cp-bundle, (3 is a Gr(p; Cn~ ^-bundle, and U and (P x P) \ PR are
simply connected, one has

(3.4.4)

Using (3.4.3) and (3.4.4), we can compute the beginning of the long exact
cohomology sequence associated with (3.4.2). This gives

(3.4.5) T<2p-i(cFxF o CcJ ~ T^-HA/ia.CT) = 0.

Moreover, recalling that cohomology of complex Grassmann manifolds occurs
only in even degree, we get an exact sequence

0 -> ̂ (°PXP)\PR ->
 MPXP ^ P(Crxf o CG.) ^ 0.

Since Gr(p; Cn-1) is connected, by (3.4.4) one has NQ = C, and hence

(3.4.6)

The statement follows from (3.4.5) and (3.4.6). D

3.4.2. Realified complex affine case.
Let us use notations (1.4.2), and consider

GM = § the set of C e G with C C H,

so that GA = G \ G e -

Proof of Proposition 1.4.2. By (2.1.3), C°°(CA) is the ideal of Cg^ of
functions vanishing up to infinite order on EL In particular, taking global
sections we have

The argument then proceeds as in the proof of Proposition 1.3.2, considering
the short exact sequence

0 -> CA -» CP -> CH -* 0.

D
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§3.5. Action of SL((n + l)/2, H)

Recall that SL((n + l)/2, H) acts transitively on the projective space P.
It follows that, with the notations of Section 1.5,

Hj(C¥ o CHG) ̂  CpJ , with 4 = 1-

Using Theorem 2.4.1 and Lemma 2.4.4 we get the isomorphism

T^—P 801(0, .BHG) ~ tf"(P;0P(m'))b-n],

of which Proposition 1.5.1 is a particular case.

§3.6. More on SL(n + 1, R)

As we saw in Section 3.3.1, in order to prove Proposition 1.3.1 it was
enough to compute the first non- vanishing cohomology group of the complex
CF o CG\ Of course, computing higher cohomology groups gives further
results. Consider for example the classical Penrose case of p = 1, n = 3. Then,
(3.3.2) yields a distinguished triangle

CP\p -»• CF o c4~1} -» CP[-2] — > .

Let ra* = —?n — 3 < 0. Applying Theorem 2.4.1 and using Serre isomorphim,
one gets an exact sequence

0 -> H1 Sol(Dm)C°°(C<f 1})) -> r(P;CFVlo)) -> C[z]m -* 0,

where C[z]m is the space of homogeneous polynomial of degree m. Since ra >
—3, one has in particular

for m = —2, —1. This result was also obtained in [9, p. 66-67] using the notion
of involutive structure.

As another example of application, one has the following result

Proposition 3.6.1. Let m G Z be such that m* < 0. Then, for some
£i 5 £2 5 £3 £ Z/2Z one has

(i) ifp and n are odd, Hn~P Sol(Dm,Cg°) ~ #n(P; 0p(m*)),

(ii) i/p zs odd and n ^s even, Hn~p~l Sol(Dm,Cg°) ~ T(P; Cg°(m*|ei)),

(iii) ifp is even and n is odd, #pSol(Dm,Cg°) ~ T(P; Cg°(m*|£2))7

(iv) i/p and n are even, FpSol(Dm,Cg°) ~ T(P; Cg°(m*|e3))7
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and similarly for oo replaced by — oo,=bo;. Moreover, the lower cohomology
groups of the solution complex Sol(Dm,Cc°) vanish.

As it was the case for Proposition 1.3.1, its proof is based on the com-
putation of the sheaf-theoretical transform Cp o CG- This is performed in
Proposition 3.6.2 below, using the table of Betti numbers for oriented and non-
oriented real Grassmann manifolds, that we recall in Proposition 3.6.3. As we
will see, the use of such table to compute CpoCc is already quite intricate, and
we did not go as far as to determine the twists el appearing in the statement.

Proposition 3.6.2. Assume p + 1 < n — p. Then, for some £1,62, £3 £
Z/2Z one has

(i) if p and n are odd, CF ° CG = 0,

(ii) if p is odd and n is even, r-n~l(C^ o CG) == Cpp

p(iii) if p is even and n is odd, r-2p(C^ o CG) = Cp [-2P],

(iv) ifp and n are even, r-2p(CF o

Proof. Consider the projections

and recall that CF o C^ ~ Rqi^G- . In order to argue as in the proof of
Proposition 3.4.2, we need to restrict to an affine chart in P. More precisely, let
[XQ, xf] = [XQ, ... » x n ] be a system of homogeneous coordinates in P, and denote
by [ZQ,Z'\ their complexification in P. Denote by A° the affine chart z0 / 0 in
P. Points in A° can be uniquely written in the form [1, z'\, and [1, z'} E A° Pi P
if and only if (z'} is real. Writing Zj = Xj + i y j , consider the subsets of P x G

F° - Fn(A° xG) = {([l,z'U)eA° x G : £ D [ l , z ' ] + [0,?/]},

U° - T°\F°,

and note that

/Gr(p;V/[l,x7]) for [1,^] E A° n P,
for [1,^] E A ° \ P ,
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As in Proposition 3.4.2, one has a commutative diagram

u° - - - ^0°

A°\P ,

where lift zn = Gr(p; V/([l,x'] + [0, ?/])). Of course, similar results hold for
any affine chart A-7' = {2^ ̂  0}, giving an open covering of P. In the following,
we will denote by FJ, "P, IP the corresponding sets.

Consider the distinguished triangle

(3.6.1) RqltC$ -» RquCg -> (CF o C^)|AJ -^ .

Since ~P is a Gr(p;Rn) -bundle over A7', which is simply connected, one has

(3.6.2) HkRqvC$ ~ M£ for Mfc = ff*(Gr(p; Rn); c

On the other hand, a is an Rp-bundle over IP which is not simply connected,
and /3 is a Gr(p;Rn~1)-bundle over A-7 \ P which is simply connected. Setting
e = e + 1 we then get

where the first isomorphism comes from Lemma 3.6.4 below, for W = V/[l, a:'],
y = ([l^'j + tO,^])/!!,^7]. Using (3.6.2), (3.6.3), we can compute the beginning
of the long exact cohomology sequence associated with (3.6.1). For e = 1, this
would give an alternative proof of Proposition 3.3.1. To prove the present
statement, we have to consider the case e = 0. We shall use Proposition 3.6.3
below.
® If p and n are odd, N^ = 0 for any i, and hence

CF o CG = 0.

® If p is odd and n is even, N^ = 0 for i < n — p — 2. We thus get

r^"-3(CF o CG) = 0,

and an exact sequence

0 -> C^; a^i' £fl) -> F"-2(CF o CG)|AJ ->.
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Since Hn~l(C^ o CG) is locally constant of rank one on P, this implies the
statement.
• If p is even and n is odd, N* = 0 for I < p — 1. We thus get

and an exact sequence

The computation of the fibers shows that iJ2p(Cp o CG) = 0, and this implies

for some £2 e Z/2Z.
» The case of p and n even is similar to the previous one. D

Denote by Gr+(q;Rm) the Grassmannian of real g-dimensional oriented
subspaces of Rm. The projection 7 : Gr+(g; Rm) -» Gr (g; Rm) is the universal
covering of Gr(g; Rm), and one easily checks that

7*CGr+(g;Rm) ~ CGr(g;Rm) 0 CGr(g;Rm).

The following tables are then immediately derived from Fuks [11].

Proposition 3.6.3. (see e.g. [11]) Consider the partition function

d : Q x Z x Z -> Z>0

defined as follows. Ifk, m, g £ Z>0, fe£ c/ (fe; m, g) be the number of partitions of
k in m non-negative integers not bigger than q; ifm,q£ Z>0 set d(0; m, q) =
1; set d (k] m, q) — 0 otherwise. Then, for 1 < g < m — 1,

(i) i/ie Beiiz numbers dimHfc(Gr(g;Rm); CGr(9;R^)) are computed according
to

ft P1]p¥)

m even

j ( k m — q g^

V4' 2 ' 2J

j fk m — q—1 q — l \
\4' 2 ' 2 / '

jfk — m + l m — q — l q — 1^
V 4 ' 2 ' 2 )

m odd

( k m — q — 1 g\

\4' 2 ' 2;

^ ^ f c m — q q — 1^
V4' 2 ' 2 ;
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(ii) the Betti numbers dimIf /c(Gr(g;Rm); C^/ .R mx) are computed according
to

q even

q odd

m even

fk — m + q m — q q — 2^
\ 4 ' 2 ' 2 ) '

^(k — q m — q — 2 q^\
d( 4 ' 2 '2J

0

m odd

(k — q m — q— I q\
V 4 ' 2 ' 2j

. f k — m + q m — q
n I •
di, 4 ' 2 '

j-l\

2 y

In the proof of Proposition 3.6.2, we used the following generalization of a
result used in [3, formula (3.14)].

Lemma 3 06. 4. Let y be a line in a real vector space W. There is a
natural projection

a : Gi(p; W) \ {rj e Gr(p; W) : 77 D y} -> Gr(p; W/y)

defined by rj i-> (77 + y)/y, ^a^ toe denote by a: GI \ 62 — > GS /or short. Then

Proo/. By the projection formula, fiaj ( C G a ) ~ /?a! (CGl\G2 ) ® C . It
is then enough to prove the statement for e = 0.

The fiber of a at £ € CGS is an affine chart in the dual projective space
Gr(p;£-hy). In particular, a is an Rp-bundle, and hence there exists e such
that

One may deduce that e = I from the fact that a is naturally identified with
the dual tautological bundle of 63. Alternatively, one may consider the chain
of isomorphisms

r(G3;C<J) ~ Hom(cg[-ri,CG3[-ri)
~ Hom(^a!CGl\G2,CG3[-p])

~ Hom(CGl\G2,a!(CG3[-p]))

where the fourth isomorphism uses the identification a!(-) ~ a~l(-)^[p], due to
the fact that a is smooth, and the relative orientation sheaf is non trivial. D
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§3.7. More on SL(n + 1, C)R

Using the table of Betti numbers for complex Grassmann manifolds, that
we recall in Proposition 3.7.2, one gets the following sharpening of Proposi-
tion 3.4.2, which could be used to compute higher cohomology groups of the
solution complex

Proposition 3.7.1. With the above notations, one has

^(k-p-^n-p-l^p) ^ nd(k;n-p,p-l)

Proof. Consider again the long exact cohomology sequence associated
with (3.4.2). Using (3.4.3), (3.4.4) and Proposition 3.7.2 below, for k e Z we
get short exact sequences

- _
" (PXP)\PR - p x p

and also H2/c+1(CFxp o CGR) = 0. An easy combinatorial argument, or the
computation of the stalks of the above sequence at PR and (P x P) \ PR, show
that

d (fc; n — p, p) = d (k — p; n — p — 1, p) + d (fc; n — p, p — 1) .

D

Proposition 3.7.2. (see e.g. [11]) Letd(k; m, q) be the partition func-
tion introduced in Proposition 3.6.3. Then, for 1 < q < m-l, the Betti numbers
o/Gr(g; Cm) are given by

dimHk(Gi(q; Cm); CGr(?;Cm)) =

§A. Review on Projective Duality

Projective duality is associated with the correspondence

(A.O.I)
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which is the extreme case of (1.1.1) obtained for p — n — 1. In other words,
one considers

= Gr(l;V),

P* = Gr(n; V) the family of hyperplanes in P,

= {(z, C) G P x P* : z G C} the incidence relation.

In this section, we recall related results of [7, 3], and we also discuss the action
of 5C/(cj;V), where a; is a nondegenerate hermitian form on V, of signature
(q -h 1, n — <?), for 1 < q < n — 2.

§A.l. Adjunction formula

Since S C P x P* is a smooth hypersurface, there are three perverse (resp.
regular holonomic) kernels associated with the correspondence (A.O.I). More
precisely, setting Sc = (P x P*) \ S we will consider

for

In particular, 23§c is the sheaf of meromorphic functions with poles along S,
and Sgc = jRT^om^^Ss^Ppxp*) ®o ^ fi®~p*[2n] denotes its dual as left
PPXP* -module. As pointed out in [22], one has

(A.1.2) Cgc o C§c ~ CA[-2n], B^c o BBC ~ BA,

where A C P x P denotes the diagonal. In particular, by (2.2.6) the functors
Cgc[2n] o • and C§ o • (resp. B§c o • and • o 6§c) are inverse to each other.

In this section, we have p = n — 1. To avoid confusion with the notation
?Ti* = — m — p — 2, we set

ra° = — ra — n — I.

One has the following analogue of Theorems 2.3.1 and 2.4.1.

Theorem A. 1.1. (see [7, 8]) Considering 1C and & as in (A. 1.1), the
Radon correspondence (A.O.I) can be quantized to give a Dp -linear isomorphism

O

Moreover, for Q e D^_c(Cp*) and tj = ±00, ±0; one has the isomorphism

RF(P;
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As an example of application, note that an easy computation gives

(A.1.3) C§c O Cp* ~ Cp[-2n].

Then, for Q = Cp*, one recovers Serre's isomorphism (3.3.8). Another example
is obtained by considering Q = C^, for U C P "lineellement convexe" in the
sense of Martineau. This is the analogue of Proposition 1.1.1 and was discussed
in [7, Theorem 5.5].

§A.2. Action of SL(n + 1, R)

As in Section 1.3.1, let V be a real vector space of which V is a complex-
ification. The closed orbit of the real form SX(V) C SL(V) in P* is identified
with the real projective space P*, dual to P C P. The following result, which
is the extreme case of Proposition 1.3.1, may be found for example in [12], for
the C°° case.

Proposition A. 2.1. For — n — 1 < m < 0 one has the isomorphism

and similar isomorphisms obtained when C°° is replaced by real analytic func-
tions, distributions, or hyper functions.

As in [7], one may obtain this result as a corollary of Theorem A. 1.1, using
the isomorphism

We refer to [3] for a proof along these lines of the analogue of Proposi-
tion 1.3.2. Here, the Cavalieri condition appears in describing the image of the
Schwartz space <S(A). For n = 3 and m* = — n this relates to the transform
originally considered by Radon [25].

§A.3. Action of SU(q + 1, n - q)

Let 1 < q < n — 2, and consider a nondegenerate hermitian form a; on V
of signature (q + l,n — q). The group SU(u>]V) c± SU(q + l,n — g) is a real
form of 5L(V), and its orbits in P are

the set of u-isotropic lines,

,
< 0}.
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Similarly, recalling that C € P* represents a hyperplane in V, the orbits in P*
are

:

P* = {C G P* : u\£ has signature (q,n — q — 1)},
P+ = {C G P* : o;|c has signature (g + 1, n - q - 1)},

PI = {C € P* •' MC nas signature (<?, n — q)}.

Recall that P is a real quadratic hypersurface of P with non-degenerate Levi
form of signature (q, n — q — 1), and similarly P* has signature (n — q — 1, q).
For q = n — 1, the following result is the extreme case of Proposition 1.2.1.

Proposition AoS.l. For any m E Z one has a commutative diagram

£/ie similar one obtained by replacing the — signs with + signs, and inter-
changing g+1 with n — q. In particular, for g+1 < n — q one has a commutative
diagram

; Pp(m')|p) ^* JT-9-l(P*; Op.(m)|p.)

Proof. Note that if m > 0, then m® < 0. Eventually interchanging the
roles of V and V* , and of q + 1 and n — g, it is not restrictive to assume that
m® < 0. Since the proofs are similar, we will just deal, for example, with the
isomorphism

Using Lemma A. 3. 2 below, Theorem A. 1.1 for 1C = C§c, Q — Cp^ and \ —
gives

Consider the distinguished triangle

Rrc(P+;OP(m8)) -> Rr(P;OP(m9)) -> Rr(Pl;

associated with the short exact sequence 0 — > Cp+ — > CP — > Cp^ — >• 0. By
Serre's isomorphism (3.3.8), the middle term is in degree n (or vanishes). It
follows that
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and the result follows by taking the zero-th cohomology group in (A.3.1). D

Lemma A.3.2. One has

CP7 ° C§c - CP1 t~2<?] Cjrj O CSe ~ CP^ [-2(n-q-l)]

C^c O CP*_ ~ Cp^[-2(n-q)], C^c O CP; ~ Cp^te+l)].

Proof. By (A.1.2), the isomorphisms in the second line may be deduced
from those in the first one. Since the arguments are similar we prove only the
assertion

Cp^oC§c~CP*_[-2q].

Since the open orbit PI is simply connected, if C§c o Cp^r is locally constant
along P!_, then it is constant. Thus, it is sufficient to show that

/ x ~ _ f(Cp7oC§cJ^Rr c((p\c)nP+ ;C)^ I—.^.. |C[-2g] f o r C e PI,
0 otherwise.

Let C — [1? 0 , . . . , 0] in a system [Co, . . . , Cn] °f homogeneous coordinates in
P*, and denote by [zQ,...,zn] G P the dual system in P. Note that P \ C is
the affine chart z0 / 0. We endow it with the system of affine coordinates
(TI,T',T") E C^^^-^1), where TJ = ZJ/ZQ.

First, let C £ P*- Then, we may assume

( 0 li 0 0
li 0 0 0
0 0 1 , 0
0 0 0 -ln-q-i

In this case,

is isomorphic to an affine closed half-space of R2n, and hence RTC((P \ C)

Finally, let C € P±- Then, we may assume

( Tli 0 0 0 \
0 ±li 0 0
0 0 lq 0
0 0 0 -lu-q-l

Since

(P\C) HPT ̂  {(ri,r',r"): ± |n|2 + |rf - |r" 2 T 1 > 0},
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one concludes using Lemma A. 3. 3 below. D

Lemma A. 3. 3. Let (x',x") G Rr+s be a system of coordinates, and
consider the sets

^> — //V T /7V <r'\ IT"! > 1 1 V< — J/V r"\- v' \ IT"! < ^l^r,s — i(X 'X )' X ] — \X I ^ 1J-, Z^-s — {(X ,X ). X \ — \X I S l/-

Then,

(A.3.2) RTC(E^; C) = 0, RTC(E^; C) ~ C[-s].

Proof. Setting E=s = {(z',z") : |z'| - \x" = 1}, one has

where 7 : E^s — > E^s is the natural homothety. The fibers of 7 are closed half
lines {t e R: t > 1}, and hence #7,CS> = 0. Concerning E^s, the projection
(x1 ,xrf) i-> x' gives it a structure of a vector bundle over the closed unit ball
Br C Rr. Since Br is contractible, E^s is isomorphic to Br x Rs, and hence

RTC(E^; C) - Rrc(5
r; C)[-s] - C[-s].

n
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